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Abstract

Sensitivity of deep-neural models to input
noise is known to be a challenging prob-
lem. In NLP, model performance often dete-
riorates with naturally occurring noise, such
as spelling errors. To mitigate this issue, mod-
els may leverage artificially noised data. How-
ever, the amount and type of generated noise
has so far been determined arbitrarily. We
therefore propose to model the errors statis-
tically from grammatical-error-correction cor-
pora. We present a thorough evaluation of
several state-of-the-art NLP systems’ robust-
ness in multiple languages, with tasks includ-
ing morpho-syntactic analysis, named entity
recognition, neural machine translation, a sub-
set of the GLUE benchmark and reading com-
prehension. We also compare two approaches
to address the performance drop: a) train-
ing the NLP models with noised data gener-
ated by our framework; and b) reducing the
input noise with external system for natural
language correction. The code is released at
https://github.com/ufal/kazitext.

1 Introduction

Although there has recently been an amazing
progress in variety of NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019) with some models even
reaching performance comparable to humans on
certain domains (Ge et al., 2018; Popel et al., 2020),
it has been shown that the models are very sensitive
to noise in data (Belinkov and Bisk, 2017; Rychal-
ska et al., 2019).

Multiple areas of NLP have been studied to eval-
uate the effect of noise in data (Belinkov and Bisk,
2017; Heigold et al., 2018; Ribeiro et al., 2018;
Glockner et al., 2018) and a framework for text
corruption to test NLP models robustness is also
available (Rychalska et al., 2019). However, all
these systems introduce noise in a custom-defined,
arbitrary level and typically for a single language.

We suggest modeling natural noise statistically
from corpora and we propose a framework with the
following distinctive features:

• The error probabilities are estimated on real-
world grammatical-error-correction corpora.

• The intended noisiness can be scaled to a de-
sired level and various aspects (types) of er-
rors can be turned on/off to test the NLP sys-
tems robustness to specific error types.

Furthermore, we also present a thorough evalua-
tion of several current state-of-the-art NLP systems’
with varying level of data noisiness and a selection
of error aspects in multiple languages. The NLP
tasks include morpho-syntactic analysis, named
entity recognition, neural machine translation, a
subset of GLUE benchmark and reading compre-
hension. We conclude that:

• The amount of noise is far more important
than the distribution of error types.

• Sensitivity to noise differs greatly among NLP
tasks. While tasks such as lemmatization re-
quire correcting the input text, only an approx-
imate understanding is sufficient for others.

We also compare two approaches for increasing
models robustness to noise: training with noise and
external grammatical-error-correction (GEC) pre-
processing. Our findings suggest that training with
noise is beneficial for models with large capacity
and large training data (neural machine translation),
while the preprocessing with grammatical-error-
correction is more suitable for limited-data classifi-
cation tasks, such as morpho-syntactic analysis.

Finally, we also offer an evaluation on authentic
noise: We assembled a new dataset with authentic
Czech noisy sentences translated into English and
we evaluate the noise-mitigating strategies in the
neural machine translation task on this dataset.

https://github.com/ufal/kazitext
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2 Related Work

Many empirical findings have shown the fact that
data with natural noise deteriorate NLP systems
performance. Belinkov and Bisk (2017) found that
natural noise such as misspellings and typos cause
significant drops in BLEU scores of character-
level machine translation models. To increase the
model’s robustness, they trained the model on a
mixture of original and noisy input and found out
that it learnt to address certain amount of errors.
Similar findings were observed by Heigold et al.
(2018) who tested machine translation and mor-
phological tagging under three types of word-level
errors.

Ribeiro et al. (2018) defined a set of substitu-
tion rules that produce semantically equivalent text
variants. They used them to test systems in ma-
chine comprehension, visual question answering
and sentiment analysis. Glockner et al. (2018) cre-
ated a new test set for natural language inference
and showed that current systems do not general-
ize well even for a single-word replacements by
synonyms and antonyms.

