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Abstract

A key limitation in current datasets for multi-

hop reasoning is that the required steps

for answering the question are mentioned

in it explicitly. In this work, we introduce

STRATEGYQA, a question answering (QA)

benchmark where the required reasoning

steps are implicit in the question, and

should be inferred using a strategy. A

fundamental challenge in this setup is

how to elicit such creative questions from

crowdsourcing workers, while covering a

broad range of potential strategies. We propose

a data collection procedure that combines

term-based priming to inspire annotators,

careful control over the annotator population,

and adversarial filtering for eliminating

reasoning shortcuts. Moreover, we annotate

each question with (1) a decomposition into

reasoning steps for answering it, and (2)

Wikipedia paragraphs that contain the answers

to each step. Overall, STRATEGYQA includes

2,780 examples, each consisting of a strategy

question, its decomposition, and evidence

paragraphs. Analysis shows that questions

in STRATEGYQA are short, topic-diverse, and

cover a wide range of strategies. Empirically,

we show that humans perform well (87%) on

this task, while our best baseline reaches an

accuracy of ∼ 66%.

1 Introduction

Developing models that successfully reason

over multiple parts of their input has attracted

substantial attention recently, leading to the

creation of many multi-step reasoning Question

Answering (QA) benchmarks (Welbl et al., 2018;

Talmor and Berant, 2018; Khashabi et al., 2018;

Yang et al., 2018; Dua et al., 2019; Suhr et al.,

2019).

Commonly, the language of questions in such

benchmarks explicitly describes the process for

deriving the answer. For instance (Figure 1, Q2),

the question Was Aristotle alive when the laptop

was invented? explicitly specifies the required

reasoning steps. However, in real-life questions,

reasoning is often implicit. For example, the

question Did Aristotle use a laptop? (Q1) can

be answered using the same steps, but the

model must infer the strategy for answering the

question–temporal comparison, in this case.

Answering implicit questions poses several

challenges compared to answering their explicit

counterparts. First, retrieving the context is

difficult as there is little overlap between the

question and its context (Figure 1, Q1 and ‘E’).

Moreover, questions tend to be short, lowering

the possibility of the model exploiting shortcuts

in the language of the question. In this work, we

introduce STRATEGYQA, a Boolean QA benchmark

focusing on implicit multi-hop reasoning for

strategy questions, where a strategy is the

ability to infer from a question its atomic sub-

questions. In contrast to previous benchmarks

(Khot et al., 2020a; Yang et al., 2018), questions

in STRATEGYQA are not limited to predefined

decomposition patterns and cover a wide range

of strategies that humans apply when answering

questions.

Eliciting strategy questions using crowdsourc-

ing is non-trivial. First, authoring such questions

requires creativity. Past work often collected

multi-hop questions by showing workers an entire

context, which led to limited creativity and high

lexical overlap between questions and contexts

and consequently to reasoning shortcuts (Khot

et al., 2020a; Yang et al., 2018). An alter-

native approach, applied in Natural Questions
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Figure 1: Questions in STRATEGYQA (Q1) require

implicit decomposition into reasoning steps (D),

for which we annotate supporting evidence from

Wikipedia (E). This is in contrast to multi-step

questions that explicitly specify the reasoning process

(Q2).

(Kwiatkowski et al., 2019) and MS-MARCO

(Nguyen et al., 2016), overcomes this by col-

lecting real user questions. However, can we elicit

creative questions independently of the context

and without access to users?

Second, an important property in STRATEGYQA

is that questions entail diverse strategies. While

the example in Figure 1 necessitates temporal

reasoning, there are many possible strategies

for answering questions (Table 1). We want

a benchmark that exposes a broad range of

strategies. But crowdsourcing workers often use

repetitive patterns, which may limit question

diversity.

To overcome these difficulties, we use the

following techniques in our pipeline for eliciting

strategy questions: (a) we prime crowd workers

with random Wikipedia terms that serve as a

minimal context to inspire their imagination and

increase their creativity; (b) we use a large set of

annotators to increase question diversity, limiting

the number of questions a single annotator can

write; and (c) we continuously train adversarial

models during data collection, slowly increasing

the difficulty in question writing and preventing

recurring patterns (Bartolo et al., 2020).

Beyond the questions, as part of STRATEGYQA,

we annotated: (a) question decompositions: a

sequence of steps sufficient for answering the

question (‘D’ in Figure 1), and (b) evidence

paragraphs: Wikipedia paragraphs that contain

the answer to each decomposition step (‘E’ in

Figure 1). STRATEGYQA is the first QA dataset to

provide decompositions and evidence annotations

for each individual step of the reasoning process.

