
Efficient Computation of Expectations under Spanning Tree Distributions

Ran Zmigrod , Tim Vieira , Ryan Cotterell ,

University of Cambridge, United Kingdom Johns Hopkins University, United States
ETH Zürich, United Kingdom

rz279@cam.ac.uk tim.f.vieira@gmail.com
ryan.cotterell@inf.ethz.ch

Abstract

We give a general framework for inference in
spanning tree models. We propose unified al-
gorithms for the important cases of first-order
expectations and second-order expectations in
edge-factored, non-projective spanning-tree
models. Our algorithms exploit a fundamental
connection between gradients and expecta-
tions, which allows us to derive efficient
algorithms. These algorithms are easy to im-
plement with or without automatic differentia-
tion software. We motivate the development of
our framework with several cautionary tales
of previous research, which has developed
numerous inefficient algorithms for comput-
ing expectations and their gradients. We de-
monstrate how our framework efficiently
computes several quantities with known algo-
rithms, including the expected attachment
score, entropy, and generalized expectation
criteria. As a bonus, we give algorithms for
quantities that are missing in the literature,
including the KL divergence. In all cases, our
approach matches the efficiency of existing
algorithms and, in several cases, reduces the
runtime complexity by a factor of the sen-
tence length. We validate the implementation
of our framework through runtime experi-
ments. We find our algorithms are up to 15
and 9 times faster than previous algorithms for
computing the Shannon entropy and the gra-
dient of the generalized expectation objective,
respectively.

1 Introduction

Dependency trees are a fundamental combinato-
rial structure in natural language processing. It
follows that probability models over dependency
trees are an important object of study. In terms

Equal contribution.

of graph theory, one can view a (non-projective)
dependency tree as an arborescence (commonly
known as a spanning tree) of a graph. To build a
dependency parser, we define a graph where the
nodes are the tokens of the sentence, and the edges
are possible dependency relations between the
tokens. The edge weights are defined by a model,
which is learned from data. In this paper, we focus
on edge-factored models where the probability of
a dependency tree is proportional to the product
the weights of its edges. As there are exponen-
tially many trees in the length of the sentence, we
require clever algorithms for finding the normal-
ization constant. Fortunately, the normalization
constant for edge-factored models is efficient to
compute via to the celebrated matrix–tree theorem.

The matrix–tree theorem (Kirchhoff, 1847)—
more specifically, its counterpart for directed
graphs (Tutte, 1984)—appeared before the NLP
community in an onslaught of contemporaneous
papers (Koo et al., 2007; McDonald and Satta,
2007; Smith and Smith, 2007) that leverage the
classic result to efficiently compute the normal-
ization constant of a distribution over trees. The
result is still used in more recent work (Ma and
Hovy, 2017; Liu and Lapata, 2018). We build upon
this tradition through a framework for computing
expectations of a rich family of functions under
a distribution over trees. Expectations appear in
all aspects of the probabilistic modeling process:
training, model validation, and prediction. There-
fore, developing such a framework is key to accel-
erating progress in probabilistic modeling of trees.

Our framework is motivated by the lack of
a unified approach for computing expectations
over spanning trees in the literature. We believe
this gap has resulted in the publication of
numerous inefficient algorithms. We motivate the
importance of developing such a framework by
highlighting the following cautionary tales.

• McDonald and Satta (2007) proposed an
inefficient O

(
N 5

)
algorithm for computing

675

Transactions of the Association for Computational Linguistics, vol. 9, pp. 675–690, 2021. https://doi.org/10.1162/tacl a 00391
Action Editor: Dan Gildea. Submission batch: 5/2020; Revision batch: 3/2021; Published 7/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:rz279@cam.ac.uk
mailto:tim.f.vieira@gmail.com
mailto:ryan.cotterell@inf.ethz.ch
https://doi.org/10.1162/tacl_a_00391

feature expectations, which was much slower
than the O

(
N 3

)
algorithm obtained by

Koo et al. (2007) and Smith and Smith
(2007). The authors subsequently revised
their paper.

• Smith and Eisner (2007) proposed an O
(
N 4

)
algorithm for computing entropy. Later,
Martins et al. (2010) gave an O

(
N 3

)
method for entropy, but not its gradient.
Our framework recovers Martins et al.’s
(2010) algorithm, and additionally provides
the gradient of entropy in O

(
N 3

)
.

• Druck et al. (2009) proposed an O
(
N 5

)
algorithm for evaluating the gradient of
the generalized expectation (GE) criterion
(McCallum et al., 2007). The runtime
bottleneck of their approach is the evaluation
of a covariance matrix, which Druck and
Smith (2009) later improved to O

(
N 4

)
. We

show that the gradient of the GE criterion can
be evaluated in O

(
N 3

)
.

We summarize our main results below:

• Unified Framework: We develop an
algorithmic framework for calculating expec-
tations over spanning arborescences. We
give precise mathematical assumptions on
the types of functions that are supported. We
provide efficient algorithms that piggyback
on automatic differentiation techniques, as
our framework is rooted in a deep con-
nection between expectations and gradients
(Darwiche, 2003; Li and Eisner, 2009).

• Improvements to existing approaches: We
give asymptotically faster algorithms where
several prior algorithms were known.

• Efficient algorithms for new quantities:
We demonstrate how our framework cal-
culates several new quantities, such as the
Kullback–Leibler divergence, which (to our
knowledge) had no prior algorithm in the
literature.

• Practicality: We present practical speed-
ups in the calculation of entropy compared
to Smith and Eisner (2007). We observe
speed-ups in the range of 4.1 and 15.1 in
five languages depending on the typical sen-
tence length. We also demonstrate a 9 times

speed-up for evaluating the gradient of the
GE objective compared to Druck and Smith
(2009).

• Simplicity: Our algorithms are simple to
implement—requiring only a few lines of
PyTorch code (Paszke et al., 2019). We have
released a reference implementation at
the following URL: https://github
.com/rycolab/tree expectations.

2 Distributions over Trees

We consider the distribution over trees in weighted
directed graphs with a designated root node. A
(rooted, weighted, and directed) graph is given
by G = (N , E , ρ). N = {1, . . . , N} ∪ {ρ} is a set
of N+1 nodes where ρ is a designated root node.
E is a set of weighted edges where each edge
(i

wij−−→ j) ∈ E is a pair of distinct nodes such that
the source node i ∈ N points to a destination
node j ∈ N with an edge weight wij ∈ R. We
assume—without loss of generality—that the root
node ρ has no incoming edges. Furthermore, we
assume only one edge can exist between two
nodes. We consider the multi-graph case in §2.2.

In natural language processing applications,
these weights are typically parametric functions,
such as log-linear models (McDonald et al.,
2005b) or neural networks (Dozat and Manning,
2017; Ma and Hovy, 2017), which are learned
from data.

A tree1 d of a graph G is a set of N edges
such that all non-root nodes j have exactly one
incoming edge and the root node ρ has at least
one outgoing edge. Furthermore, a tree does not
contain any cycles. We denote the set of all trees
in a graph by D and assume that |D| > 0 (this is
not necessarily true for all graphs).

The weight of a tree d ∈ D is defined as:

w(d) def
=

∏
(i→ j)∈d

wij (1)

Normalizing the weight of each tree yields a
probability distribution:

p(d) def
=

w(d)

Z
(2)

where the normalization constant is defined as

Z def
=

∑
d∈D

w(d) =
∑
d∈D

∏
(i→ j)∈d

wij (3)

1The more precise graph-theoretic term is arborescence.