Rychalska et al. (2019) implemented a frame-
work for introducing multiple noise types into text
such as removing or swapping articles, rewriting
digit numbers into words or introducing errors in
spelling. They found out in four NLP tasks that
even recent state-of-the-art systems based on con-
textualized word embeddings are not completely
robust against such natural noise. They also re-
trained the systems on noisy data and observed
improvements for certain error types.

Similarly to Rychalska et al. (2019), we also de-
veloped a general framework that allows to test a
variety of NLP tasks. The difference is that we esti-
mate the probabilities of individual error types from
real-world error corpora. This makes the generated
sentences more similar to what humans would do.
Moreover, since we defined the individual error
types with no language-specific rules, we can apply
it to multiple languages with an available annotated
grammatical-error corpus.

Grammatical-error corpora are typically used as
training data for estimating error statistics in GEC
systems. In a setting similar to ours, Choe et al.
(2019); Rozovskaya et al. (2017) also estimated
error statistics and used them to generate additional
training data for GEC systems. However, compared
to our approach, they defined only a small set of
predefined error categories and used it specifically

for training GEC systems whereas we also use it to
asses model performance in noisy scenarios.

Authentic Noise Evaluation The growing interest
in developing production-ready machine transla-
tion models that are robust to natural noise resulted
in the First Shared Task on Machine Translation Ro-
bustness (Li et al., 2019). The shared task used the
MTNT dataset (Michel and Neubig, 2018), which
consists of noisy texts collected from Reddit and
their translations between English and French and
English and Japanese.

Improving Model Robustness Using Noisy Data
Majority of research on improving model robust-
ness is dedicated to training on a mixture of origi-
nal and noisy data. The same procedure is usually
used for generating both the test corpus and train-
ing data (Belinkov and Bisk, 2017; Heigold et al.,
2018; Ribeiro et al., 2018; Rychalska et al., 2019).

To generate synthetic training data, researchers
in machine translation and GEC often use so called
back-translation (Sennrich et al., 2016). A reverse
model translating in the opposite direction (i.e.
from the target language to the source language or
from the clean sentence into noisy sentence, respec-
tively) is trained (Rei et al., 2017; Náplava, 2017;
Kasewa et al., 2018; Xie et al., 2018). It is then
used on the corpus of clean sentences to generate
noisy input data. While this approach might gen-
erate high-quality synthetic data, it requires large
volumes of training data.

We evaluate two approaches to alleviate perfor-
mance drop on noisy data: We either train the sys-
tem on a mixture of synthetic (generated statisti-
cally from real error corpora) and original authen-
tic data; or we use an external grammatical-error-
correction system to correct the noisy data before
inputting them to the system itself. We are not
aware of any other work that compares these two
approaches and we believe that both approaches
may be beneficial under certain conditions.

3 Modeling Natural Noise from Corpora

Robustness of NLP models to natural noise would
ideally be evaluated on texts with authentic noise,
with error corrections annotated by humans. (We
present such authentic data evaluation in Section 7.)
This perfect-world setting, however, requires an
immense annotation effort, as multiple target do-
mains have to be covered by well-educated human
annotators for multiple NLP tasks in a range of lan-
guages. To ease the annotation burden, we propose



342

a new framework, named KaziText, for introducing
natural-like errors in a text.

The core of KaziText is a set of several common
error type classes, aspects (following naming con-
vention of Rychalska et al., 2019). The aspects
are composable (can be combined) and the prob-
ability of the aspect manifestation as well as the
aspect’s internal probabilities are estimated from
grammatical-error-correction corpora.

3.1 Noising Aspects
One of the main objectives of our error aspects’
design was to avoid manually designed rules, es-
pecially those derived from a single language.
An ideal approach, automatically inferring the as-
pects themselves, is however limited by the amount
of available data. Therefore, we defined a rich
set of aspects which can be estimated from the
data:

1. Diacritics Strip diacritics either from a whole
sentence or randomly from individual charac-
ters.

2. Casing Change casing of a word, distinguish-
ing between changing the first letter and other.

3. Spelling Insert, remove, replace or swap in-
dividual characters (wrong→ worng) or use
ASpell1 to transform a word to other existing
word (break→ brake).

