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Abstract

Multilingual Neural Machine Translation has
achieved remarkable performance by training
a single translation model for multiple lan-
guages. This paper describes our submission
(Team ID: CFILT-IITB) for the MultiIndicMT:
An Indic Language Multilingual Task at WAT
2021. We train multilingual NMT systems by
sharing encoder and decoder parameters with
language embedding associated with each to-
ken in both encoder and decoder. Further-
more, we demonstrate the use of translitera-
tion (script conversion) for Indic languages in
reducing the lexical gap for training a multilin-
gual NMT system. Further, we show improve-
ment in performance by training a multilingual
NMT system using languages of the same fam-
ily, i.e., related languages.

1 Introduction

Neural Machine Translation (Sutskever et al., 2014;
Bahdanau et al., 2015; Wu et al., 2016) has become
a de-facto for automatic translation of language
pairs. NMT systems with Transformer (Vaswani
et al., 2017) based architectures have achieved com-
petitive accuracy on data-rich language pairs like
English-French. However, NMT systems are data-
hungry, and only a few pairs of languages have
abundant parallel data. For low resource setting,
techniques like transfer learning (Zoph et al., 2016)
and utilization of monolingual data in an unsuper-
vised setting (Artetxe et al., 2018; Lample et al.,
2017, 2018) have shown support for increasing
the translation accuracy. Multilingual Neural Ma-
chine Translation is an ideal setting for low re-
source MT (Lakew et al., 2018) since it allows
sharing of encoder-decoder parameters, word em-
beddings, and joint or separate vocabularies. It
also enables zero-shot translations, i.e., translating
between language pairs that were not seen during
training (Johnson et al., 2017a).

In this paper, we present our system for Multi-
IndicMT: An Indic Language Multilingual Task at
WAT 2021 (Nakazawa et al., 2021). The task covers
10 Indic Languages (Bengali, Gujarati, Hindi, Kan-
nada, Malayalam, Marathi, Oriya, Punjabi, Tamil,
and Telugu) and English.

To summarize our approach and contributions,
we (i) present a multilingual NMT system with
shared encoder-decoder framework, (ii) show re-
sults on many-to-one translation, (iii) use transliter-
ation to a common script to handle the lexical gap
between languages, (iv) show how grouping of lan-
guages in regard to their language family helps mul-
tilingual NMT and (v) use language embeddings
with each token in both encoder and decoder.

2 Related work

2.1 Neural Machine Translation

Neural Machine Translation architectures consist
of encoder layers, attention layers, and decoder lay-
ers. NMT framework takes a sequence of words
as an input; the encoder generates an intermediate
representation, conditioned on which, the decoder
generates an output sequence. The decoder also at-
tends to the encoder states. Bahdanau et al. (2015)
introduced the encoder-decoder attention to allow
the decoder to soft-search the parts of the source
sentence to predict the next token. The encoder-
decoder can be a LSTM framework (Sutskever
et al., 2014; Wu et al., 2016), CNN (Gehring et al.,
2017), or Transformer layers (Vaswani et al., 2017).
A Transformer layer comprises of self-attention
that bakes the understanding of input sequence with
positional encoding and passes on to the next com-
ponent, feed-forward neural network, layer normal-
ization, and residual connections. The decoder in
the transformer has an additional encoder-attention
layer that attends to the output states of the trans-
former encoder.
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NMT is data-hungry, and only a few pairs of lan-
guages have abundant parallel data. In recent years,
NMT has been accompanied by several techniques
to improve the performance of both low & high
resource language pairs. Back-translation (Sen-
nrich et al., 2016b) is used to augment the paral-
lel data with synthetically generated parallel data
by passing monolingual datasets to the previously
trained models. Currently, NMT systems also per-
form on-the-fly back-translation to train the model
simultaneously. Tokenization methods like Byte
Pair Encoding (Sennrich et al., 2016a) are used in
almost all NMT models. Pivoting (Cheng et al.,
2017) and Transfer Learning (Zoph et al., 2016)
have leveraged the language relatedness by indi-
rectly providing the model with more parallel data
from related language pairs.