676

https://github.com/rycolab/tree_expectations
https://github.com/rycolab/tree_expectations

Of course, for (2) to be a proper distribution, we
require wij≥0 for all (i → j)∈E , and Z>0.

2.1 The Matrix–Tree Theorem

The normalization constant Z involves a sum
over D, which can grow exponentially large with
N . Fortunately, there is sufficient structure in the
computation ofZ that it can be evaluated inO(N 3)
time. The Matrix–Tree Theorem (MTT) (Tutte,
1984; Kirchhoff, 1847) establishes a connection
between Z and the determinant of the Laplacian
matrix, L ∈ RN×N . For all i, j ∈ N \{ρ},

Lij
def
=

⎧⎨⎩
∑

i′∈N \ {j}
wi′j if i = j

−wij otherwise
(4)

Theorem 1 (Matrix–Tree Theorem; Tutte (1984,
p. 140)). For any graph,

Z = |L| (5)

Furthermore, the normalization constant can be
computed in O

(
N 3

)
time.2

2.2 Dependency parsing and the
Laplacian Zoo

Graph-based dependency parsing can be encoded
as follows. For each sentence of length N , we
create a graph G = (N , E , ρ) where each non-root
node represents a token of the sentence, and ρ
represents a special root symbol of the sentence.
Each edge (i → j) in the graph represents a
possible dependency relation between head word
i and modifier word j. Fig. 1 gives an example
dependency tree. In the remainder of this section,
we give several variations on the Laplacian matrix
that encode different sets of valid trees.3

In many cases of dependency parsing, we want
ρ to have exactly one outgoing edge. This is
motivated by linguistic theory, where the root of a
sentence should be a token in the sentence rather
than a special root symbol (Tesnière, 1959). There
are exceptions to this, such as parsing Twitter
(Kong et al., 2014) and parsing specific lan-
guages (e.g., The Prague Treebank [Bejček et al.,

2For simplicity, we assume that the runtime of matrix
determinants is O

(
N 3

)
. However, we would be remiss if

we did not mention that algorithms exist to compute the
determinant more efficiently (Dumas and Pan, 2016).

3The reader may want to skip this section on their first
reading.

Figure 1: Example of a dependency tree.

2013]). We call these multi-root trees4 and these
are represented by the set D, as described ear-
lier. Therefore, the normalization constant over
all multi-root trees can be computed by a direct
application of Theorem 1.

However, in most dependency parsing corpora,
only one edge may emanate from the root (Nivre
et al., 2018; Zmigrod et al., 2020). Thus, we con-
sider the set of single-rooted trees, denoted D(1).
Koo et al. (2007) adapt Theorem 1 to efficiently
compute Z for the set D(1) with the root-weighted
Laplacian,5 L̂ ∈ RN×N

L̂ij =

⎧⎪⎪⎨⎪⎪⎩
wρ j if i = 1∑
i′∈N \ {ρ , j}

wi′j if i = j

−wij otherwise

(6)

Proposition 1. For any graph, the normalization
constant over all single-rooted trees is given by
the determinant of the root-weighted Laplacian
(Koo et al., 2007, Prop. 1)

Z = |L̂| (7)

Furthermore, the normalization constant for
single-rooted trees can be computed in O

(
N 3

)
time.

Labeled Trees. To encode labeled dependency
relations in our set of trees, we simply augment
edges with labels—resulting in a multi-graph in
which multiple edges may exist between pairs

of nodes. Now, edges take the form (i
y/wijy−−−−→ j)

where i and j are the source and destination nodes
as before, y ∈ Y is the label, and wijy is their
weight.

4We follow the conventions of Koo et al. (2007) and say
‘‘single-root’’ and ‘‘multi-root’’ when we technically mean
the number of outgoing edges from the root ρ, and not the
number of root nodes in a tree, which is always one.

5The choice to replace row 1 by the root edges is done by
convention, we can replace any row in the construction of L̂.

677

Proposition 2. For any multi-graph, the normal-
ization constant for multi-root or single-rooted
trees can be calculated using Theorem 1 or
Proposition 1 (respectively) with the edge weights,

wij =
∑
y∈Y

wijy (8)

Furthermore, the normalization constant can be
computed in O(N 3 + | Y|N 2) time.6

Summary. We give common settings in which
the MTT can be adapted to efficiently compute Z
for different sets of trees. The choice is dependent
upon the task of interest, and one must be careful
to choose the correct Laplacian configuration. The
results we present in this paper are modular in the
specific choice of Laplacian. For the remainder of
this paper, we assume the unlabeled tree setting
and will refer to the set of trees as simply D and
our choice of Laplacian as L.

3 Expectations

In this section, we characterize the family of
expectations that our framework supports. Our
framework is an extension of Li and Eisner (2009)
to distributions over spanning trees. In contrast,
their framework considers expectations over dis-
tributions that can be factored as B-hypergraphs
(Gallo et al., 1993). Our distributions over trees
cannot be cast as polynomial-size B-hypergraphs.
Another important distinction between our frame-
work and that of Li and Eisner (2009) is that we
do not use the semiring abstraction as it is alge-
braically too weak to compute the determinant
efficiently.7

6The algorithms given in later sections will not provide
full details for the labeled case due to space constraints, but we
assure the reader that our algorithms can be straightforwardly
generalized to the labeled setting.

7In fact, Jerrum and Snir (1982) proved that the
partition function for spanning trees requires an exponential
number of additions and multiplications in the semiring
model of computation (i.e., assuming that subtraction is
not allowed). Interestingly, division is not required, but
algorithms for division-free determinant computation run in
O
(
N 4

)
(Kaltofen, 1992). An excellent overview of the power

of subtraction in the context of dynamic programming is given
in Miklós (2019, Ch. 3). It would appear as if commutative
rings would make a good level of abstraction as they admit
efficient determinant computation. Interestingly, this means
that we cannot use the MTT in the max-product semiring
to (efficiently) find the maximum weight tree because max
does not have an inverse. Fortunately, there exist O

(
N 2

)
algorithms to find the maximum weight tree for both the

The expected value of a function f : D �→ RF

is defined as follows

Ed[f(d)] def
=

∑
d∈D

p(d)f(d) (9)

Without any assumptions on f , computing (9) is
intractable.8 In the remainder of this section, we
will characterize a class of functions f whose
expectations can be efficiently computed.

The first type of functions we consider are
functions that are additively decomposable
along the edges of the tree. Formally, a function
r : D �→ RR is additively decomposable if it can
be written as

r(d) =
∑

(i→ j)∈d

rij (10)

where we abuse notation slightly by for any func-
tion r : D �→ RR, we consider the edge
function rij as a vector of edge values. An ex-
ample of an additively decomposable function is
r(d) = − log p(d) whose expectation gives the
Shannon entropy.9 Other first-order expectations
include the expected attachment score and the
Kullback–Leibler divergence. We demonstrate
how to compute these in our framework in and
§6.1 and §6.3, respectively.