Our analysis shows that STRATEGYQA

necessitates reasoning on a wide variety of

knowledge domains (physics, geography, etc.)

and logical operations (e.g., number comparison).

Moreover, experiments show that STRATEGYQA

poses a combined challenge of retrieval and

QA, and while humans perform well on these

questions, even strong systems struggle to answer

them.

In summary, the contributions of this work are:

1. Defining strategy questions—a class of

question requiring implicit multi-step

reasoning.

2. STRATEGYQA, the first benchmark for implicit

multi-step QA, that covers a diverse set

of reasoning skills. STRATEGYQA consists

of 2,780 questions, annotated with their

decomposition and per-step evidence.

3. A novel annotation pipeline designed to

elicit quality strategy questions, with minimal

context for priming workers.

The dataset and codebase are publicly available at

https://allenai.org/data/strategyqa.

2 Strategy Questions

2.1 Desiderata

We define strategy questions by characterizing

their desired properties. Some properties, such as

whether the question is answerable, also depend

on the context used for answering the question.

In this work, we assume this context is a corpus

of documents, specifically, Wikipedia, which we

assume provides correct content.

Multi-step Strategy questions are multi-step

questions, that is, they comprise a sequence of

single-step questions. A single-step question is

either (a) a question that can be answered from

a short text fragment in the corpus (e.g., steps

1 and 2 in Figure 1), or (b) a logical operation

over answers from previous steps (e.g., step 3 in

Figure 1). A strategy question should have at least

two steps for deriving the answer. Example multi-

and single- step questions are provided in Table 2.

We define the reasoning process structure in §2.2.

Feasible Questions should be answerable from

paragraphs in the corpus. Specifically, for each
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Question Implicit facts

Can one spot helium? (No) Helium is a gas, Helium is odorless, Helium is

tasteless, Helium has no color.

Would Hades and Osiris hypothetically

compete for real estate in the Underworld?

(Yes)

Hades was the Greek god of death and the

Underworld. Osiris was the Egyptian god of the

Underworld.

Would a monocle be appropriate for a cyclop?

(Yes)

Cyclops have one eye. A monocle helps one eye at

a time.

Should a finished website have lorem ipsum

paragraphs? (No)

Lorem Ipsum paragraphs are meant to be temporary.

Web designers always remove lorem ipsum

paragraphs before launch.

Is it normal to find parsley in multiple sections

of the grocery store? (Yes)

Parsley is available in both fresh and dry forms.

Fresh parsley must be kept cool. Dry parsley is a

shelf stable product.

Table 1: Example strategy questions and the implicit facts needed for answering them.

Question MS IM Explanation

Was Barack Obama born in

the United States? (Yes)

The question explicitly states the required information for

the answer–the birth place of Barack Obama. The answer

is likely to be found in a single text fragment in Wikipedia.

Do cars use drinking water

to power their engine? (No)

The question explicitly states the required information for

the answer–the liquid used to power car engines. The

answer is likely to be found in a single text fragment in

Wikipedia.

Are sharks faster than crabs?

(Yes)

X The question explicitly states the required reasoning steps:

1) How fast are sharks? 2) How fast are crabs? 3) Is #1

faster than #2?

Was Tom Cruise married to

the female star of Inland

Empire? (No)

X The question explicitly states the required reasoning steps:

1) Who is the female star of Inland Empire? 2) Was Tom

Cruise married to #2?

Are more watermelons

grown in Texas than in

Antarctica? (Yes)

X X The answer can be derived through geographical/botanical

reasoning that the climate in Antarctica does not support

growth of watermelons.

Would someone with a

nosebleed benefit from

Coca? (Yes)

X X The answer can be derived through biological reasoning

that Coca constricts blood vessels, and therefore, serves to

stop bleeding.

Table 2: Example questions demonstrating the multi-step (MS) and implicit (IM) properties of strategy

questions.

reasoning step in the sequence, there should be

sufficient evidence from the corpus to answer the

question. For example, the answer to the question

Would a monocle be appropriate for a cyclop? can

be derived from paragraphs stating that cyclops

have one eye and that a monocle is used by one

eye at the time. This information is found in

our corpus, Wikipedia, and thus the question is

feasible. In contrast, the question Does Justin

Beiber own a Zune? is not feasible, because

answering it requires going through Beiber’s

belongings, and this information is unlikely to

be found in Wikipedia.

