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Abstract

Customers of machine learning systems de-
mand accountability from the companies em-
ploying these algorithms for various predic-
tion tasks. Accountability requires understand-
ing of system limit and condition of erro-
neous predictions, as customers are often in-
terested in understanding the incorrect predic-
tions, and model developers are absorbed in
finding methods that can be used to get in-
cremental improvements to an existing sys-
tem. Therefore, we propose an accountable
error characterization method, AEC, to un-
derstand when and where errors occur within
the existing black-box models. AEC, as con-
structed with human-understandable linguistic
features, allows the model developers to auto-
matically identify the main sources of errors
for a given classification system. It can also
be used to sample for the set of most infor-
mative input points for a next round of train-
ing. We perform error detection for a senti-
ment analysis task using AEC as a case study.
Our results on the sample sentiment task show
that AEC is able to characterize erroneous pre-
dictions into human understandable categories
and also achieves promising results on select-
ing erroneous samples when compared with
the uncertainty-based sampling.

1 Introduction

As machine learning is becoming the method of
choice for many analytics functionalities in indus-
try, it becomes crucial to be able to understand the
limits and risks of the existing models. In favour
of more accurate Al, the availability of computa-
tional resources is coupled with increasing dataset
sizes that has resulted in more complex models.
Complex models suffer from lack of transparency,
which leads to low trust as well as the inability
to fix or improve the models output easily. Deep
learning algorithms are among the highly accurate
and complex models. Most users of deep learning
models often treat them as a black box because of
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its incomprehensible functions and unclear work-
ing mechanism (Liu et al., 2019). However, cus-
tomers’ retention requires accountability for these
systems (Galitsky, 2018). Interpreting and under-
standing what the model has learned, as well as the
limits and the risks of the existing model have there-
fore become a key ingredient of a robust validation
(Montavon et al., 2018).

One line of research on model accountability ex-
amines the information learned by the model itself
to probe the linguistic aspects of language learnt by
the models (Shi et al., 2016; Adi et al., 2017; Giu-
lianelli et al., 2018; Belinkov and Glass, 2019; Liu
et al., 2019). Other line of research gives machine
learning models the ability to explain or to present
their behaviours in understandable terms to humans
(Doshi-Velez and Kim, 2017) to make the predic-
tions more transparent, and trustworthy. However,
very few studies set the focus on error characteriza-
tion as well as automatic error detection and mitiga-
tion. To address the above-mentioned gaps in char-
acterizing model limits and risks, we seek to im-
prove a model’s behavior by categorizing incorrect
predictions using explainable linguistic features.
To accomplish that, we propose a framework called
Accountable Error Characterization (AEC) to ex-
plain the predictions of a neural network model by
constructing an explainable error classifier. The
most similar work to ours is by (Nushi et al., 2018).
They build interpretable decision-tree classifiers
for summarizing failure conditions using human
and machine generated features. In contrast, our
approach builds upon incorrect predictions on a
separate set to provide insights into model failure.

The AEC framework has three key components:
A base neural network model, an error character-
ization model, and a set of interpretable features
that serve as the input to the error characterization
model. The features used in the error characteriza-
tion model are based on explainable linguistic and
lexical features such as dependency relations, and
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Figure 1: The overall workflow of AEC. Dashed lines
represent planned future work

various lexicons that have been inspired by prior
art, which allows the users and model developers
to identify when a model fails. The error charac-
terization model also offer rankings of informative
features to provide insight into where and why the
model fails.

By adding the error classification step on top of
the base model, AEC can also be adopted to iden-
tify the highly confident error cases as the most
informative samples for the next round of training.
Although uncertainty based sampling can also be
adopted to get the most informative samples (Lewis,
1995; Cawley, 2011; Shao et al., 2019), as it selects
the examples with the least confidence, Ghai et al.
(2020) show that uncertainty sampling led to an in-
creasing challenge for annotators to provide correct
labels. AEC avoids such problem by learning from
error cases from a validation set. Our results show
that AEC outperforms the uncertainty based sam-
pling in terms of selecting erroneous predictions
on a sample sentiment dataset (see Table 4).

We first present the overall framework of AEC
to construct the error classifier, followed by the
experiments and result. Finally, we conclude the
paper with future directions and work in progress.

2 Explainable Framework

Figure 1 summarizes our overall method for
constructing a human understandable classifier that
can be used to explain the erroneous predictions
of a deep neural network classifier and thus to
improve the model performance. Our method
consists of the following steps:

S1: Train a neural network based classifier using
labeled dataset I, call it as the base classifier.
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S2: Apply the base classifier on another labeled
dataset II to get correct and incorrect predic-
tion cases, based on which train a second 2-
class error identification classifier with a set
of human understandable features. Note here
labeled dataset I and II can be in the same
domain or in different domains.