The second type of functions we consider
are functions that are second-order additively
decomposable along the edges of the tree.
Formally, a function r: D �→ RR is second-order
additively decomposable if it can be written as
the outer product of two additively decomposable
functions, r : D �→ RR and s : D �→ RS

t(d) = r(d)s(d)	 (11)

Thus, t(d) ∈ RR×S is generally a matrix.
An example of such a function is the gradi-

ent of entropy (see §6.2) or the GE objective
(McCallum et al., 2007) (see §6.4 with respect to
the edge weights. Another example of a second-
order additively decomposable function is the

single-root and multi-root settings (Zmigrod et al., 2020;
Gabow and Tarjan, 1984).

8Of course, one could use sampling methods, such as
Monte Carlo, to approximate (9). Sampling methods may be
efficient if the variance of f under p is not too large.

9Proof: − log p(d)= − log(1Z
∏

(i→ j)∈d wij)
= log Z−

∑
(i→ j)∈d logwij .

⇒ rij =
1
N

log Z− logwij .

678

covariance matrix. Given two feature functions
r: D �→ RR and s: D �→ RS , their covariance
matrix is Ed

[
r(d)s(d)	

]
− Ed[r(d)]Ed[s(d)]

	.
Thus, it is second-order additively decomposable
function as long as r(d) and s(d) are additively
decomposable.

One family of functions which can be computed
efficiently but we will not explore here are those
who are multiplicatively decomposable over the
edges. A function q : D �→ RQ is multiplicatively
decomposable if it can be written as

q(d) =
∏

(i→ j)∈d

qij (12)

where the product of qij is an element-wise vector
product. These functions form a family that we will
call zeroth-order expectations and can be computed
with a constant number of calls to MTT (usually
two or three). Examples of these include the Rényi
entropy and �p-norms.10

4 Connecting Gradients and
Expectations

In this section, we build upon a fundamental
connection between gradients and expectations
(Darwiche, 2003; Li and Eisner, 2009). This
connection allows us to build on work in automatic
differentiation to obtain efficient gradient
algorithms. While the propositions in this section
are inspired from past work, we believe that
the presentation and proofs of these propositions
have previously not been clearly presented.11 We
find it convenient to work with unnormalized
expectations, or totals (for short). We denote the
total of a function f as f def

=
∑

d∈D w(d)f(d).
We recover the expectation with Ep[f] = f̄/Z.
We note that totals (on their own) may be of

10The �k norm of the distribution p often denoted as
‖p‖k def

=
(∑

d∈D p(d)k
)1/k for k≥0. It is computable from a

zeroth-order expectation because it can be written as (Z
(k)

Zk
)1/k

whereZ(k)=
∑

d∈D w(d)k=
∑

(i→ j)∈d w
k
ij , which is clearly

a zeroth-order expectation. Similarly, the Rényi entropy of
orderα≥0withα �=1 isHα(p) def

=
1

1−α
log

(∑
d∈D p(d)α

)
=

1
1−α

log
(

Z(α)

Zα

)
.

11Li and Eisner (2009, Section 5.1) provide a similar
derivation to Proposition 3 and Proposition 4 for hypergraphs.

interest in some applications (Vieira and Eisner,
2017, Section 5.3).

The FIrst-Order Case. Specifically, the partial
derivative ∂Z

∂wij
is useful for determining the total

weight of trees which include the edge (i → j),

w̃ij
def
=

∑
d∈Dij

w(d) (13)

where Dij
def
= {d ∈ D | (i → j ∈ d)}.

Furthermore, p((i → j) ∈ d) = w̃ij/Z =
wij

Z
∂Z
∂wij

.12

Proposition 3. For any edge i → j,

w̃ij =
∂Z

∂wij
wij (14)

Proof.

w̃ij =
∑
d∈Dij

w(d)

=
∑
d∈Dij

∏
(i′ → j ′)∈d

wi′j ′

= wij

∑
d∈Dij

∏
(i′ → j ′)∈
d \ {i→ j}

wi′j ′

= wij
∂

∂wij

∑
d∈D

∏
(i′ → j ′)∈d

wi′j ′

= wij
∂

∂wij

∑
d∈D

∏
(i′ → j ′)∈d

wi′j ′

=
∂Z

∂wij
wij

Proposition‘4 will establish a connection
between the unnormalized expectation r and ∇Z.

Proposition 4. For any additively decomposable
function r: D �→ RR, the total r can be computed
using a gradient–vector product

r =
∑

(i→ j)∈E
w̃ijrij (15)

12Some authors (e.g., Wainwright and Jordan, 2008) prefer
to work with an exponentiated representationwij = exp(θij)
so that ∇θij log Z = p((i→ j) ∈ d). This avoids an explicit
division by Z, and multiplication by wij as these operations
happens by virtue of the chain rule.

679

Proof.

r =
∑
d∈D

w(d)r(d)

=
∑
d∈D

w(d)
∑

(i→ j)∈d

rij

=
∑
d∈D

∑
(i→ j)∈d

w(d)rij

=
∑

(i→ j)∈E

∑
d∈Dij

w(d)rij

=
∑

(i→ j)∈E
w̃ijrij

The Second-Order Case. We can similarly use
∂2Z

∂wij ∂wkl
to determine the total weight of trees

which include both (i → j) and (k → l) with
(i → j) �= (k → l)13

w̃ij, kl
def
=

∑
d∈Dij,kl

w(d) (16)

where Dij
def
= {d∈ D | (i → j)∈ d, (k → l)∈ d}.

Furthermore, w̃ij,kl

Z =p(i → j∈ d, (k → l)∈ d).

Proposition 5. For any pair of edges i → j and
(k → l) such that i → j �= (k → l),

w̃ij,kl =
∂2Z

∂wij ∂wkl
wijwkl (17)

Proof.

w̃ij, kl =
∑

d∈Dij,kl

w(d)

=
∑

d∈Dij,kl

∏
(k′ → l′)∈d

wk′l′

= wijwkl
∂2

∂wij∂wkl

∑
d∈ D

∏
(i′ → j ′)∈d

wi′j ′

=
∂2Z

∂wij ∂wkl
wijwkl

Proposition 6 will relate ∇2Z to ∇r. This will
be used in Proposition 7 to establish a connection
between the total t and ∇2Z, and additionally
establishes a connection between t and ∇r.

13As each edge can only appear once in a tree, w̃ij, ij = 0.

Proposition 6. For any additively decomposable
function r : D �→ RR that does not depend on
w,14 and edge i → j ∈ E ,

wij
∂r

∂wij
= w̃ijrij +

∑
(k→ l)∈E

w̃ij, klrkl (18)

Proof.

wij
∂r

∂wij

= wij
∂

∂wij

⎛⎝ ∑
(k→ l)∈E

∂Z

∂wkl
wklrkl

⎞⎠
= wij

∂Z

∂wij
rij + wij

∑
(k→ l)∈E

∂2Z

∂wij∂wkl
wklrkl

= w̃ijrij +
∑

(k→ l)∈E
w̃ij,klrkl

Proposition 7. For any second-order additively
decomposable function t: D �→ RR×S , which is
expressed as the outer product of additively
decomposable functions, r : D �→ RR and
s : D �→ RS , t(d) = r(d)s(d)	, where r does
not depend on w, the total t can be computed
using a Jacobian–matrix product

t =
∑

(i→ j)∈E

∂r

∂wij
wijsij

	 (19)

or a Hessian–matrix product

t =
∑

(i→ j)∈E
w̃ijrijsij

	 +
∑

(k→ l)∈E
w̃ij, klrijskl

	

(20)

14More precisely, ∂r(d)
∂wij

= 0 for all d ∈ D and i → j ∈ E .