Implicit A key property distinguishing strategy

questions from prior multi-hop questions is

their implicit nature. In explicit questions, each

step in the reasoning process can be inferred

from the language of the question directly. For

example, in Figure 1, the first two questions

are explicitly stated, one in the main clause

and one in the adverbial clause. Conversely,
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reasoning steps in strategy questions require

going beyond the language of the question. Due

to language variability, a precise definition of

implicit questions based on lexical overlap is

elusive, but a good rule-of-thumb is the following:

If the question decomposition can be written with

a vocabulary limited to words from the questions,

their inflections, and function words, then it is

an explicit question. If new content words must

be introduced to describe the reasoning process,

the question is implicit. Examples for implicit and

explicit questions are in Table 2.

Definite A type of questions we wish to

avoid are non-definitive questions, such as Are

hamburgers considered a sandwich? and Does

chocolate taste better than vanilla? for which

there is no clear answer. We would like to

collect questions where the answer is definitive

or, at least, very likely, based on the corpus.

For example, consider the question Does wood

conduct electricity?. Although it is possible that a

damp wood will conduct electricity, the answer is

generally no.

To summarize, strategy questions are multi-

step questions with implicit reasoning (a strategy)

and a definitive answer that can be reached given

a corpus. We limit ourselves to Boolean yes/no

questions, which limits the output space, but lets us

focus on the complexity of the questions, which is

the key contribution. Example strategy questions

are in Table 1, and examples that demonstrate the

mentioned properties are in Table 2. Next (§2.2),

we describe additional structures annotated during

data collection.

2.2 Decomposing Strategy Questions

Strategy questions involve complex reasoning that

leads to a yes/no answer. To guide and evaluate

the QA process, we annotate every example with

a description of the expected reasoning process.

Prior work used rationales or supporting facts,

namely, text snippets extracted from the context

(DeYoung et al., 2020; Yang et al., 2018;

Kwiatkowski et al., 2019; Khot et al., 2020a) as

evidence for an answer. However, reasoning can

rely on elements that are not explicitly expressed

in the context. Moreover, answering a question

based on relevant context does not imply that

the model performs reasoning properly (Jiang and

Bansal, 2019).

Question Decomposition

Did the Battle

of Peleliu or

the Seven

Days Battles

last longer?

(1) How long did the Battle of

Peleliu last?

(2) How long did the Seven

Days Battle last?

(3) Which is longer of #1, #2?

Can the

President of

Mexico vote

in

New Mexico

primaries?

(1) What is the citizenship

requirement for voting

in New Mexico?

(2) What is the citizenship

requirement of any

President of Mexico?

(3) Is #2 the same as #1?

Can a

microwave

melt a Toyota

Prius battery?

(1) What kind of battery does

a Toyota Prius use?

(2) What type of material is

#1 made out of?

(3) What is the melting point

of #2?

(4) Can a microwave’s

temperature reach at least

#3?

Would it be

common to

find a penguin

in Miami?

(1) Where is a typical

penguin’s natural habitat?

(2) What conditions make #1

suitable for penguins?

(3) Are all of #2 present in

Miami?

Table 3: Explicit (row 1) and strategy (rows 2–4)

question decompositions. We mark words that

are explicit (italic) or implicit in the input (bold).

Inspired by recent work (Wolfson et al.,

2020), we associate every question-answer pair

with a strategy question decomposition. A

decomposition of a question q is a sequence of n

steps 〈s(1), s(2), . . . , s(n)〉 required for computing

the answer to q. Each step s(i) corresponds to

a single-step question and may include special

references, which are placeholders referring

to the result of a previous step s(j). The

last decomposition step (i.e., s(n)) returns the

final answer to the question. Table 3 shows

decomposition examples.

Wolfson et al. (2020) targeted explicit multi-

step questions (first row in Table 3), where the

decomposition is restricted to a small vocabulary

derived almost entirely from the original question.

Conversely, decomposing strategy questions
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Figure 2: Overview of the data collection pipeline. First (CQW, §3.1), a worker is presented with a term (T) and

an expected answer (A) and writes a question (Q) and the facts (F1, F2) required to answer it. Next, the question is

decomposed (SQD, §3.2) into steps (S1, S2) along with Wikipedia page titles (P1, P2) that the worker expects to

find the answer in. Last (EVM, §3.3), decomposition steps are matched with evidence from Wikipedia (E1, E2).

requires using implicit knowledge, and thus

decompositions can include any token that is

needed for describing the implicit reasoning (rows

2–4 in Table 3). This makes the decomposition

task significantly harder for strategy questions.

In this work, we distinguish between two types

of required actions for executing a step. Retrieval,

a step that requires retrieval from the corpus,

and operation, a logical function over answers to

previous steps. In the second row of Table 3, the

first two steps are retrieval steps, and the last step

is an operation. A decomposition step can require

both retrieval and an operation (see last row in

Table 3).