4. Suffix/Prefix Replace common suffix
(do→ doing) and prefix (bid→ forbid).

5. Punctuation Insert, remove or replace punc-
tuation.

6. Whitespace Remove or insert spaces in text.
7. Word Order Reorder several adjacent

words.
8. Common Other Insert, replace or substitute

common phrases as seen in data (the → a,
a lot of → many). This is the aspect which
should learn language specific rules.

The natural errors found in real-world texts
rarely fall into mutually exclusive categories. Cas-
ing errors are also spelling errors; common other
aspect covers all other aspects. Therefore, some of
the aspects naturally overlap. We therefore opted
for evaluating the aspects in a cumulative manner
in the designed order.

When designing the order of the aspects, our
goal was to respect the natural inclusion of aspects
and also error severity. We therefore start with
diacritical-only changes, given that for example in

1http://aspell.net/

Czech, users may deliberately write without dia-
critics. We then add casing changes, spelling errors
and then suffix/prefix changes (the latter being mor-
phologically motivated spelling errors). The first
four aspects do not modify tokenization, making
them suitable for tokenization-dependent tasks like
POS tagging or lemmatization.

The remaining aspects change the number of to-
kens or token boundaries. The punctuation, whites-
pace and word order aspects are relatively indepen-
dent, with the common other aspect covering all of
them and thus being the last one.

3.2 Estimating Noising Aspects Probabilities
We use grammatical-error-correction (GEC)
datasets to estimate probabilities of individual
aspects. The GEC datasets are distributed in
M2 format,2 which for a tokenized input noisy
sentence contains a set of correcting edits. Each
correcting edit contains the corresponding input
sentence span, the correction itself and the error
type. The noising aspect probabilities are estimated
by frequency analysis.3 To accurately model
the distribution of amount of errors in different
sentences, we also measure the standard deviation
of the token edit probability per sentence.

We collected M2 files from various grammatical-
error-correction corpora in 4 languages: English,
Czech, Russian and German. The majority of anno-
tated content comes from Second Learners of the
particular language and in addition, more speaker
groups are available in English and Czech:
• English
• Natives: LOCNESS v2.1 (Granger,

1998)
• Second Learners: NUCLE (Dahlmeier

et al., 2013), FCE (Yannakoudakis et al.,
2011), Write & Improve (Yannakoudakis
et al., 2018)

• Czech
• Natives: essays of Czech primary

schools students, in submission process
• Natives Informal: web discussions data,

in submission process
• Second Learners:

AKCES-GEC (Šebesta et al., 2019)
• Romani: AKCES-GEC (Šebesta et al.,

2019) – Romani ethnic minority children
and teenagers using Czech

2GEC file format since the CoNLL-2013 shared task
3We refer to the published source code for details.

http://aspell.net/
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Language Corpus Sentences Error rate Domain

English

NUCLE (Dahlmeier et al., 2013) 57 151 6.6% SL
FCE (Yannakoudakis et al., 2011) 33 236 11.5% SL
W&I (Yannakoudakis et al., 2018) 37 704 11.7% SL
LOCNESS (Granger, 1998) 988 4.7% native students

Czech

Romani part of AKCES-GEC (Šebesta et al., 2019) 16 030 20.3% Romani heritage speakers
SL part of AKCES-GEC (Šebesta et al., 2019) 31 341 22.1% SL essays
Natives Informal 11 608 15.6% web discussions
Natives 7 696 5.8% native students

German Falko-MERLIN (Boyd, 2018) 24 077 16.8% SL essays

Russian RULEC-GEC (Rozovskaya and Roth, 2019) 12 480 6.4% SL, heritage speakers

Table 1: Comparison of used GEC corpora in size, token error rate and domain. SL = second language learners.