S3: Rank the features according to their individual
predictive power. Apply the error identifica-
tion classifier from step 2, to a set of unlabeled
data from the same domain as labeled dataset
II and rank the unlabeled instances according
to their prediction probability of being erro-
neous. These represent the most informative
samples that can be further used in an active

learning setting.

The focus of the current work is to identify and
characterize the error cases of a base classifier in
an human understandable manner. The following
two sections describe the experiments and imple-
mentation of the framework using a sentiment pre-
diction task as case study. The integration of these
samples into an iterative training set up is a work
in progress for future extension.

3 Machine Learning Experiments and
Results

3.1 Data

We adopt a cross-domain sentiment analysis task
as case study in this section to demonstrate the
AEC method, although the proposed method would
also be applicable to datasets from the same do-
main. We chose the cross-domain sentiment anal-
ysis task here as it is a challenging, but necessary
task within the NLP domain and there are high
chances of observing erroneous predictions. We
use data from two different domains, Stanford Sen-
timent Treebank (SST) (Socher et al., 2013) (La-
beled Dataset I) to train the base classifier, and a
conversational Kaggle Airlines dataset (Labeled
+ Unlabeled Dataset II) to build and evaluate the
error characterization classifier. The conversation
domain represents a new dataset seeking an im-
provement on the base classifier trained using sen-
timent reviews.

SST dataset: A dataset of movie reviews anno-
tated at 5 levels (very negative, negative, neutral,
positive, and very positive). Sentence level annota-
tions are extracted using the python package pytree-



DataSet Negative | Neutral Positive
SST 3304 1622 3605
Table 1: SST dataset distribution
DataSet Negative | Neutral | Positive
Airline 7366 2451 1847

Table 2: Airline dataset distribution

bank '. We merged the negative and very-negative
class labels into a single negative class, positive
and very-positive into a single positive class, keep-
ing neutral as it is. A preprocessing step to remove
near duplicates gives a training set distribution as
shown in Table 1. This is the only dataset used to
train the base classifier.

Twitter Airline Dataset: The dataset is avail-
able through the library Crowdflower’s Data for
Everyone. > Each tweet is classified as either posi-
tive, neutral, or negative. The label distribution for
the Twitter Airline is shown in Table 2.

3.2 Train the Base Classifier

‘We chose Convolution Neural Network (CNN) as
a showcase here, as the base sentiment classifier
to be trained using the SST dataset. However, the
framework can be easily adapted to more advanced
state of the art classifiers such as BERT (Devlin
et al., 2019). A multi-channel CNN architecture
is employed to train as it has been shown to work
well on multiple sentiment datasets including SST
(Kim, 2014). The samples are weighted to account
for class imbalance.

3.3 Train the Error Characterization
Classifier

We next applied the trained base classifier on the
training set of a cross-domain dataset as described
in Table 2 to get the predictions on a sample of
11664 labeled instances of Airlines dataset. Predic-
tions from the base model on this Airlines dataset
are further divided into two classes based on the
ground truth test labels, correct-prediction and
incorrect-prediction. The base classifier has an
overall accuracy of 60.09% on the Airline dataset
as shown in Table 3. A balanced set is created
by undersampling the correct predictions giving a
dataset of total 9310 instances. We use a 80/20
split for training and testing giving a training set
of 7448 and a test set of 1862 instances. This train

'nttps://pypi.org/project/pytreebank
https://appen.com/resources/datasets/
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set serves as the input to train the error character-
ization classifier with erroneous or not as labels
and different collections of explainable features as
independent variables. A random forest classifier
using a 5-fold cross validation was used to train the
error characterization classifier. (Pedregosa et al.,
2011).

Dataset Total Correct InCorrect
instances pred. pred.
Airline dataset | 11664 7009 4655

Table 3: Performance of the Base classifier on the Air-
line dataset

3.3.1 Features

Our features have been inspired by previous work
on sentiment, disagreement, and conversations.
The feature values are normalized by sentence
length.

Generalized Dependency. Dependency relations
are obtained using the python package spacy 3.
Relations are generalized by replacing the words
in each dependency relation by their corresponding
POS tag (Joshi and Penstein-Rosé, 2009; Abbott
et al., 2011; Misra et al., 2016).

Emotion. Count of words in each of the 8§
emotion classes from the NRC emotion lexicon
(anger, anticipation, disgust, fear, joy, negative,
positive, sadness, surprise, and trust) available
from (Mohammad and Turney, 2010).

Named Entities. The count of named entities of
each entity type obtained from the python package
spacy.

Conversation.  Lexical indicators indicating
greetings, thank, apology, second person reference,
questions starting with do, did, can, could, with
who, what, where as described by (Oraby et al.,
2017).