2.2 Multilingual Neural Machine Translation

Multilingual NMT trains a single model utilizing
data from multiple language-pairs to improve the
performance. There are different approaches to
incorporate multiple language pairs in a single
system, like multi-way NMT, pivot-based NMT,
transfer learning, multi-source NMT and, multi-
lingual NMT (Dabre et al., 2020). Multilingual
NMT came into picture because many languages
share certain amount of vocabulary and share some
structural similarity. These languages together can
be utilized to improve the performance of NMT
systems. In this paper, our focus is to analyze the
performance of multi-source NMT. The simplest
approach is to share the parameters of NMT model
across multiple language pairs. These kinds of sys-
tems work better if languages are related to each
other. In Johnson et al. (2017b), the encoder, de-
coder, and attention are shared for the training of
multiple language pairs and a target language to-
ken is added at the beginning of target sentence
while decoding. Firat et al. (2016) utilizes a shared
attention mechanism to train multilingual models.
Recently many approaches have been proposed,
where monolingual data of multiple languages is
utilized to pre-train a single model using different
objectives like masked language modeling and de-
noising (Lample and Conneau, 2019; Song et al.,
2019; Lewis et al., 2020; Liu et al., 2020). Multi-
lingual pre-training followed by multilingual fine-
tuning has also proven to be beneficial (Tang et al.,
2020).

2.3 Language Relatedness
Telugu, Tamil, Kannada, and Malayalam are Dra-
vidian languages whose speakers are predomi-
nantly found in South India, with some speakers in
Sri Lanka and a few pockets of speakers in North
India. The speakers of these languages constitute
around 20% of the Indian population (Kunchukut-
tan and Bhattacharyya, 2020). Dravidian languages
are agglutinative, i.e., long and complex words are
formed by stringing together morphemes without
changing them in spelling or phonetics. Most Dra-
vidian languages have clusivity distinction. Hindi,
Bengali, Marathi, Gujarati, Oriya, Punjabi are Indo-
Aryan languages and are primarily spoken in North
and Central India and the neighboring countries
of Pakistan, Nepal, and Bangladesh. The speakers
of these languages constitute around 75% of the
Indian population. Both Dravidian and Indo-Aryan
language families follow the Subject(S)-Object(O)-
Verb(V) order.

Grouping languages concerning their families
have inherent advantages because they form a
closely related group with several linguistic phe-
nomenons shared amongst them. Indo-Aryan lan-
guages are morphologically rich and have huge
similarities when compared to English. A language
group also share vocabularies at both word and
character level. They contain similarly spelled
words that are derived from the same root. ‘

2.4 Transliteration
Indic languages share a lot of vocabulary, but most
languages utilize different scripts. Nevertheless,
these scripts have phoneme overlap and can be
converted easily from one to another using a simple
rule-based system. To convert all Indic language
data into the same script, we use IndicNLP1 which
maps different Unicode range for the conversion.
The conversion of all Indic language scripts to the
same script helps with better shared vocabulary
and leads to smaller subword vocabulary (Ramesh
et al., 2021).

3 System overview

In this section, we describe the details of the sub-
mitted systems to MultiIndicMT task at WAT2021.
We report results for four types of models:

• Bilingual: Trained only using parallel data for
a particular language pair (bilingual models).

1https://github.com/anoopkunchukuttan/
indic_nlp_library

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
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• All-En: Multilingual many-to-one system
trained using all available parallel data of all
language pairs.

• IA-En: Multilingual many-to-one system
trained using Indo-Aryan languages from the
provided parallel data.

• DR-En: Multilingual many-to-one system
trained using Dravidian languages from the
provided parallel data.

To train our multilingual models, we use shared
encoder-decoder transformer architecture. To han-
dle the lexical gap between Indic languages in mul-
tilingual models, we convert the data of all Indic
languages to a common script. We choose the
common script as Devanagari (arbitrary choice).
We also perform a comparative study of systems
when the encoder and decoder are shared only be-
tween related languages. To perform this com-
parative study, we group the provided set of lan-
guages in two parts based on the language families
they belong to, i.e, the system is trained from Indo-
Aryan (group) to English, and Dravidian (group)
to English. Indo-Aryan-to-English contains Ben-
gali, Gujarati, Hindi, Marathi, Oriya, Punjabi to
English, and Dravidian-to-English contains Kan-
nada, Malayalam, Tamil, Telugu to English. We
use shared subword vocabulary of the languages
involved while training multilingual models, and a
common vocabulary of source and target languages
to train bilingual models.

4 Experimental details

4.1 Dataset
Our models are trained using only the parallel data
provided for the task. The size of the parallel data
available and its source of origin are summarized
in Table 1. The validation and test data provided in
the task is n-way and contains 1000 sentences for
validation and 2390 sentences in test set.