• German (Second Learners): Falko-MERLIN
GEC Corpus (Boyd, 2018)
• Russian (Second Learners): RULEC-

GEC (Rozovskaya and Roth, 2019)
An overview of the sizes and error rates of the
datasets above is presented in Table 1.

We call the resulting single file containing all
aspect probabilities for one group of speakers a
profile. The profile therefore describes the gram-
matical style of a particular given group of users,
derived from M2 file annotations.

Each profile has a development and test version
originating from the respective M2 development
and test files. The test profiles are used for synthe-
sising data intended directly for assessing models’
performance in noisy setting while the development
profile is intended for creating data for training the
models.

3.3 Adjusting the Percentage of Token Edits

In order to reach an intended percentage of token
edits, which directly corresponds to the amount of
noise in the generated data, we correspondingly
scale the aspects’ probabilities. We refer to the
percentage of token edits in the original corpus as
a corpus error level.

3.4 Noising the Data

When noising an input sentence, we first sample a
token edit probability from the error amount distri-
bution, scaled according to the required number of
token edits. We then introduce the desired aspects
with the chosen error level.

We allowed the framework to generate any
noising aspect, including adding new tokens, in
test sets without token-level gold annotations:
neural machine translation, GLUE benchmark,
tokens outside named entities in NER and to-

kens outside the answer in reading comprehen-
sion.

When introducing errors into classification test
sets with token-level gold annotations, we need
to maintain the original tokenization. For this
reason, we allowed only the first 4 aspects for
the following data: morpho-syntactic analysis, to-
kens inside named entity spans in NER and to-
kens inside answers in the reading comprehension
task.

All experiments are repeated with 5 different
random seeds and we report means with standard
deviations.

4 Evaluated Tasks

4.1 Morpho-syntactic Analysis
Model We employed UDPipe (Straka et al., 2019),
a tool for morpho-syntactic analysis.
Dataset We used the Universal Dependencies 2.3
(Nivre et al., 2018) corpus (UD 2.3).4

Metrics We utilized the following metrics (Zeman
et al., 2018) – UPOS: coarse POS tags accuracy,
UFeats: fine-grained morphological features ac-
curacy, Lemmas: lemmatization accuracy, LAS:
labeled attachment score and MLAS: combination
of morphological tags and syntactic relations.

4.2 Named Entity Recognition
Model Recently published architecture (Straková
et al., 2019) was used for NER evaluation.
Dataset For English and German, we evaluated on
the standard CoNLL-2003 shared task data (Tjong

4Many English UD test set tokens contain casing or
spelling errors, propagated into lemmas, rendering such data
unsuitable for analysis. We try to use only error-free English
test documents and we therefore drop all test documents con-
taining a sentence starting with a lowercase character, keeping
more than half of the data. Apart from the lemmatization
accuracy, the results for full test set are nearly identical.
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Kim Sang and De Meulder, 2003); for Czech, we
used a fine-grained Czech Named Entity Corpus
2.0 (Ševčíková et al., 2007) with 46 types of nested
entities.
Metric The evaluation metric is F1 score.

4.3 Neural Machine Translation

Model We chose a state-of-the-art Czech-to-
English NMT system CUBBITT (Popel et al.,
2020), but we trained it on the newest version (2.0)
of the CzEng parallel corpus (Kocmi et al., 2020).
We trained with batch size of ca. 23k tokens for
550k steps, saved a checkpoint each hour (ca. 4600
steps) and selected the checkpoint with the highest
dev-set BLEU (which was at 547k steps).
Dataset We use WMT17 (newstest2017, 3005 sen-
tences)5 as our development set. Our test set is a
concatenation of WMT13, WMT16 and WMT18
(8982 sentences in total).
Metric We evaluate the translation quality with
case-insensitive BLEU score.6