To verify that steps are valid single-step

questions that can be answered using the corpus

(Wikipedia), we collect supporting evidence for

each retrieval step and annotate operation steps.

A supporting evidence is one or more paragraphs

that provide an answer to the retrieval step.

In summary, each example in our dataset

contains a) a strategy question, b) the strategy

question decomposition, and c) supporting

evidence per decomposition step. Collecting

strategy questions and their annotations is the

main challenge of this work, and we turn to this

next.

3 Data Collection Pipeline

Our goal is to establish a procedure for

collecting strategy questions and their annotations

at scale. To this end, we build a multi-step

crowdsourcing1 pipeline designed for encouraging

worker creativity, while preventing biases in the

data.

1We use Amazon Mechanical Turk as our framework.

We break the data collection into three tasks:

question writing (§3.1), question decomposition

(§3.2), and evidence matching (§3.3). In addition,

we implement mechanisms for quality assurance

(§3.4). An overview of the data collection pipeline

is in Figure 2.

3.1 Creative Question Writing (CQW)

Generating natural language annotations through

crowdsourcing (e.g., question generation) is

known to suffer from several shortcomings.

First, when annotators generate many instances,

they use recurring patterns that lead to biases

in the data. (Gururangan et al., 2018; Geva

et al., 2019). Second, when language is generated

conditioned on a long context, such as a paragraph,

annotators use similar language (Kwiatkowski

et al., 2019), leading to high lexical overlap

and hence, inadvertently, to an easier problem.

Moreover, a unique property of our setup is that

we wish to cover a broad and diverse set of

strategies. Thus, we must discourage repeated use

of the same strategy.

We tackle these challenges on multiple fronts.

First, rather than using a long paragraph as

context, we prime workers to write questions

given single terms from Wikipedia, reducing the

overlap with the context to a minimum. Second,

to encourage diversity, we control the population

of annotators, making sure a large number of

annotators contribute to the dataset. Third, we use

model-in-the-loop adversarial annotations (Dua

et al., 2019; Khot et al., 2020a; Bartolo et al., 2020)

to filter our questions, and only accept questions

that fool our models. While some model-in-the-

loop approaches use fixed pre-trained models

to eliminate ‘‘easy’’ questions, we continuously
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update the models during data collection to combat

the use of repeated patterns or strategies.

We now provide a description of the task, and

elaborate on these methods (Figure 2, upper row).

Task description Given a term (e.g., silk), a

description of the term, and an expected answer

(yes or no), the task is to write a strategy question

about the term with the expected answer, and the

facts required to answer the question.

Priming with Wikipedia Terms Writing

strategy questions from scratch is difficult. To

inspire worker creativity, we ask to write questions

about terms they are familiar with or can easily

understand. The terms are titles of ‘‘popular’’2

Wikipedia pages. We provide workers only with a

short description of the given term. Then, workers

use their background knowledge and Web search

skills to form a strategy question.

Controlling the Answer Distribution We ask

workers to write questions where the answer is

set to be ‘yes’ or ‘no’. To balance the answer

distribution, the expected answer is dynamically

sampled inversely proportional to the ratio of ‘yes’

and ‘no’ questions collected until that point.

Model-in-the-Loop Filtering To ensure ques-

tions are challenging and reduce recurring

language and reasoning patterns, questions are

only accepted when verified by two sets of online

solvers. We deploy a set of 5 pre-trained models

(termed PTD) that check if the question is too easy.

If at least 4 out of 5 answer the question correctly,

it is rejected. Second, we use a set of 3 models

(called FNTD) that are continuously fine-tuned on

our collected data and are meant to detect biases

in the current question set. A question is rejected

if all 3 solvers answer it correctly. The solvers are

ROBERTA (Liu et al., 2019) models fine-tuned on

different auxiliary datasets; details in §5.1.

Auxiliary Sub-Task We ask workers to provide

the facts required to answer the question they have

written, for several reasons: 1) it helps workers

frame the question writing task and describe the

reasoning process they have in mind, 2) it helps

reviewing their work, and 3) it provides useful

information for the decomposition step (§3.2).

2We filter pages based on the number of contributors and

the number of backward links from other pages.

3.2 Strategy Question Decomposition (SQD)

Once a question and the corresponding

facts are written, we generate the strategy

question decomposition (Figure 2, middle row).

We annotate decompositions before matching

evidence in order to avoid biases stemming from

seeing the context.

The decomposition strategy for a question is

not always obvious, which can lead to undesirable

explicit decompositions. For example, a possible

explicit decomposition for Q1 (Figure 1) might

be (1) What items did Aristotle use? (2) Is laptop

in #1?; but the first step is not feasible. To guide

the decomposition, we provide workers with the

facts written in the CQW task to show the strategy

of the question author. Evidently, there can be

many valid strategies and the same strategy can

be phrased in multiple ways—the facts only serve

as a soft guidance.