4.2 Data preprocessing
We tokenize English language data using moses
tokenizer (Koehn et al., 2007), and Indian language
data using IndicNLP2 library. For multilingual
models, we transliterate (script mapping) all In-
dic language data into Devanagari script using the
IndicNLP library. Our aim here is to convert data

2https://github.com/anoopkunchukuttan/
indic_nlp_library

of all languages into the same script, hence the
choice of Devnagari as a common script is arbi-
trary. We use fastBPE3 to learn BPE (Byte pair
encoding) (Bojanowski et al., 2017). For bilin-
gual models, we use 60000 BPE codes over the
combined tokenized data of both languages. The
number of BPE codes is set to 100000 for All-En,
and 80000 for DR-En and IA-En.

4.3 Experimental Setup

We use six layers in the encoder, six layers in the
decoder, 8 attention heads in both encoder and de-
coder, and 1024 embedding dimension. The en-
coder and decoder are trained using Adam (Kingma
and Ba, 2015) optimizer with inverse square root
learning rate schedule. We use the same setting
as used in Song et al. (2019) for warmup phase,
in which the learning rate is increased linearly for
some initial steps starting from 1e−7 to 0.0001,
warmup phase is set to 4000 steps. We use mini-
batches of size 2000 tokens and set the dropout
to 0.1 (Gal and Ghahramani, 2016). Maximum
sentence length is set to 100 after applying BPE.
At decoding time, we use greedy decoding. For
experiments, we are using mt steps from MASS4

codebase. Our models are trained using only par-
allel data provided in the task, we are not training
the model using any kind of pretraining objective.
We train bilingual models for 100 epochs and mul-
tilingual models for 150 epochs. The epoch size
is set to 200000 sentences. Due to resource con-
straints, we train our model for fixed number of
epochs, it does not guarantee convergence. Similar
to MASS (Song et al., 2019), language embeddings
are added to each token in the encoder and decoder
to distinguish between languages. These language
embeddings are learnt during training.

4.4 Results and Discussion

We report BLEU scores for our four settings: bilin-
gual, All-En (multilingual many-to-one), IA-En
(multilingual many-to-one Indo-Aryan to English),
and DR-En (multilingual many-to-one Dravidian
to English) in Table 2. We use multi-bleu.perl 5 to
calculate BLEU scores of baseline models. BLEU
score is calculated using the tokenized reference
and hypothesis files as followed by organizers in

3https://github.com/glample/fastBPE
4https://github.com/microsoft/MASS
5https://github.com/moses-smt/

mosesdecoder/blob/RELEASE-2.1.1/scripts/
generic/multi-bleu.perl

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/glample/fastBPE
https://github.com/microsoft/MASS
https://github.com/moses-smt/mosesdecoder/blob/RELEASE-2.1.1/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/RELEASE-2.1.1/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/RELEASE-2.1.1/scripts/generic/multi-bleu.perl
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Lang Pair Size Data sources

bn-en 1.70M alt, cvit-pib, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

gu-en 0.51M bibleuedin, cvit, jw, pmi, ted2020, urst, wikititles

hi-en 3.50M alt, bibleuedin, cvit-pib, iitb, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

kn-en 0.39M bibleuedin, jw, pmi, ted2020

ml-en 1.20M bibleudein, cvit-pib, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

mr-en 0.78M bibleuedin, cvit-pib, jw, pmi, ted2020, wikimatrix

or-en 0.25M cvit, mtenglish2odia, odiencorp, pmi

pa-en 0.51M cvit-pib, jw, pmi, ted2020

ta-en 1.40M cvit-pib, jw, nlpc, opensubtitles, pmi, tanzil, ted2020, ufal, wikimatrix, wikititles

te-en 0.68M cvit-pib, jw, opensubtitles, pmi, ted2020, wikimatrix

Table 1: Parallel Dataset amongst 10 Indic-English language pairs. Size is the number of parallel sentences (in
millions). (bn, gu, hi, kn, ml, mr, or, pa, ta, te and en: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, Telugu and English respectively

BLEU AMFM

Lang Pair Bilingual IA-En DR-En All-En IA-En DR-En All-En

bn-en 18.52 20.18 - 18.48 0.734491 - 0.730379

gu-en 26.51 31.02 - 28.79 0.776935 - 0.765441

hi-en 33.53 33.7 - 30.9 0.791408 - 0.775032

mr-en 21.28 25.5 - 23.57 0.767347 - 0.751917

or-en 22.6 26.34 - 25.05 0.780009 - 0.770941

pa-en 29.92 32.34 - 29.87 0.782112 - 0.772655

kn-en 17.93 - 24.18 24.01 - 0.744802 0.751223

ml-en 19.52 - 22.84 22.1 - 0.745908 0.744459

ta-en 23.62 - 22.75 21.37 - 0.74509 0.742311

te-en 19.89 - 24.02 22.37 - 0.745885 0.743435

Table 2: Results: XX-en is the translation direction. IA, DR, All are Indo-Aryan, Dravidian and All Indic lan-
guages respectively. The numbers under BLEU and AMFM headings represent BLEU score and AMFM score
respectively.