4.4 GLUE Benchmark

We select a subset of GLUE (Wang et al., 2018)
tasks, namely Microsoft Research Paraphrase Cor-
pus (MRPC), Semantic Textual Similarity Bench-
mark (STS-B), Quora Question Pairs (QQP) and
The Stanford Sentiment Treebank (SST-2). We
finetune BERT on each of these tasks and evaluate
them on various levels of noise.
Model We finetune pretrained BERT with an addi-
tional feed-forward neural network with one hidden
layer predicting score on particular task’s data. We
use bert-base-cased configuration and Hugging-
Face’s Transformers (Wolf et al., 2019) implemen-
tation.
Dataset We use official GLUE datasets as provided
by https://gluebenchmark.com/tasks.
Metric We report following metrics: F1 for MRPC
and QQP, Pearson-Spearman Corr for STS-B and
accuracy for SST-2.

5http://statmt.org/wmt17
6We use SacreBLEU (Post, 2018) with signature

BLEU+case.lc+numrefs.1+smooth.exp+tok.intl+version.1.4.14.
When using the case-sensitive version, the results show
similar trends, except for the Casing aspect, which causes
more harm to the score, as could be expected. However, it is
questionable if copying the “wrong” casing to the translation
(e.g. not capitalizing the first word in a sentence or using
all-uppercase) should be considered a translation error. We
thus opted for case-insensitive BLEU as our primary metric.
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Figure 1: Proportional distribution of the first 4 aspects
(diacritics, casing, spelling, affixes) in Czech and En-
glish.

4.5 Reading Comprehension

Model We utilize a BERT base architecture with
a standard SQuAD classifier on top (Devlin et al.,
2019).
Dataset We employ English SQuAD 2 (Rajpurkar
et al., 2018) and its Czech translation (Macková
and Straka, 2020).
Metric Our experiments are evaluated using F1
score.

5 Robustness to Noise

We evaluated the models robustness both to the
amount of noise (Figure 2) and to error types (Fig-
ures 3 and 4).

A unifying trend can be observed in models
performance with respect to increasing percent-
age of token edits. Solid lines in Figure 2 display
the morpho-syntactic MLAS, NER F1 and NMT
BLEU on texts with up to 30% of token edits. The
relative performance decreases roughly linearly
with the amount of token edits, in accordance with
previous findings (Rychalska et al., 2019). The
tendency is consistent across tasks, languages and
profiles: For example, compare the Czech and En-
glish Second Learners profiles in morpho-syntactic
analysis (Figure 2a) or Czech Native Speakers and
Czech Second Learners profiles in the NMT clean
model (Figure 2c), which exhibit similar behaviour
despite their differing distributions of aspects (Fig-
ure 1). This consistency implies that it is the sheer
amount of noise rather than the distribution of as-
pects, that contributes to the model performance
deterioration. More results are available in Supple-
mentary Material (Figures S2 and S3).

Estimating the amount of noise is important, as
the corpus error level differs greatly across lan-
guages and profiles. For example, compare the
Second Learners profile in English (11.3% token
edits) and Czech (27.1%) in Figure 2a, or in Czech,
see Native Speakers (6.4%) and Second Learners

https://gluebenchmark.com/tasks
http://statmt.org/wmt17
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Figure 2: Increasing percentage of token edits with clean model, noise-trained model and grammatical-error-
correction. Numbers near lines are absolute values.
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Figure 4: Evaluation with additive noising aspects. The
amount of introduced errors is the corpus error level for
each aspect. Numbers near lines are absolute values.

(27.1%) in Figure 2c. Testing near the estimated
noisiness level provides more accurate evaluation
of the models’ performance.

From a qualitative point of view, spelling and

affixes make for the major performance drop in
morpho-syntactic analysis (Figure 3), NER (Fig-
ure 4a) and NMT (Figure 4b).

Some tasks are more sensitive to certain aspects:
Casing is a crucial aspect for NER. This is clearly
shown in the Czech Natives Informal profile, which
contains text scraped from the internet discussions
and contains nontrivial amount of casing errors
(Figure 4a). We further elaborate the casing aspect
effect on NER in Section S2 in Supplementary Ma-
terial. In NMT and reading comprehension, errors
in punctuation seem to decrease the model perfor-
mance consistently across all profiles (Figures 4b
and 4c, respectively).