Task Description Given a strategy question, a

yes/no answer, and a set of facts, the task is to

write the steps needed to answer the question.

Auxiliary Sub-task We observe that in some

cases, annotators write explicit decompositions,

which often lead to infeasible steps that cannot be

answered from the corpus. To help workers avoid

explicit decompositions, we ask them to specify,

for each decomposition step, a Wikipedia page

they expect to find the answer in. This encourages

workers to write decomposition steps for which it

is possible to find answers in Wikipedia, and leads

to feasible strategy decompositions, with only a

small overhead (the workers are not required to

read the proposed Wikipedia page).

3.3 Evidence Matching (EVM)

We now have a question and its decomposition.

To ground them in context, we add a third task of

evidence matching (Figure 2, bottom row).

Task Description Given a question and its

decomposition (a list of single-step questions), the

task is to find evidence paragraphs on Wikipedia

for each retrieval step. Operation steps that do not

require retrieval (§2.2) are marked as operation.

Controlling the Matched Context Workers

search for evidence on Wikipedia. We index

Wikipedia3 and provide a search interface where

workers can drag-and-drop paragraphs from the

3We use the Wikipedia Cirrus dump from 11/05/2020.
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results shown on the search interface. This

guarantees that annotators choose paragraphs

we included in our index, at a pre-determined

paragraph-level granularity.

3.4 Data Verification Mechanisms

Task Qualifications For each task, we hold

qualifications that test understanding of the task,

and manually review several examples. Workers

who follow the requirements are granted access

to our tasks. Our qualifications are open to

workers from English-speaking countries who

have high reputation scores. Additionally, the

authors regularly review annotations to give

feedback and prevent noisy annotations.

Real-time Automatic Checks For CQW, we

use heuristics to check question validity, for

example, whether it ends with a question mark,

and that it doesn’t use language that characterizes

explicit multi-hop questions (for instance, having

multiple verbs). For SQD, we check that the

decomposition structure forms a directed acyclic

graph, that is: (i) each decomposition step is

referenced by (at least) one of the following steps,

such that all steps are reachable from the last step;

and (ii) steps don’t form a cycle. In the EVM task,

a warning message is shown when the worker

marks an intermediate step as an operation (an

unlikely scenario).

Inter-task Feedback At each step of the

pipeline, we collect feedback about previous steps.

To verify results from the CQW task, we ask

workers to indicate whether the given answer is

incorrect (in the SQD, EVM tasks), or if the

question is not definitive (in the SQD task) (§2.1).

Similarly, to identify non-feasible questions or

decompositions, we ask workers to indicate if

there is no evidence for a decomposition step (in

the EVM task).

Evidence Verification Task After the EVM

step, each example comprises a question, its

answer, decomposition, and supporting evidence.

To verify that a question can be answered

by executing the decomposition steps against

the matched evidence paragraphs, we construct

an additional evidence verification task (EVV).

In this task, workers are given a question,

its decomposition and matched paragraphs, and

are asked to answer the question in each

decomposition step purely based on the provided

paragraphs. Running EVV on a subset of examples

during data collection helps identify issues in the

pipeline and in worker performance.

4 The STRATEGYQA Dataset

We run our pipeline on 1,799 Wikipedia terms,

allowing a maximum of 5 questions per term. We

update our online fine-tuned solvers (FNTD) every

1K questions. Every question is decomposed once,

and evidence is matched for each decomposition

by 3 different workers. The cost of annotating a

full example is $4.

To encourage diversity in strategies used

in the questions, we recruited new workers

throughout data collection. Moreover, periodic

updates of the online solvers prevent workers

from exploiting shortcuts, since the solvers adapt

to the training distribution. Overall, there were 29

question writers, 19 decomposers, and 54 evidence

matchers participating in the data collection.

We collected 2,835 questions, out of which 55

were marked as having an incorrect answer during

SQD (§3.2). This results in a collection of 2,780

verified strategy questions, for which we create an

annotator-based data split (Geva et al., 2019). We

now describe the dataset statistics (§4.1), analyze

the quality of the examples (§4.2), and explore the

reasoning skills in STRATEGYQA (§4.3).

4.1 Dataset Statistics

We observe (Table 4) that the answer distribution

is roughly balanced (yes/no). Moreover, questions

are short (< 10 words), and the most common

trigram occurs in roughly 1% of the examples.