the evaluation of MultiIndicMT task6. Tokeniza-
tion is performed using moses-tokenizer (Koehn
et al., 2007). For IA-En, DR-En, and All-En, we re-
port results provided by the organizers. Table 2 also
reports the Adequacy-Fluency Metrics (AM-FM)
for Machine Translation (MT) Evaluation (Banchs
et al., 2015) provided by organizers.

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/automatic_evaluation_systems/
automaticEvaluationEN.html

The BLEU score in table 2 highlights that the
multilingual model outperforms the simpler bilin-
gual models. Although we did not submit bilingual
models in the shared task submission, we use it
here as a baseline to compare with multilingual
models. Moreover, upon grouping languages based
on their language families, significant improvement
in BLEU scores is observed due to less confusion
and better learning of the language representations
in shared encoder-decoder architecture. We ob-

http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/automaticEvaluationEN.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/automaticEvaluationEN.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/automatic_evaluation_systems/automaticEvaluationEN.html
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lang1
lang2 bn gu hi mr or pa kn ml ta te

bn - 37.86 80.63 55.1 34.81 35.93 24.69 54.83 61.79 60.89

gu 70.47 - 93.51 83.52 51.02 54.09 49.22 61.21 46.85 71.74

hi 68.96 42.97 - 59.62 30.79 38.29 27.66 52.68 55.77 60.5

mr 72.35 58.91 91.53 - 40.36 45.2 38.04 60.91 53.59 69.23

or 83.6 65.83 86.47 73.82 - 48.94 48.1 61.66 44.71 68.7

pa 72.39 58.54 90.19 69.36 41.05 - 36.64 60.16 59.18 68.58

kn 63.08 67.57 82.64 74.04 51.17 46.48 - 74.39 50.34 84.07

ml 67.37 40.4 75.68 56.99 31.54 36.69 35.77 - 66.00 68.86

ta 63.49 25.86 67.00 41.94 19.13 30.19 20.24 55.19 - 56.59

te 71.66 45.36 83.26 62.05 33.67 40.07 38.72 65.96 64.82 -

Table 3: Shared Vocabulary: Percentage of vocabulary (after applying BPE) of lang1 present in lang2 (rows: lang1,
columns: lang2) after transliteration to a common script (devnagari)

serve that the BLEU score increases by 14 percent
on average when the languages are grouped based
on their families (IA-En & DR-En) and by 7 per-
cent when all languages are combined in a single
multilingual model (All-En) as compared to the
bilingual models. The IA-En and DR-En BLEU
scores being better than both bilingual and multi-
lingual (All-En) models encourage the exploitation
of linguistic insights like languages relatedness and
lexical closeness among language families.

Table 3 shows the percentage of vocabulary over-
lap in two languages. We get the vocabulary of
each language using the source language part of
the BPE processed parallel train set files as used in
All-En experiment. The vocabulary size for each
language is different. Equation 1 states how the
value in each cell is calculated. V 1, V 2 are the
vocabularies of lang1 & lang2 respectively. The
numerator is the count of intersection of the two
vocabularies and denominator is the count of the
vocabulary of lang1.

|V 1 ∩ V 2|
|V 1|

∗ 100 (1)

Almost all indic languages provided in the task
bn, gu, (hi,mr), or, pa, kn, ml, ta, te, use different
scripts except hi and mr. Both hi and mr utilize the
same script (devnagari). It is clear from Table 3
that transliteration to a common script helps in in-
creasing the shared vocabulary and helps the model
to leverage the benefit of the lexical similarity be-

tween languages.

5 Conclusion

In this paper, we study the influence of sharing
encoder-decoder parameters between related lan-
guages in multilingual NMT by performing exper-
iments with the grouping of languages based on
language family. Furthermore, we also perform
experiments of multilingual NMT with all Indic
language data converted to the same script, which
helps the model in learning better translation by
utilizing the benefit of better shared vocabulary.
In the future, we plan to utilize monolingual data
from (Kakwani et al., 2020) to improve multilin-
gual NMT further.
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