For Czech as a language with diacritic marks,
diacritics is an interesting aspect. We can see that
when it is introduced at a corpus error level, the
Czech model’s performance on Lemmas drops by
circa 7 percent. Figure S1 in Supplementary Mate-
rial further illustrates that performance significantly
deteriorates when all diacritics is stripped, which is
quite common in informal Web texts. Similarly, to
emphasize the effect of the diacritization aspect on
NMT, we created a new profile Natives Informal
w/o Diacritics from the Natives Informal profile by
stripping all diacritization. Figure 4b shows that
not using diacritics at all results in a performance
drop of ca. 10 BLEU points.

Some tasks are more sensitive to noise than oth-
ers. Lemmatization is the most sensitive to errors
(20 times more errors when processing Czech Sec-
ond Learners texts with a clean model, see Fig-
ure 3), which is understandable, given that all
lemma characters must be generated correctly from
a corrupted surface token. The effect on POS tag-
ging is the least pronounced (Figure 3), although
8 times as many errors in Czech (when processing
noisy texts with a clean model) makes the POS tags
much less reliable.

6 Noise-coping Strategies

We implemented and evaluated two strategies
to alleviate the performance drop on noisy in-
puts: external and internal correction. In the ex-
ternal correction approach, we use a separately
trained grammatical-error-correction model to de-
noise texts before inputting them to the model itself.
In the internal correction approach, we instead di-
rectly train the model on a combination of noisy
and authentic texts.

We hypothesise that the external approach may
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Figure 5: Morpho-syntactic analysis: Training data in-
creasingly noised with each single profile, evaluation
with the corresponding profile corpus error level.

be better in scenarios with small amount of anno-
tated data. In such cases, only few iterations over
training data are typically performed to prevent
overfitting, and we suppose that learning the task
itself and denoising at the same time would harm
its performance a lot. Contrarily, with enough data
and appropriate model capacity, learning the de-
noising and the task jointly may reduce the amount
of potential false positives that might be otherwise
proposed by the external language corrector.

6.1 External Correction Model
We use the grammatical-error-correction system
of Náplava and Straka (2019) in our experiments.
Their models trained on Czech, German and Rus-
sian achieve state-of-the-art results and slightly be-
low state-of-the-art results on English. We use their
“pretrained” version.

We modified the pipeline of Náplava and Straka
(2019) to train on detokenized text. Furthermore,
we also trained new grammatical-error-correction
models which only make corrections that strictly
keep the given tokenization (important in morpho-
syntactic annotations). To sum up, we trained two
types of grammatical-error-correction models: 1.
detokenized error correction model (for NMT) 2.
tokenization-preserving error-correction model (for
morpho-syntactic tasks and NER).

6.2 Training on Noisy Data
In the internal approach to increase model robust-
ness, we train the systems on a mixture of original
and noisy data, while keeping the number of train-
ing steps unchanged. The noisy data are generated
using the KaziText framework operating on devel-
opment profiles and concatenated to original data.

We noise the training data with appropriately
estimated corpus error levels in all our experiments.
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Figure 6: Comparison of three models (clean, noise-
trained and GEC-preprocessed) on three tasks in Czech
Second Learners profile. Upper row Original clean
test data. Lower row Test data with corpus error level
noise.

To illustrate the effect of noise level introduced
into training data, we trained the UDPipe on
variably noised morpho-syntactic data for all
four Czech profiles. In each single profile, we
increasingly noised the morpho-syntactic training
data and evaluated on the testing data noised with
the corresponding profile corpus error level. In
all cases, the best performance is found near the
corpus error level (Figure 5).

When training the NMT model, the best check-
point on a development set consisting of concate-
nated standard WMT17 and WMT17 noised with
our framework is selected.

We train a single model for each language on a
concatenation of noisy data generated by all pro-
files of the particular language. This makes the final
model generalize well across all profiles, although
training a single model for each profile could make
sense for other scenarios.

