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Abstract

Knowledge Distillation (KD) is extensively
used to compress and deploy large pre-trained
language models on edge devices for real-
world applications. However, one neglected
area of research is the impact of noisy (cor-
rupted) labels on KD. We present, to the best
of our knowledge, the first study on KD with
noisy labels in Natural Language Understand-
ing (NLU). We document the scope of the
problem and present two methods to mitigate
the impact of label noise. Experiments on the
GLUE benchmark show that our methods are
effective even under high noise levels. Never-
theless, our results indicate that more research
is necessary to cope with label noise under the
KD.

1 Introduction

Large-scale pre-trained language models (Devlin
et al., 2019; Raffel et al., 2020; Brown et al., 2020)
have shown remarkable abilities to match and even
surpass human performances on many Natural
Languages Understanding (NLU) tasks (Rajpurkar
et al., 2018; Wang et al., 2018, 2019a). However,
the deployment of these models in dynamic com-
mercial environments come with challenges, in-
cluding: large model size, and low training data
quality.

Knowledge Distillation (Hinton et al., 2015;
Turc et al., 2019) is a compression technique of
choice that has proven to be effective to fit a cum-
bersome NLU model on edge devices (Sanh et al.,
2019; Jiao et al., 2020; Sun et al., 2020). Mean-
while, numerous methods were developed to com-
bat noisy (corrupted) labels, mainly for computer
vision (Frénay and Verleysen, 2013; Jiang et al.,
2018; Thulasidasan et al., 2019; Han et al., 2020)
and more recently for NLU (Ardehaly and Culotta,
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2018; Jindal et al., 2019; Garg et al., 2021; Ghaddar
et al., 2021a,b; Jafari et al., 2021).

Despite its success, KD has mostly been stud-
ied with the availability of massive amount of high
quality labeled data. In practice, however, it is
costly and impractical to produce such data (Ghad-
dar and Langlais, 2019), and noisy labels are com-
monly encountered. In this paper, we consider the
problem of KD when noisy labels are provided for
training the main (teacher) and compressed (stu-
dent) models. To our knowledge, this is the first
time KD is studied under a noisy setting in NLU.

We conduct experiments on 7 tasks from the
GLUE benchmark (Wang et al., 2018) and observe
a drastic drop of performance of distilled models
when we increase the level of noise. In response,
we propose 2 distillation training methods, namely
Co-Distill and Label Refining, that are specifically
designed to handle noise. Experiments show that
our methods lead to improvements over fair base-
lines, and that it combination also performs the
best. Yet, our analysis indicates that the problem
is far from solved, and that there is much room for
research.

2 Related Work

The vanilla KD framework (Buciluǎ et al., 2006;
Hinton et al., 2015) consists in training a small stu-
dent model to mimic the output of a large teacher
model. Recent years have seen a wide array of
methods that leverage intermediate layer match-
ing (Ji et al., 2021; Wu et al., 2020; Passban et al.,
2021; Wang et al., 2020), data augmentation (Fu
et al., 2020; Li et al., 2021; Jiao et al., 2020; Kamal-
loo et al., 2021), or adversarial training (Zaharia
et al., 2021; Rashid et al., 2020, 2021) in order to re-
duce the teacher-student performance gap. Instead,
our proposed methods are designed to handle label
noise during KD. Nevertheless, they can be easily
fused with the aforementioned methods to further
boost performance.
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Label noise (corruption) is a common problem
in real-world datasets, and it has been well studied
in the literature (Frénay and Verleysen, 2013; Li
et al., 2017; Han et al., 2020). Methods to combat
noise build on the idea that samples with small
training loss at early epochs are more likely to be
clean (Dehghani et al., 2018; Wang et al., 2019b).

In co-teaching (Han et al., 2018), two networks
of different capacity teach each other to reject
wrong labels. At each forward pass, each network
keeps only small-loss samples and sends them to
its peer network for updating the parameters. The
main idea is that the error flow can be reduced, as
networks of different learning abilities have differ-
ent views on the data.

Self-distillation was proposed by Dong et al.
(2019), where the model is trained to mimic its
own prediction from the previous training epoch.
The goal is to prevent the model from memoriz-
ing wrong labels, as the model has less tendency
to fit noise at early epochs. In addition, Bagher-
inezhad et al. (2018) showed improvements when
distillation at early epochs is used to refine noisy
labels.

Another line of works is the learning to weight
approach (Ren et al., 2018; Li et al., 2019; Zhang
et al., 2020; Fan et al., 2020) that aims to learn
per-sample loss weights in order to discount noisy
samples. The proposed methods use an auxiliary
meta-learner to re-weight training samples of the
main model. However, all aforementioned works
mainly focus on computer vision. Recently, Garg
et al. (2021) utilize a noise detection model to clus-
ter, then score the training samples for text classi-
fication in an attempt to guide the main model to
focus on samples that are most likely to be correct.