3.4 Predict erroneous predictions from
unlabeled data

Once the error characterization classifier was
trained with the set of correctly and incorrectly
predicted instances, we then apply it to the 20%
test set of the Twitter Airline data, which consists
of a total of 1862 instances as described in section
3.3. We selected the top K instances with the high-
est probability of being incorrectly predicted as the
erroneous cases. We hide the actual labels on this

*https://spacy.io
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test set when selecting the instances. The actual la-
bels will be later used to evaluate the performance
of the error characterization classifier.

4 Evaluation and Results

In terms of identifying erroneous predictions, in
our evaluation, we compare the performance of
AEC with uncertainty-based sampling, in which
the learner computes a probabilistic output for each
sample, and select the samples that the base classi-
fier is the most uncertain about based on probability
scores.

4.1 Most informative samples for labeling.

As we are interested in generating a ranking of
incorrect predictions for the base classifier from
error characterization classifier, we use precision
at top k as the evaluation metrics in here, which is a
commonly used metric in information retrieval, and
defined as P@K=N/K, where N is the actual num-
ber of errors samples among top K predicted. We
compare the performance of the error characteriza-
tion classifier and the uncertainty based sampling
on the test set of 1832 instances as shown in Table 4.
It shows the precision at top K where K varies from
10 to 50. For the first initial 10 samples, the uncer-
tainty based sampling performs marginally better
but as we select more samples (rows 2-5) the pro-
posed approach starts outperforming the baseline.

TOP K | uncertainty- | AEC P@QK
based P@K

10 0.8 0.7

20 0.75 0.8

30 0.77 0.83

40 0.75 0.83

50 0.74 0.76

Table 4: Comparison of uncertainty-based sampling
(Baseline) with proposed AEC on the test set.

4.2 Feature Characterization

When using uncertainity based sampling, it is not
always evident why certain samples were selected,
or how these samples map to actual errors of the
base classifier. In contrast, AEC framework in-
corporates explainability into sample selection by
mapping highly ranked feature sets from the er-
ror characterization model with the selected error
samples.
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S.No| Text Actual

Label

Error.
Prob

Base
Pred.

1 @usernameif you could change | Neutral 0.84
your name to @southwestair and
do what they do...that’d be awe-
some. Also this plane smells like

onion rings.

Negative

@username now on hold for 90 | Neutral Negative | 0.82

3 @username user is a compassion- | Neutral Positive 0.79
ate professional!  Despite the
flight challenges she made pas-

sengers feel like priorities!!

Table 5: A subset of most informative samples for the
Base classifier based on error characterization classifier
probability score for the error class.

Table 5 shows a few examples of actual errors
from the base classifier that are also predicted to be
errors on the test set from the error characterization
classifier. Words in bold show a few of these fea-
ture mappings. For example, feature set of Row-1
has higher values for the feature question-starters,
text of Row-3 contains Named Entity type: time, a
feature present in highly ranked feature-set of the
error characterization classifier as shown in Table 6.

Feature Highly ranked features

Type

Lexical second_person,  question_yesno,  ques-
tion_wh !, ?2,thanks, no

NRC positive, negative, trust, fear, anger,

Entities Org, Time , Date, Cardinal

Dependency| amod-NN-JJ, nummod-NNS,CD

compound-NN-NN, ROOT-NNP-NNP,
advmod-VB-RB compound-NN-NNP, neg-
VB-RB, amod-NNS,JJ, ROOT-VBN-VBN

Table 6: A subset of top 100 Features from Random
Forest.

5 Conclusion and Future Work

We present an error characterization framework,
called AEC, which allows the model users and de-
velopers to understand when and where a model
fails. AEC is trained on human understandable
linguistic features with erroneous predictions from
the base classifier as training input. We used a
cross-domain sentiment analysis task as case study
to showcase the effectiveness of AEC in terms of
error detection and characterization. Our experi-
ments showed that AEC outperformed uncertainty
based sampling in terms of selecting the erroneous
samples for continuous model improvements (a
strong active learning baseline for selecting the
most uncertain samples for continuous model im-
provements) for the task of predicting errors which
can act as most informative samples of the base



classifier. In addition, errors automatically detected
by AEC seemed to be more understandable to the
model developers. Having these explanations lets
the end users make a more informed decision, as
well as guide the labeling decisions for next round
of training. As our initial results on sentiment
dataset look promising for both performance and
explainability, we are in the process of extending
the framework to run the algorithm iteratively on
multiple datasets. While applying the error charac-
terization classifier on the unlabeled datasets, not
only we will select the top K’ instances with the
highest prediction probability of being correctly
predicted and add them back to the original train-
ing dataset for retraining purpose, but we will also
select top K instances with the highest prediction
probability of being incorrectly predicted. We will
assign those instances to human annotators for la-
bels and add them back to the original labeled data
as well for the next iteration of training process. We
will continuously feed these samples to train the
base network, and evaluate the actual performance
gains for the base classifier.
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