680

Proof. We first prove (19)

t

=
∑
d∈D

w(d)r(d)s(d)	

=
∑
d∈D

w(d)r(d)
∑

(i→ j)∈d

sij
	

=
∑
d∈D

∑
i→ j ∈d

w(d)r(d)sij	

=
∑

(i→ j)∈E

∑
d∈Dij

w(d)r(d)sij
	

=
∑

(i→ j)∈E
wij

∂

∂wij

(∑
d∈D

w(d)r(d)

)
sij

	

∑
(i→ j)∈E

wij
∂r

∂wij
sij

	

Then (20) immediately follows by substituting
(18) into (19) and expanding the summation.

Remark. There is a simple recipe to compute
∇rn for each n = 1, . . . , R. First, some notation;
let

−→
1ij be a vector over E with a 1 in dimension

(i → j), and zeros elsewhere. By plugging [rij]n
and sij = 1

wij

−→
1ij into (19), we can compute

tn = ∇rn.15 However, if r depends on w, we
must add the following first-order term, which is
due to the product rule

∇rn = tn +
∑

(i→ j)∈E
w̃ij∇[rij]n︸ ︷︷ ︸

first-order term

(21)

We provide the details for computing the gradients
of two first-order quantities, Shannon entropy and
the KL divergence, using this recipe in §6.2 and
§6.3, respectively.

5 Algorithms

Having reduced the computation of r and t to
finding derivatives of Z in §4, we now describe
efficient algorithms that exploit this connec-
tion. The main algorithmic ideas used in this
section are based on automatic differentiation
(AD) techniques (Griewank and Walther, 2008).
These are general-purpose techniques for effi-
ciently evaluating gradients given algorithms
that evaluate the functions. In our setting, the
algorithm in question is an efficient procedure

15Note that when wij = 0, we can set sij = 0.

Figure 2: Algorithm for first-order totals.

for evaluating Z, such as the procedure we des-
cribed in §2.1. While we provide derivatives §5.1
in our algorithms, these can also be evaluated
using any AD library, such as JAX (Bradbury
et al., 2018), PyTorch (our choice) (Paszke et al.,
2019), or TensorFlow (Abadi et al., 2015).

Proposition 4 is realized as T1 in Fig. 2 and
(19) and (20) are realized as Tv2 and Th2 in Fig. 3,
respectively. We provide the runtime complexity
of each step in the algorithms. These will be
discussed in more detail in §5.2.

5.1 Derivatives of Z

All three algorithms rely on first- or second-order
derivatives of Z. Since Z = |L|, we can express its
gradient via Jacobi’s formula and an application
of the chain rule16

∂Z

∂wij
= Z

∑
(i′,j ′)∈Lij

Bi′j ′L
′
i′j ′,ij (22)

where
B = L−	 (23)

is the transpose of L−1, L′
i′j ′,ij =

∂Li′j′

∂wij
, and Lij

is the set of pairs where (i′, j′) ∈ Lij means that
L′
i′j ′,ij �= 0. We define Bρ j ′

def
= 0 for any j′ ∈ N .

Koo et al. (2007) show that for any i and j,
| Lij | ≤ 2 in the unlabeled case, indeed, L′

i′j ′,ij is
given by

L′
i′j ′,ij =

⎧⎪⎨⎪⎩
1 if i′ ∈ {1, j}, j′ = j

−1 if i′ = i, j′ = j

0 otherwise
(24)

16The derivative of |L| can also be given using the matrix
adjugate, ∇Z = adj(L)	. There are benefits to using the
adjugate as it is more numerically stable and equally efficient
(Stewart, 1998). In fact, any algorithm that computes the
determinant can be algorithmically differentiated to obtain an
algorithm for the adjugate.

681

Their result holds for any Laplacian encoding
we gave in §2.2.17

The second derivative of Z can be evaluated as
follows18

∂2Z

∂wij∂wkl
=

∑
(i′,j ′)∈Lij

(k′,l′)∈Lkl

L
′

i′j ′,ij

∂2Z

∂Li′j ′∂Lk′l′
L′
k′l′,kl

(25)
where

∂2Z

∂Li′j ′∂Lk′l′
= Z (Bi′j ′Bk′l′ − Bi′l′Bk′j ′) (26)

Note that (25) also contains a term with ∇2L as
it is derived from the product rule. Because L is
a linear construction, its second derivative is zero
and so we can drop this term.

5.2 Complexity Analysis

The efficiency of our approach is rooted in the
following result from automatic differentiation,
which relates the cost of gradient evaluation to the
cost of function evaluation. Given a function f ,
we denote the number of differentiable elementary
operations (e.g., +, *, /, -, cos, pow) of f by
Cost{f}.

Theorem 2 (Cheap Jacobian–vector Products).
For any function f : RK �→ RM and any vector
v ∈ RM , we can evaluate (∇f(x))	v ∈ RK

with cost satisfying the following bound via
reverse-mode AD (Griewank and Walther, 2008,
page 44),

Cost
{
(∇f(x))	v

}
≤ 4·Cost{f} (27)

Thus, O
(
Cost{(∇f(x))	v}

)
= O(Cost{f}).

As a special (and common) case, Theorem 2
implies a cheap gradient principle: The cost of
evaluating the gradient of a function of one output
(M = 1) is as fast as evaluating the function itself.

Algorithm T1. The cheap gradient principle
tells us that ∇Z can be evaluated as quickly as
Z itself, and that numerically accurate procedures
for Z give rise to similarly accurate procedures
for ∇Z. Additionally, many widely used software
libraries can do this work for us, such as JAX,

17We have that | Lij | ≤ 2| Y| in the labeled case.
18We provide a derivation in Appendix A. Druck and

Smith (2009) give a similar derivation for the Hessian, which
we have generalized to any second-order quantity.

PyTorch, and TensorFlow. The runtime of evalu-
atingZ is dominated by evaluating the determinant
of the Laplacian matrix. Therefore, we can find
both Z and ∇Z in the same complexity: O

(
N 3

)
.

Line 4 of Fig. 2 is a sum over N 2 scalar–vector
multiplications of size R, this suggests a runtime
of O

(
N 2R

)
. However, in many applications, R

is a sparse function. Therefore, we find it useful
to consider the complexities of our algorithms in
terms of the size R, and the maximum density
R′ of each rij . We can then evaluate Line 4 in
O
(
N 2R′), leading to an overall runtime for T1

of O
(
N 3 +N 2R′). The call to Z uses O

(
N 2

)
space to store the Laplacian matrix. Computing
the gradient of Z similarly takes O

(
N 2

)
to store.

Since storing r takes O(R) space, T1 has a space
complexity of O

(
N 2 +R

)
.

Algorithm Tv2 . Second-order quantities (t),
appear to require ∇2Z and so do not directly
fit the conditions of the cheap gradient principle:
the Hessian (∇2Z) is the Jacobian of the gradient.
The approach of Tv2 to work around this is to make
several calls to Theorem 2 for each element of
r. In this case, the function in question is (11),
which has output dimensionality R. Computing
∇r can thus be evaluated with R calls to reverse-
mode AD, requiring O

(
R(N 3 +N 2R′)

)
time.