3 Methodology

We first introduce our method, Co-Distill (CD),
which jointly trains the teacher and the student.
Next, we incorporate Label Refinement (LR) which
is motivated by the algorithms of Jiang et al. (2018),
Arazo et al. (2019) and Garg et al. (2021) for noise
mitigation in regular (no KD) training framework.

3.1 Co-Distill (CD)

The key feature of our method is that the teacher
and the student are trained together, but unlike tradi-
tional KD, the teacher also learns from the student.
Figure 1 showcases the complete architecture. We
train the student model SθSp¨q with the following

loss function LS :

LS “
1

N

N
ÿ

i“1

rα ¨ LCEpyi, SθSpxiqq (1)

`p1´ αq ¨ LKDpTθTpxiq, SθSpxiqqs

where θT and θS are the teacher and student pa-
rameters respectively, α is the KD weight param-
eter, LCE is the Cross Entropy (CE) loss, yi is the
label, N is the total number of training samples
and LKD is the symmetric Kullback-Leibler (KL)
divergence (Kullback, 1997) between the teacher
and the student logits, i.e. we sum both the forward
and reverse KL.

Figure 1: The Co-Distill architecture

In addition to CE loss, the teacher "learns" from
the student and is trained to minimize the LKD
loss. It is worth mentioning that we always train
the teacher at the first epoch with an α value of
1. We do so to avoid propagating low confident
information to the teacher at the beginning of the
training. After the first epoch, the feedback of LKD
improves the overall performance of both teacher
and student models.

3.2 CD plus Label Refinement (CD+LR)

We further enhance CD by refining the training
labels based on loss values at early epochs. In
LR, an auxiliary classifier is trained to flag noisy
samples, which in turn are re-labeled by the main
model. In prior work on noisy labels (Arpit et al.,
2017; Dehghani et al., 2018; Wang et al., 2019b) it
has been observed that small training losses at early
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Model CoLA SST-2 MRPC RTE QNLI QQP MNLI Avg.

0%

BERT-base 61.9 93.1 90.9 68.6 91.6 91.6 85.0 83.2

w/o KD 51.3 91.3 87.5 59.9 89.2 88.5 82.1 78.5
Vanilla 56.4 92.0 90.0 68.6 90.3 90.6 85.0 81.8

25%

BERT-base 46.7 91.5 75.7 61.0 87.9 72.4 81.8 73.9
with CD 47.5 93.2 78.7 62.5 88.2 71.3 82.8 74.9
with CD+LR 48.6 92.8 78.7 60.3 88.6 74.0 82.3 75.0

w/o KD 39.1 90.4 79.9 61.0 84.5 67.3 79.3 71.6
Self-DSTL 43.5 90.5 79.7 60.6 84.1 69.3 80.0 72.5
Vanilla 40.2 90.9 79.2 61.7 85.9 72.9 80.3 73.0
CD 45.1 90.6 79.2 63.2 85.5 70.5 80.7 73.5
CD+LR 46.1 91.3 80.9 63.5 86.9 73.8 81.0 74.8

50%

BERT-base 17.7 56.7 68.4 59.2 64.7 63.6 76.5 58.1
with CD 16.0 56.5 70.8 55.6 62.7 71.3 76.8 58.5
with CD+LR 17.2 61.7 71.8 56.3 62.7 71.3 77.0 59.7

w/o KD 8.3 55.0 66.6 57.0 56.5 67.3 72.2 54.7
Self-DSTL 8.8 57.6 68.1 58.4 57.3 69.3 73.2 56.1
Vanilla 11.9 60.0 68.6 58.5 60.3 66.1 75.0 57.2
CD 13.6 60.3 69.1 57.4 60.0 70.5 75.1 58.0
CD+LR 17.7 64.1 71.1 57.4 60.9 73.8 76.6 60.2

Table 1: Performances on GLUE dev sets of models trained on 0%, 25%, and 50% of noisy labels. Dash lines
separate teacher (up) and student models.

epochs are more likely to indicate that a sample is
clean.

Instead, we assume that we have access to a
small subset of validation data where noisy and
clean samples are known a priori (see Section 4.1).
We train both teacher and student with Co-Distill
for 2 epochs,1 and then calculate LTCE and LSCE
for each sample in the validation set.

We use these values as features for a discrimina-
tor model Dp.q trained to predict whether a sample
is noisy. Once it is trained, Dp.q is used to flag
noisy training samples, so that the teacher re-labels
them. Finally, we resume the co-distillation for
the remaining epochs while calculating the CE loss
using the new labels.

1Empirically, we found that it works well on most of the
tasks we experimented on.

4 Experiments

4.1 Dataset and Evaluation

We experiment on 7 tasks from the GLUE bench-
mark (Wang et al., 2018): 2 single-sentence (CoLA
and SST-2) and 5 sentence-pair (MRPC, RTE, QQP,
QNLI, and MNLI) classification tasks. Follow-
ing prior work, we report Matthews correlation
on CoLA and accuracy for the other tasks. Since
GLUE test sets are hidden and the number of sub-
missions to leaderboard is limited, we held-out 10%
of the training set for validation and used the rest
for training. We used this validation set to train
the discriminator as well as for hyper-parameter
tuning, while official GLUE dev sets are used to
evaluate the models.