6.3 Evaluation

We present the effect of both the internal and exter-
nal noise-coping strategies in Figure 2. There are
two main points of interest in the graphs: the first
one showing performance of models on clean texts
and the second one showing model performance
on texts with corpus level errors. Additionally,
an excerpt showing performance of Czech Second
Learners on these two levels is presented in Fig-
ure 6.

It is not a surprise that the model trained on clean
training data surpasses the noise-coping models on
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System
BLEU on Faust

Noisy Cleaned

clean 43.3 50.9
noise-trained 47.0 50.5
gec+clean 44.1 50.4

Table 2: NMT results on authentic user noisy texts. We
report BLEU on the Faust-Noisy test set with noisy in-
put sentences and also on Faust-Cleaned that has man-
ually corrected sentences on input.

the clean test data. Adapting to noise clearly comes
with a cost. Surprisingly though, the clean model
head start is only marginal in the NMT task.

The clean models perform substantially worse
than either of the two proposed methods in all
three tasks when errors are introduced in the same
amount as the corpus error level (marked with ver-
tical lines in Figure 2). Therefore, whenever noisy
inputs of particular domain are expected, it is ben-
eficial to adapt to noise using either of the two
methods.

With increasing noise, the gap between the clean
model and the external and internal model grows
in all three tasks (Figure 2). There is a threshold at
which the noise-coping models surpass the clean
model for each task. Interestingly, the threshold
oscillates around relatively low noise levels up to
5% of token edits.

Finally, we confirm our initial hypothesis that ex-
ternal approach with GEC model works better than
internal approach on low resource tasks: morpho-
syntactic analysis and named-entity recognition.
The internal approach then outperforms external
approach on machine translation task for which
there is a large amount of training data and a model
with greater capacity.

7 Evaluating on Authentic User Text

We assembled a new dataset for MT evaluation
consisting of 2223 authentic Czech noisy input
sentences translated into English, which we re-
lease at http://hdl.handle.net/11234/1-3775.
The sentences originate from the project FAUST7

where they were collected from various users of
reverso.net. The advantage of this dataset is that
in addition to the original Czech noisy sentences,
there are manually corrected Czech sentences and
manual translations to English.

7https://ufal.mff.cuni.cz/grants/faust

On this dataset, we evaluate our neural machine
translation models from Section 4.3 and Section 6,
specifically the clean model trained on clean data,
noise-trained model trained on a mixture of au-
thentic and noised data and their combination with
external grammatical-error-correction system. The
results of these systems on authentic noisy texts
are presented in Table 2. It is evident that noise-
trained model outperforms clean model by a large
margin on Faust-Noisy data while not losing much
precision on Faust-Cleaned data. Similarly to our
conclusions in Section 6, the external grammatical-
error-correction system helps the clean model on
noisy data, however is inferior to noise-trained
model.

8 Conclusions

We estimated natural error probabilities statistically
from real-world grammatical-error-correction cor-
pora in order to model and generate noisy inputs
for machine learning tasks. We extensively evalu-
ated several state-of-the-art NLP downstream sys-
tems with respect to their robustness to input noise,
both in increasing level of text noisiness and in
variations of error types. We confirmed that the
noise hurts the model performance substantially
and we compared two coping strategies: training
with noise and preprocessing with GEC, conclud-
ing that each strategy is beneficial in different sce-
narios. Finally, we also presented authentic noisy
data evaluation using a newly assembled dataset
for machine translation with authentic Czech noisy
sentences translated to English. We release both
the new framework (under MPL 2.0) at https:

//github.com/ufal/kazitext and the newly as-
sembled dataset (under CC BY-NC-SA license) at
http://hdl.handle.net/11234/1-3775.
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Krůza. 2007. Named entities in czech: Annotat-
ing data and developing ne tagger. In Text, Speech
and Dialogue, pages 188–195, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Milan Straka, Jana Straková, and Jan Hajič. 2019. Eval-
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