We can somewhat support fast accumulation
of S′-sparse S in the summation of Tv2 (Line
6). Unfortunately, ∂r

∂wij
will generally be dense,

so the cost of the outer product on Line 6 is
O(RS′). Thus, Tv2 has an overall runtime of
O
(
R(N 3 +N 2R′) +N 2RS′).19 Additionally,

Tv2 requires O
(
N 2R+RS

)
of space because

O
(
N 2R

)
is needed to compute and store the

Jacobian of r and t has size O(RS).

Algorithm Th2 . The downside of Tv2 is that
no work is shared between the R evaluations of
the loop on Line 3. For our computation of Z,
it turns out that substantial work can be shared
among evaluations. Specifically, ∇2Z only relies
on the inverse of the Laplacian matrix, as seen
in (26), leading to an alternative algorithm for
second-order quantities, Th2 . This is essentially
the same observation made in Druck and Smith
(2009). Exploiting this allows us to compute ∇2Z
in O

(
N 4

)
time. Note that this runtime is only

achievable due to the sparsity of ∇L. The accu-
mulation component (Line 12) of Th2 can be done

19If S<R, we can change the order of Tv2 to compute t
	

in O
(
S(N 3+N 2S ′)+N 2R′S

)
.

682

Figure 3: Three algorithms for computing second-order
totals. We recommendT2 as it achieves the best runtime
in general. The algorithms Tv2 and Th2 are presented for
pedagogical purposes in §5.2.

in O
(
N 4R′S′). Considering space complexity,

while not prevalent in our pseudocode, a bene-
fit of Th2 is that we do not need to materialize
the Hessian of Z as it only makes use of the

inverse of the Laplacian matrix. Therefore, we
only need O

(
N 2

)
space for the Laplacian inverse

and O(RS) space for t. Consequently, the Th2
requires O

(
N 2+RS

)
space.

Algorithm T2. So far we have seen that when
R is small, that Tv2 can be much faster than Th2 .
On the other hand, when R is large and R′ � R,
Th2 can be much faster than Tv2 . Can we get the
best of Tv2 and Th2? Our unified algorithm, T2 in
Fig. 3, does just that. To derive it, we refactor the
bottleneck of Th2 using (25) and the distributive
property20

∑
(i→ j)∈E
(k→ l)∈E

∂2Z

∂wij∂wkl
wijwklrijskl

	

=
1

Z
r s	 − Z

∑
j ′,l′∈N

r̂j ′l′ ŝj ′l′
	 (28)

where

r̂j ′l′ =
∑

(k→ l)∈E

∑
k′∈N

Bk′j ′L
′
k′l′, klwklrkl (29)

ŝj ′l′ =
∑

(i→ j)∈E

∑
i′∈N

Bi′l′L
′
i′j ′, ijwijsij (30)

The remainder of t is given by

f def
=

∑
(i→ j)∈E

w̃ijrijsij
	 (31)

Therefore, we can find t by

t = f +
1

Z
r s	 − Z

∑
j ′, l′∈N

r̂j ′l′ ŝj ′l′
	 (32)

We provide a proof in App. B.
Now, we can compute r and s using T1 in

O
(
N 3 +N 2(R′ + S′)

)
and their outer product

in O(RS). Additionally, we can compute all
r̂j ′l′ and ŝj ′l′ values in O

(
N 3R′) and O

(
N 3S′),

respectively. If r is R′ sparse, then each r̂j ′l′

is R def
= min(R,N R′) sparse. We can compute

the sum over all r̂j ′l′ ŝj ′l′
	 in O

(
N 2RS

)
time.

Combining these runtimes, we have that T2 runs
in O

(
N 3(R′ + S′) +RS +N 2R S

)
. T2 requires

a total of O
(
RS+N 2(R+S)

)
: O(RS) space for

t, and O
(
N 2(R+S)

)
space for the r̂ and ŝ values.

20Refactoring sum–product expressions via the distributive
property is the cornerstone of dynamic programming; similar
examples in natural language processing include Eisner and
Blatz (2007) and Gildea (2011).

683

We return to our original question: Can we get
the best of Tv2 and Th2? In the case when R is small,
T2 matches the runtime of Tv2 . Furthermore, in the
case when R is large and R′ � R, T2 matches the
runtime of Th2 . Therefore, T2 is able to achieve the
best runtime regardless of the functions r and s.

6 Applications and Prior Work

In this section, we apply our framework to com-
pute a number of important quantities that are
used when working with probabilistic models.
We relate our approach to existing algorithms
in the literature (where applicable), and mention
existing and potential applications. Many of our
quantities were covered in Li and Eisner (2009)
for B-hypergraphs; we extend their results to
spanning trees.

In most applications that involve training a
probabilistic model, the edge weights in the
model will be parameterized in some fashion.
Traditional approaches (Koo et al., 2007; Smith
and Smith, 2007; McDonald et al., 2005a; Druck,
2011) use log-linear parameterizations, whereas
more recent work (Dozat and Manning, 2017;
Liu and Lapata, 2018; Ma and Xia, 2014) use
neural-network parameterizations. Our algorithms
are agnostic as to how edges are parameterized.

6.1 Risk
Risk minimization is a technique for training
structured prediction models (Li and Eisner,
2009; Smith and Eisner, 2006; Stoyanov and
Eisner, 2012). Risk is the expectation of a cost
function r: D �→ R that measures the number of
mistakes in comparison to a target tree d∗. In the
context of dependency parsing, r(d) can be the
labeled or unlabeled attachment score (LAS and
UAS, respectively), both of which are additively
decomposable. The unlabeled case decomposes
as follows:

rij =

{
1
N if (i → j) ∈ d∗

0 otherwise
(33)

where d∗ is the gold tree and N is the length of
the sentence. Note that the use of 1

N ensures that
r(d) will be a score between 0 and 1. We can
then obtain the expected attachment score using
T1, and we can evaluate its gradient in the same
run-time using reverse-mode AD or T2. In this
case, s : D �→ RS is the one-hot representation
of the edges; thus, we have S = N 2. However,

because s is 1-sparse, we have S′ = 1. Addition-
ally, as r does not depend on w, we do not need to
add a first-order term to find the gradient. There-
fore, the runtime for the gradient is also O

(
N 3

)
.

6.2 Shannon Entropy
Entropy is a useful measure of uncertainty, which
has been used a number of times in dependency
parsing (Smith and Eisner, 2007; Druck and Smith,
2009; Ma and Xia, 2014) for semi-supervised
learning. Smith and Eisner (2007) employ entropy
regularization (Grandvalet and Bengio, 2004) to
bootstrap dependency parsing. However, they
give an algorithm for the Shannon entropy,

H(p) def
= Ed[− log p(d)] (34)

that runs in O
(
N 4

)
.21 Recall from §3 that

− log p(d) is additively decomposable; thus, run-
ning T1 with rij =

1
N log Z− logwij computes

H(p) in O
(
N 3

)
. Martins et al.’s (2010) algorithm

for computing H(p) is precisely the same as ours.
However, they do not describe how to compute
its gradient. As with risk, we can find the gradient
of entropy using T2 or using reverse-mode AD.
When using T2, since the gradient of r with
respect to w is not 0, we add the first-order
quantity T1(w,∇r) as in (21). For entropy, we
have that ∇rij =

1
NZ∇Z− 1

wij

−→
1ij .