We test our methods on training sets with 25%
and 50% noisy labels2. We introduce the same level
of noise for the validation sets. Following prior

2We do not evaluate beyond 50% of noise because many
GLUE tasks are binary classification.
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works (Jiang et al., 2018; Dong et al., 2019; Garg
et al., 2021), we inject artificial noise by randomly
changing the original labels of the training samples.

4.2 Baselines

We compare our noise mitigation methods with 3
popular baselines:

• w/o KD In this setting, only the CE loss is
used. This baseline is used as a witness.

• Vanilla-KD Here, we select the best perform-
ing α value for each task.

• Self-DSTL In Self-Distillation (Dong et al.,
2019), the student is first trained for few
epochs on hard labels only, and the best check-
point is used to generate logits on the training
data. For the rest of the epochs the student is
trained on both hard and its own soft labels.

4.3 Implementation

We use as our teacher the 12-layer BERT-base-
uncased model (Devlin et al., 2019), and the
pre-trained 6-layer distillBERT (Sanh et al.,
2019) to initialize all student models. We use
scikit-learn (Pedregosa et al., 2011) to train
a Random Forest discriminator (Breiman, 2001) as
our auxiliary classifier. For all models, we perform
hyper-parameter tuning and best model selection
based on early stopping on noisy validation sets.
We report average results over 3 random seeds.

4.4 Results

Table 1 shows performances on GLUE dev sets of
3 teachers and 5 student models trained on clean
(0%), 25% and 50% of noisy training sets. As
expected, the performance of all models drops
drastically with noise. For instance, the teacher
and vanilla student average performances drop by
25.1% and 24.7% respectively when we train with
50% of noisy labels. Among all baselines, training
the student solely on hard labels (w/o KD) performs
the worst under all levels of noise.

Performing distillation with the student logits
itself (Self-DSTL) slightly improves the perfor-
mances by 0.5% and 1.5% on 25% and 50% noise
level respectively. However, using teacher log-
its (Vanilla) for distillation always performs better
than using that of the student by 1% on average.
This indicates that the teacher knowledge remains
crucial even under a noisy label setting.

Overall, our method CD leads to an average gain
of 0.5% and 0.8% on top of the Vanilla baseline at
25% and 50% noise level respectively. Moreover,
enhancing the CD methods with label refinement
(CD+LR) significantly boosts these scores by 1.3%
and 2.2% respectively. CD+LR consistently out-
performs Vanilla KD across all tasks and noise
levels, except at 50% noise for MRPC. It is worth
noting that our methods are more effective under
extreme noise level, since the gap with Vanilla KD
gets larger at 50% noise level (the max for binary
classification).

On the teacher side, we observe that the teachers
obtained with our methods outperform the other
teachers. The CD+LR teacher is better than its
naive counterpart by 1.1% and 1.6% on 25% and
50% noise level respectively. This observation is
inline with Han et al. (2018) who find that in Co-
teaching, the two networks communicating with
each other get improved. More interestingly, re-
sults show that CD+LR students outperform signif-
icantly (ą2%) the naive and slightly (0.2%) their
respective teachers. This is mainly due to the
tendency of over-parameterized neural networks
(teachers) to fit noisy labels (Han et al., 2018; Jiang
et al., 2018), compared to smaller models (students
in our cases). This suggests that in a high noise
setting, training a robust teacher is important as
much as training the student.

Figure 2: Validation (on GLUE dev sets) curve for the
3 student models trained on 50% of noisy labels.

We plot the losses on dev sets at early steps to
better understand how our methods combat noisy
labels. Figure 2 shows dev loss values on 4 GLUE
tasks3 for Vanilla KD, CD, and CD+LR methods.
First, we observe that the loss curve of Vanilla KD

3Similar figures are observed on the remaining 3 tasks.
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flattens at early stages. We investigated the training
loss and noticed that it rather decreases, mainly due
over-fitting the noise labels.

Co-Distillation (CD) shows better signs of miti-
gating noise, as the loss decreases slowly on MNLI
and sharply on QNLI and MRPC. Adding LR leads
to a sharp drop, followed by a steady decrease of
loss values. The drop happens immediately after
refining the training set labels, which seems crucial
for large datasets like MNLI and SST-2.

5 Conclusion

We present the first study on Knowledge Distilla-
tion when learning from noisy labels in NLU, and
show that the problem is extremely challenging. Fu-
ture work involves conducting a comparative study
on the robustness of state-of-the-art KD techniques
against noisy labels, and merging them within our
methods. We hope that our study will encourage
future research on KD in the noisy label setting, a
genuine setting in real world applications.
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