This indicates that the language of the questions

is both simple and diverse. For comparison,

the average question length in the multi-

hop datasets HOTPOTQA (Yang et al., 2018)

and COMPLEXWEBQUESTIONS (Talmor and Berant,

2018) is 13.7 words and 15.8 words, respectively.

Likewise, the top trigram in these datasets occurs

in 9.2% and 4.8% of their examples, respectively.

More than half of the generated questions are

filtered by our solvers, pointing to the difficulty

of generating good strategy questions. We release

all 3,305 filtered questions as well.

To characterize the reasoning complexity

required to answer questions in STRATEGYQA, we

examine the decomposition length and the number

of evidence paragraphs. Figure 3 and Table 4

(bottom) show the distributions of these properties
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Train Test

# of questions 2290 490

% ‘‘yes’’ questions 46.8% 46.1%

# of unique terms 1333 442

# of unique decomposition

steps

6050 1347

# of unique evidence

paragraphs

9251 2136

# of occurrences of the top

trigram

31 5

# of question writers 23 6

# of filtered questions 2821 484

Avg. question length (words) 9.6 9.8

Avg. decomposition length

(steps)

2.93 2.92

Avg. # of paragraphs per

question

2.33 2.29

Table 4: STRATEGYQA statistics. Filtered questions

were rejected by the solvers (§3.1). The train and

test sets of question writers are disjoint. The ‘‘top

trigram’’ is the most common trigram.

Figure 3: The distributions of decomposition length

(left) and the number of evidence paragraphs (right).

The majority of the questions in STRATEGYQA require

a reasoning process comprised of ≥ 3 steps, of which

about 2 steps involve retrieving external knowledge.

are centered around 3-step decompositions and 2

evidence paragraphs, but a considerable portion

of the dataset requires more steps and paragraphs.

4.2 Data Quality

Do questions in STRATEGYQA require multi-

step implicit reasoning? To assess the quality

of questions, we sampled 100 random examples

from the training set, and had two experts (authors)

independently annotate whether the questions

satisfy the desired properties of strategy questions

(§2.1). We find that most of the examples (81%)

are valid multi-step implicit questions, 82% of

multi-step single-step

implicit 81 1 82

explicit 14.5 3.5 18

95.5 4.5 100

Table 5: Distribution over the implicit and

multi-step properties (§2) in a sample of 100

STRATEGYQA questions, annotated by two

experts (we average the expert decisions).

Most questions are multi-step and implicit.

Annotator agreement is substantial for both

the implicit (κ = 0.73) and multi-step

(κ = 0.65) properties.

questions are implicit, and 95.5% are multi-step

(Table 5).

Do questions in STRATEGYQA have a definitive

answer? We let experts review the answers to

100 random questions, allowing access to the

Web. We then ask them to state for every question

whether they agree or disagree with the provided

answer. We find that the experts agree with the

answer in 94% of the cases, and disagree only

in 2%. For the remaining 4%, either the question

was ambiguous, or the annotators could not find a

definite answer on the Web. Overall, this suggests

that questions in STRATEGYQA have clear answers.

What is the quality of the decompositions?

We randomly sampled 100 decompositions and

asked experts to judge their quality. Experts

judged if the decomposition is explicit or utilizes a

strategy. We find that 83% of the decompositions

validly use a strategy to break down the question.

The remaining 17% decompositions are explicit,

however, in 14% of the cases the original question

is already explicit. Second, experts checked if

the phrasing of the decomposition is ‘‘natural’’,

that is, it reflects the decomposition of a person

that does not already know the answer. We

find that 89% of the decompositions express a

‘‘natural’’ reasoning process, while 11% may

depend on the answer. Last, we asked experts

to indicate any potential logical flaws in the

decomposition, but no such cases occurred in

the sample.

Would different annotators use the same

decomposition strategy? We sample 50

examples, and let two different workers

decompose the questions. Comparing the

decomposition pairs, we find that a) for all pairs,
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the last step returns the same answer, b) in 44

out of 50 pairs, the decomposition pairs follow the

same reasoning path, and c) in the other 6 pairs, the

decompositions either follow a different reasoning

process (5 pairs) or one of the decompositions is

explicit (1 pair). This shows that different workers

usually use the same strategy when decomposing

questions.

Is the evidence for strategy questions in

Wikipedia? Another important property is

whether questions in STRATEGYQA can be

answered based on context from our corpus,

Wikipedia, given that questions are written

independently of the context. To measure evidence

coverage, in the EVM task (§3.3), we provide

workers with a checkbox for every decomposition

step, indicating whether only partial or no

evidence could be found for that step. Recall

that three different workers match evidence for

each decomposition step. We find that 88.3% of

the questions are fully covered: Evidence was

matched for each step by some worker. Moreover,

in 86.9% of the questions, at least one worker

found evidence for all steps. Last, in only 0.5%

of the examples were all three annotators unable

to match evidence for any of the steps. This

suggests that overall, Wikipedia is a good corpus

for questions in STRATEGYQA that were written

independently of the context.