Experiment. We briefly demonstrate the prac-
tical speed-up over Smith and Eisner’s (2007)
O
(
N 4

)
algorithm. We compare the average run-

time per sentence of five different UD corpora.22

The languages have different average sentence
lengths to demonstrate the extra speed-up gained
when calculating the entropy of longer sentences
(that is, D would be a larger set). Tab. 1 shows
that even for a corpus of short sentences (Finnish),
we achieve a 4 times speed-up. This increases
to 15 times as we move to corpora with longer
sentences (Arabic).

6.3 Kullback–Leibler Divergence
To the best of our knowledge, no algorithms to
compute the Kullback–Leibler (KL) divergence
between two graph-based parsers (nor its gradient)
have been given in the literature. We show how

21Their algorithm calls MTT N times, where the ith call
to MTT multiplies the set of incoming edges to ith non-root
node by their log weight.

22Times were measured using an Intel(R) Core(TM)
i7-7500U processor with 16GB RAM.

684

Language Sentence Entropy Average Runtime (ms) Speed-uplength (nats / word) T1 (Fig. 2) Past Approach

Finnish 9.23 0.6092 0.4623 1.882 4.1
English 12.45 0.8264 0.5102 2.778 5.4
German 17.56 0.8933 0.5583 4.104 7.3
French 24.65 0.8923 0.5635 5.742 10.2
Arabic 36.05 0.7163 0.6220 9.368 15.1

Table 1: Average runtime of computing entropy of dependency parser output on five languages.
We use the weights of the Stanford Dependency Parser (Qi et al., 2018). The past approach is
that of Smith and Eisner (2007).

this can be achieved easily within our framework.
The KL divergence is defined as

KL(p ‖ q) def
=

∑
d∈D

p(d) log
p(d)

q(d)
(35)

This takes a similar form to the Shannon entropy
in (34). We can therefore choose our additively
decomposable function to be rij = log

wij

qij
−

1
N log Z. Running T1 with these weights computes
the KL divergence in O

(
N 3

)
time. To find the

gradient of the KL divergence, we return the sum
of T2(w, r, s) where we chose sij = 1

wij

−→
1ij and

add T1(w,∇r). For the KL divergence, we have
that ∇rij =

1
wij

−→
1ij −∇Z 1

NZ .

6.4 Gradient of the GE Objective
The generalized expectation criterion (McCallum
et al., 2007; Druck et al., 2009) is a method semi-
supervised training using weakly labeled data.
GE fits model parameters by encouraging mod-
els to match certain expectation constraints, such
as marginal-label distributions, on the unlabeled
data. More formally, let f be a feature function
f(d) ∈ RF , and with a target value of f ∗ ∈ RF

that has been specified using domain knowledge.
For example, given an English part-of-speech
tagged sentence, we can provide the following
light supervision to our model: determiners should
attach to the nearest noun on their right. This is an
example of a very precise heuristic for dependency
parsing English that has high precision.

GE then minimizes the following objective,

GE(p, f ∗) =
1

2

∣∣∣∣∣∣Ed[f(d)]− f ∗
∣∣∣∣∣∣2 (36)

which encourages the model parameters to match
the target expectations. Most methods for opti-
mizing (36) will make use of the gradient.

We note that by application of the chain rule,
the gradient of the GE objective is a second-order
quantity, and so we can use T2 to compute it. As
we discussed in §1, the gradient of the GE has
led to confusion in the literature (Druck et al.,
2009; Druck and Smith, 2009; Druck, 2011). The
best runtime bound prior to our work is Druck
et al. (2009)’s O

(
N 4F ′) algorithm. T2 is strictly

better at O
(
N 3+N 2F ′) time.23 Alternatively, as

the GE objective is a scalar, we can compute its
gradient in O

(
N 3+N 2F ′) using reverse-mode

AD. Druck (2011) acknowledges that AD can be
used, but questions its practicality and numerical
accuracy. We hope to dispel this misconception
in the following experiment.

Experiment. We compute the GE objective
and its gradient for almost 1500 sentences of the
English UD Treebank24 (Nivre et al., 2018) using
20 features extracted using the methodology of
Druck et al. (2009). We note that T2 obtains
a speed-up of 9 times over Druck and Smith
(2009)’s strategy of materializing the covariance
matrix (i.e., Th2). Additionally, the gradients from
both approaches are equivalent with an absolute
tolerance of 10−16.

7 Conclusion

We presented a general framework for computing
first- and second-order expectations for addi-
tively decomposable functions. We did this by
exploiting a key connection between gradients and

23We must apply a chain rule in order to use T2. To do
this, we first run T1 to obtain f̄ in O

(
N 3 +N 2F ′). We then

run T2 with the dot product of f and f̄ − f ∗, which has a
dimensionality of 1, and the sparse one-hot vectors as before.
The execution of T2 then takes O

(
N 3

)
, giving us the desired

runtime. Full detail is available in our code.
24We used all sentences in the test set, which were between

5 and 150 words.

685

expectations that allows us to solve our problems
using automatic differentiation. The algorithms
we provide are simple, efficient, and extendable to
many expectations. The automatic differentiation
principle has been applied in other settings, such
as weighted context-free grammars (Eisner, 2016)
and chain-structured models (Vieira et al., 2016).
We hope that this paper will also serve as a tutorial
on how to compute expectations over trees so that
the list of cautionary tales does not grow further.
Particularly, we hope that this will allow for the
KL divergence to be used in semi-supervised
training of dependency parsers. Our aim is for
our approach for computing expectations to be
extended to other structured prediction models.

Acknowledgments

We would like to thank action editor Dan Gildea
and the three anonymous reviewers for their
valuable feedback and suggestions. The first au-
thor is supported by the University of Cambridge
School of Technology Vice-Chancellor’s Schol-
arship as well as by the University of Cambridge
Department of Computer Science and Technol-
ogy’s EPSRC.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke,, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng 2015. TensorFlow:
Large-scale machine learning on heteroge-
neous systems. Software available from
tensorflow.org.

Eduard Bejček, Eva Hajičová, Jan Hajič,
Pavlı́na Jı́nová, Václava Kettnerová, Veronika
Kolářová, Marie Mikulová, Jiřı́ Mı́rovský,
Anna Nedoluzhko, Jarmila Panevová, Lucie

Poláková, Magda Ševčı́ková, Jan Štěpánek,
and Šárka Zikánová. 2013. Prague dependency
treebank 3.0.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. 2018.
JAX: Composable transformations of Python+
NumPy programs.

Adnan Darwiche. 2003. A differential approach
to inference in Bayesian networks. Journal of
the ACM, 50(3).

Timothy Dozat and Christopher D. Manning.
2017. Deep biaffine attention for neural
dependency parsing. In Proceedings of
the International Conference on Learning
Representations.

Gregory Druck. 2011. Generalized Expectation
Criteria for Lightly Supervised Learning. Ph.D.
thesis, University of Massachusetts Amherst.

Gregory Druck, Gideon Mann, and Andrew
McCallum. 2009. Semi-supervised learning of
dependency parsers using generalized expec-
tation criteria. In Proceedings of the Interna-
tional Joint Conference on Natural Language
Processing.

Gregory Druck and David Smith. 2009.
Computing conditional feature covariance in
non-projective tree conditional random fields.
Technical Report UM-CS-2009-060, Univer-
sity of Massachusetts.

Jean-Guillaume Dumas and Victor Pan. 2016.
Fast matrix multiplication and symbolic com-
putation. arXiv preprint arXiv:1612.05766.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial
paper). In Proceedings of the Workshop on
Structured Prediction for NLP@EMNLP 2016,
Austin, TX, USA, November 5, 2016.

Jason Eisner and John Blatz. 2007. Program
transformations for optimization of parsing
algorithms and other weighted logic programs.
In Proceedings of the Conference on Formal
Grammar, pages 45–85, CSLI Publications.

Harold N. Gabow and Robert Endre Tarjan. 1984.
Efficient algorithms for a family of matroid
intersection problems. Journal of Algorithms,
5(1).

686

tensorflow.org

Giorgio Gallo, Giustino Longo, and Stefano
Pallottino. 1993. Directed hypergraphs and
applications. Discrete Applied Mathematics,
42(2).

Daniel Gildea. 2011. Grammar factorization by
tree decomposition. Computational Linguis-
tics, 37(1):231–248.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization.
In Advances in Neural Information Processing
Systems.

Andreas Griewank and Andrea Walther. 2008.
Evaluating Derivatives–Principles and Tech-
niques of Algorithmic Differentiation, second
edition. SIAM.

M. Jerrum and M. Snir. 1982. Some exact com-
plexity results for straight-line computations
over semirings. Journal of the Association for
Computing Machinery, 29(3).

Erich Kaltofen. 1992. On computing determinants
of matrices without divisions. In Papers from
the International Symposium on Symbolic and
Algebraic Computation.

Gustav Kirchhoff. 1847. Über die auflösung der
gleichungen, auf welche man bei der unter-
suchung der linearen vertheilung galvanischer
ströme geführt wird. Annalen der Physik,
148(12).

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser
for tweets. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction
models via the matrix-tree theorem. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning.

Zhifei Li and Jason Eisner. 2009. First- and
second-order expectation semirings with ap-
plications to minimum-risk training on transla-
tion forests. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing.

Yang Liu and Mirella Lapata. 2018. Learning
structured text representations. Transactions
of the Association for Computational Lin-
guistics, 6.

Xuezhe Ma and Eduard Hovy. 2017. Neural
probabilistic model for non-projective MST
parsing. In Proceedings of the International
Joint Conference on Natural Language
Processing.

Xuezhe Ma and Fei Xia. 2014. Unsupervised
dependency parsing with transferring distri-
bution via parallel guidance and entropy
regularization. In Proceedings of the Annual
Meeting of the Association for Computational
Linguistics.

André Martins, Noah Smith, Eric Xing, Pedro
Aguiar, and Mário Figueiredo. 2010. Turbo
parsers: Dependency parsing by approximate
variational inference. In Proceedings of the
2010 Conference on Empirical Methods in
Natural Language Processing, pages 34–44.

Andrew McCallum, Gideon Mann, and Gregory
Druck. 2007. Generalized expectation criteria.
University of Massachusetts.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training
of dependency parsers. In Proceedings of the
Annual Meeting of the Association for Com-
putational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajič. 2005b. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical
Methods in Natural Language Processing.

Ryan McDonald and Giorgio Satta. 2007.
On the complexity of non-projective data-
driven dependency parsing. In Proceedings
of the International Conference on Parsing
Technologies.

István Miklós. 2019. Computational Complex-
ity of Counting and Sampling. CRC Press.
https://www.taylorfrancis.com
/books/9781315266954.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie,

687

https://www.taylorfrancis.com/books/9781315266954
https://www.taylorfrancis.com/books/9781315266954

Masayuki Asahara, Luma Ateyah, Mohammed
Attia, Aitziber Atutxa, Liesbeth Augustinus,
Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu
Mititelu, Victoria Basmov, John Bauer, Sandra
Bellato, Kepa Bengoetxea, Yevgeni Berzak,
Irshad Ahmad Bhat, Riyaz Ahmad Bhat,
Erica Biagetti, Eckhard Bick, Rogier Blokland,
Victoria Bobicev, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane
Boyd, Aljoscha Burchardt, Marie Candito,
Bernard Caron, Gauthier Caron, Gülşen
Cebirŏglu Eryiı̆git, Flavio Massimiliano
Cecchini, Giuseppe G. A. Celano, Slavomı́r
Čéplö, Savas Cetin, Fabricio Chalub, Jinho
Choi, Yongseok Cho, Jayeol Chun, Silvie
Cinková, Aurélie Collomb, Çăgrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth
Davidson, Marie-Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza,
Carly Dickerson, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Tomaž Erjavec, Aline Etienne,
Richárd Farkas, Hector Fernandez Alcalde,
Jennifer Foster, Cláudia Freitas, Katarı́na
Gajdošová, Daniel Galbraith, Marcos Garcia,
Moa Gärdenfors, Sebastian Garza, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökırmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles
Saavedra, Matias Grioni, Normunds Grūzı̄tis,
Bruno Guillaume, Céline Guillot-Barbance,
Nizar Habash, Jan Hajič, Jan Hajič jr., Linh
Hà Mỹ, Na-Rae Han, Kim Harris, Dag
Haug, Barbora Hladká, Jaroslava Hlaváčcová,
Florinel Hociung, Petter Hohle, Jena Hwang,
Radu Ion, Elena Irimia, O. lájı́dé Ishola,
Tomáš Jelı́nek, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşıkara, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Boris
Katz, Tolga Kayadelen, Jessica Kenney,
Václava Kettnerová, Jesse Kirchner, Kamil
Kopacewicz, Natalia Kotsyba, Simon Krek,
Sookyoung Kwak, Veronika Laippala, Lorenzo
Lambertino, Lucia Lam, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev,
John Lee, Phuong Lê Hồng, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk
Ying Li, Josie Li, Keying Li, KyungTae
Lim, Nikola Ljubešić, Olga Loginova,

Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Cătălina Mărănduc, David Mareček, Katrin
Marheinecke, Héctor Martı́nez Alonso, André
Martins, Jan Mašek, Yuji Matsumoto, Ryan
McDonald, Gustavo Mendonça, Niko Miekka,
Margarita Misirpashayeva, Anna Missilä,
Cătălin Mititelu, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno
Romero, Keiko Sophie Mori, Shinsuke Mori,
Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili
Müürisep, Pinkey Nainwani, Juan Ignacio
Navarro Horñiacek, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Luong Nguyễn Thi.,
Huyền Nguyễn Thi.. Minh, Vitaly Nikolaev,
Rattima Nitisaroj, Hanna Nurmi, Stina Ojala,
Adédayo. . Olúòkun, Mai Omura, Petya
Osenova, Robert Östling, Lilja Øvrelid, Niko
Partanen, Elena Pascual, Marco Passarotti,
Agnieszka Patejuk, Guilherme Paulino-Passos,
Siyao Peng, Cenel-Augusto Perez, Guy Perrier,
Slav Petrov, Jussi Piitulainen, Emily Pitler,
Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalniņa, Sophie Prévost, Prokopis
Prokopidis, Adam Przepiórkowski, Tiina
Puolakainen, Sampo Pyysalo, Andriela Rääbis,
Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit
Ravishankar, Livy Real, Siva Reddy, Georg
Rehm, Michael Rießler, Larissa Rinaldi, Laura
Rituma, Luisa Rocha, Mykhailo Romanenko,
Rudolf Rosa, Davide Rovati, Valentin Rosça,
Olga Rudina, Jack Rueter, Shoval Sadde,
Benoı̂t Sagot, Shadi Saleh, Tanja Samardžić,
Stephanie Samson, Manuela Sanguinetti,
Baiba Saulı̄te, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Muh Shohibussirri, Dmitry
Sichinava, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Isabela Soares-Bastos, Carolyn
Spadine, Antonio Stella, Milan Straka, Jana
Strnadová, Alane Suhr, Umut Sulubacak, Zsolt
Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud,
Anna Trukhina, Reut Tsarfaty, Francis Tyers,
Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel

688

van Niekerk, Gertjan van Noord, Viktor Varga,
Eric Villemonte de la Clergerie, Veronika
Vincze, Lars Wallin, Jing Xian Wang,
Jonathan North Washington, Seyi Williams,
Mats Wirén, Tsegay Woldemariam, Tak-sum
Wong, Chunxiao Yan, Marat M. Yavrumyan,
Zhuoran Yu, Zdenčk Žabokrtský, Amir
Zeldes, Daniel Zeman, Manying Zhang, and
Hanzhi Zhu. 2018. Universal dependencies
2.3. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep
learning library. In Advances in Neural In-
formation Processing Systems.