Do matched paragraphs provide evidence?

We assess the quality of matched paragraphs

by analyzing both example-level and step-level

annotations. First, we sample 217 decomposition

steps with their corresponding paragraphs

matched by one of the three workers. We let

3 different crowdworkers decide whether the

paragraphs provide evidence for the answer to

that step. We find that in 93% of the cases, the

majority vote is that the evidence is valid.4

Next, we analyze annotations of the verification

task (§3.4), where workers are asked to answer all

decomposition steps based only on the matched

paragraphs. We find that the workers could answer

sub-questions and derive the correct answer in 82

out of 100 annotations. Moreover, in 6 questions

indeed there was an error in evidence matching,

but another worker who annotated the example

was able to compensate for the error, leading to

88% of the questions where evidence matching

4With moderate annotator agreement of κ = 0.42.

succeeds. In the last 12 cases indeed evidence is

missing, and is possibly absent from Wikipedia.

Lastly, we let experts review the paragraphs

matched by one of the three workers to all the

decomposition steps of a question, for 100 random

questions. We find that for 79 of the questions the

matched paragraphs provide sufficient evidence

for answering the question. For 12 of the 21

questions without sufficient evidence, the experts

indicated they would expect to find evidence in

Wikipedia, and the worker probably could not find

it. For the remaining 9 questions, they estimated

that evidence is probably absent from Wikipedia.

In conclusion, 93% of the paragraphs matched

at the step-level were found to be valid. Moreover,

when considering single-worker annotations,

∼80% of the questions are matched with

paragraphs that provide sufficient evidence for

all retrieval steps. This number increases to

88% when aggregating the annotations of three

workers.

Do different annotators match the same

evidence paragraphs? To compare the

evidence paragraphs matched by different

workers, we check whether for a given

decomposition step, the same paragraph IDs are

retrieved by different annotators. Given two non-

empty sets of paragraph IDs P1,P2, annotated by

two workers, we compute the Jaccard coefficient

J(P1,P2) =
|P1∩P2|
|P1∪P2|

. In addition, we take the sets

of corresponding Wikipedia page IDs T1,T2 for

the matched paragraphs, and compute J(T1, T2).
Note that a score of 1 is given to two identical

sets, while a score of 0 corresponds to sets that are

disjoint. The average similarity score is 0.43 for

paragraphs and 0.69 for pages. This suggests that

evidence for a decomposition step can be found in

more than one paragraph in the same page, or in

different pages.

4.3 Data Diversity

We aim to generate creative and diverse questions.

We now analyze diversity in terms of the required

reasoning skills and question topic.

Reasoning Skills To explore the required

reasoning skills in STRATEGYQA, we sampled

100 examples and let two experts (authors)

discuss and annotate each example with a) the

type of strategy for decomposing the question,

and b) the required reasoning and knowledge
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Strategy Example %

Physical Can human nails carve

a statue out of quartz?

13

Biological Is a platypus immune

from cholera?

11

Historical Were mollusks an

ingredient in the color

purple?

10

Temporal Did the 40th president

of the United States

forward lolcats to

his friends?

10

Definition Are quadrupeds

represented on Chinese

calendar?

8

Cultural Would a compass

attuned to Earth’s

magnetic field be a bad

gift for a Christmas elf?

5

Religious Was Hillary Clinton’s

deputy chief of staff in

2009 baptised?

5

Entertainment Would Garfield enjoy a

trip to Italy?

4

Sports Can Larry King’s

ex-wives form a water

polo team?

4

Table 6: Top strategies in STRATEGYQA and their

frequency in a 100 example subset (accounting

for 70% of the analyzed examples).

skills per decomposition step. We then aggregate

similar labels (e.g., botanical → biological)

and compute the proportion of examples each

strategy/reasoning skill is required for (an example

can have multiple strategy labels).

Table 6 demonstrates the top strategies,

showing that STRATEGYQA contains a broad set

of strategies. Moreover, diversity is apparent

(Figure 4) in terms of both domain-related

reasoning (e.g., biological and technological) and

logical functions (e.g., set inclusion and ‘‘is

member of’’). While the reasoning skills sampled

from questions in STRATEGYQA do not necessarily

reflect their prevalence in a ‘‘natural’’ distribution,

we argue that promoting research on methods

Figure 4: Reasoning skills in STRATEGYQA; each skill is

associated with the proportion of examples it is required

for. Domain-related and logical reasoning skills are

marked in blue and orange (italic), respectively.