Peng Qi, Timothy Dozat, Yuhao Zhang, and
Christopher D. Manning. 2018. Universal
dependency parsing from scratch. In Proceed-
ings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal
Dependencies.

David A. Smith and Jason Eisner. 2006.
Minimum risk annealing for training log-linear
models. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions,
pages 787–794, Sydney, Australia. Association
for Computational Linguistics.

David A. Smith and Jason Eisner. 2007. Boot-
strapping feature-rich dependency parsers with
entropic priors. In Proceedings of the Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning.

David A. Smith and Noah A. Smith. 2007.
Probabilistic models of nonprojective depen-
dency trees. In Proceedings of the Joint
Conference on Empirical Methods in Natu-
ral Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

G. W. Stewart. 1998. On the adjugate matrix.
Linear Algebra and its Applications, 283(1–3).

Veselin Stoyanov and Jason Eisner. 2012.
Minimum-risk training of approximate CRF-
based NLP systems. In Proceedings of the
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies.

Lucien Tesnière. 1959. Eléments de syntaxe
structurale. Klincksieck.

W. T. Tutte. 1984. Graph Theory. Addison-
Wesley Publishing Company.

Tim Vieira, Ryan Cotterell, and Jason Eisner.
2016. Speed-accuracy tradeoffs in tagging with
variable-order CRFs and structured sparsity. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Tim Vieira and Jason Eisner. 2017. Learning
to prune: Exploring the frontier of fast and
accurate parsing. Transactions of the Associa-
tion for Computational Linguistics, 5:263–278.

Martin J. Wainwright and Michael I. Jordan. 2008.
Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell.
2020. Please mind the root: Decoding
arborescences for dependency parsing. In Pro-
ceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 4809–4819.

A Derivation of ∇2Z

In this section, we will provide a derivation for
the expression of ∇2Z given in (25). We begin by
taking the derivative of ∇Z using (22)

∂2Z

∂wij∂wkl
=

∂

∂wij
Z

∑
(k′, l′)∈Lkl

Bk′l′L
′
k′l′, kl

We solve this by applying the product rule.25

The first term of the product rule is

∂Z

∂wij

∑
(k′, l′)∈Lkl

Bk′l′L
′
k′l′,kl

= Z
∑

(i′, j ′)∈Lij

(k′, l′)∈Lkl

Bi′j ′Bk′l′L
′
i′j ′, ijL

′
k′l′, kl

25Note that we do not have to take the derivative of L′
k′l′, kl

as it is either 1 or −1.

689

The second term of the product rule is

Z
∑

(k′, l′)∈Lkl

∂Bk′l′

∂wij
L′
k′l′, kl

= −Z
∑

(i′, j ′)∈Lij

(k′, l′)∈Lkl

Bi′l′Bk′j ′L
′
i′j ′, ijL

′
k′l′, kl

Summing these together yields (25).

B Proof of T2
In this section, we will prove the decomposition
of t that allows for the efficient factoring used in
T2. First, recall from Proposition 7 that we may
find t by

t =
∑

(i→ j)∈E

[
∂Z

∂wij
wijrijsij

	
]
+

∑
(i→ j)∈E

∑
(k→ l)∈E

[
∂2Z

∂wij∂wkl
wijwklrijskl

	
]

The first summand is the first-order total for
function rijsij

	 (given as f̄ in T2). We can write
a sum over all edges as the sum over pairs of
nodes in N . Similarly, elements in Lij can be
considered as pairs of nodes. Therefore, unless
specified otherwise, we assume all variables in
the base of a summation are scoped to N . Then,
the second summand can then be rewritten∑

i→j∈E

∑
(k→ l)∈E

∂2Z

∂wij∂wkl
wijwklrijskl

	

=
∑

i, j, k, l, i′, j ′, k′, l′

L′
i′j ′, ijZBi′j ′Bk′l′L

′
k′l′, klwijwklrijskl

	

− L′
i′j ′, ijZBi′l′Bk′j ′L

′
k′l′, klwijwklrijskl

	

By distributivity, the first term equals

Z

[∑
i, j, i′, j ′

Bi′j ′L
′
i′j ′, ijwijrij

][∑
k, l, k′, l′

Bk′l′L
′
k′l′, klwklskl

]	

=
1

Z
r s	

By distributivity, the second term equals

Z
∑
j ′, l′

[∑
k′, k, l

Bk′j ′L
′
k′l′, klwklrkl︸ ︷︷ ︸

def
= r̂j′l′

]

[∑
i′, i, j

Bi′, l′L
′
i′j ′, ijwijsij︸ ︷︷ ︸

def
= ŝj′l′

]	

= Z
∑
j ′, l′

r̂j ′l′ ŝj ′l′
	

The above decomposition assumed we sum over
all i′, j′, k′, and l′ and so suggests we can compute
all r̂j ′l′ and ŝj ′l′ in O

(
N 5(R′ + S′)

)
. However, we

can exploit the sparsity of ∇L to improve this.
Specifically, the follow algorithm computes r̂j ′l′

for all j′, l′ ∈ N .

r̂j ′l′ ← 0
for (k→ l) ∈ E � O

(
N 2

)
for (k′ → l′) ∈ Lkl � O(1)

for j′ ∈ N � O(N)
r̂j ′l′ += Bk′l′L

′
k′l′, klwklrkl

Therefore, we can compute all r̂j ′l′ and ŝj ′l′ in
O
(
N 3(R′ + S′)

)
. Each r̂ij is at most O(NR′)

dense, because there are at most O(N) R′-sparse
vectors added to it (by the inner loop). Hence,
r̂ij is O

(
R
)

sparse where R def
= min(R,N R′).

This means that computing the sum of the outer-
products of all r̂ij and ŝij can be done in
O
(
N 2RS

)
. Then, given that we have

t = f +
1

Z
r s− Z

∑
j ′, l′

r̂j ′l′ ŝj ′l′
	

We can find t in

O
(
N 3(R′+S′)+RS+N 2RS

)

690

	Introduction
	Distributions over Trees
	The MatrixTree Theorem
	Dependency parsing and theLaplacian Zoo

	Expectations
	Connecting Gradients and Expectations
	Algorithms
	Derivatives of Z
	Complexity Analysis

	Applications and Prior Work
	Risk
	Shannon Entropy
	KullbackLeibler Divergence
	Gradient of the GE Objective

	Conclusion
	Derivation of 2Z
	Proof of T2