Figure 5: The top 15 categories of terms used to prime

workers for question writing and their proportion.

for inferring strategies is an important research

direction.

Question Topics As questions in STRATEGYQA

were triggered by Wikipedia terms, we use the

‘‘instance of’’ Wikipedia property to characterize

the topics of questions.5 Figure 5 shows the

distribution of topic categories in STRATEGYQA.

The distribution shows STRATEGYQA is very

diverse, with the top two categories (‘‘human’’

5It is usually a 1-to-1 mapping from a term to a Wikipedia

category. In cases of 1-to-many, we take the first category.
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and ‘‘taxon’’; i.e., a group of organisms) covering

only a quarter of the data, and a total of 609 topic

categories.

We further compare the diversity of

STRATEGYQA to HOTPOTQA, a multi-hop QA

dataset over Wikipedia paragraphs. To this end,

we sample 739 pairs of evidence paragraphs

associated with a single question in both datasets,

and map the pair of paragraphs to a pair of

Wikipedia categories using the ‘‘instance of’’

property. We find that there are 571 unique

category pairs in STRATEGYQA, but only 356

unique category pairs in HOTPOTQA. Moreover,

the top two category pairs in both of the datasets

(‘‘human-human’’, ‘‘taxon-taxon’’) constitute 8%

and 27% of the cases in STRATEGYQA and

HOTPOTQA, respectively. This demonstrates the

creativity and breadth of category combinations

in STRATEGYQA.

4.4 Human Performance

To see how well humans answer strategy

questions, we sample a subset of 100 questions

from STRATEGYQA and have experts (authors)

answer questions, given access to Wikipedia

articles and an option to reveal the decomposition

for every question. In addition, we ask them to

provide a short explanation for the answer, the

number of searches they conducted to derive the

answer, and to indicate whether they have used

the decomposition. We expect humans to excel at

coming up with strategies for answering questions.

Yet, humans are not necessarily an upper bound

because finding the relevant paragraphs is difficult

and could potentially be performed better by

machines.

Table 7 summarizes the results. Overall,

humans infer the required strategy and answer the

questions with high accuracy. Moreover, the low

number of searches shows that humans leverage

background knowledge, as they can answer some

of the intermediate steps without search. An error

analysis shows that the main reason for failure

(10%) is difficulty to find evidence, and the rest

of the cases (3%) are due to ambiguity in the

question that could lead to the opposite answer.

5 Experimental Evaluation

In this section, we conduct experiments to

answer the following questions: a) How well

do pre-trained language models (LMs) answer

Answer accuracy 87%

Strategy match 86%

Decomposition usage 14%

Average # searches 1.25

Table 7: Human performance in answering

questions. Strategy match is computed by

comparing the explanation provided by the expert

with the decomposition. Decomposition usage

and the number of searches are computed based

on information provided by the expert.

strategy questions? b) Is retrieval of relevant

context helpful? and c) Are decompositions useful

for answering questions that require implicit

knowledge?

5.1 Baseline Models

Answering strategy questions requires external

knowledge that cannot be obtained by training

on STRATEGYQA alone. Therefore, our models and

online solvers (§3.1) are based on pre-trained

LMs, fine-tuned on auxiliary datasets that require

reasoning. Specifically, in all models we fine-tune

ROBERTA (Liu et al., 2019) on a subset of:

• BOOLQ (Clark et al., 2019): A dataset for

Boolean question answering.

• MNLI (Williams et al., 2018): A large natural

language inference (NLI) dataset. The task

is to predict if a textual premise entails,

contradicts, or is neutral with respect to the

hypothesis.

• TWENTY QUESTIONS (20Q): A collection of

50K short commonsense Boolean questions.6

• DROP (Dua et al., 2019): A large dataset for

numerical reasoning over paragraphs.

Models are trained in two configurations:

• No context : The model is fed with the

question only, and outputs a binary prediction

using the special CLS token.

• With context : We use BM25 (Robertson

et al., 1995) to retrieve context from our

corpus, while removing stop words from all

queries. We examine two retrieval methods:

a) question-based retrieval: by using the

question as a query and taking the top

6https://github.com/allenai/twentyquestions.

356

https://github.com/allenai/twentyquestions


k = 10 results, and b) decomposition-

based retrieval: by initiating a separate query

for each (gold or predicted) decomposition

step and concatenating the top k = 10
results of all steps (sorted by retrieval

score). In both cases, the model is fed

with the question concatenated to the

retrieved context, truncated to 512 tokens

(the maximum input length of ROBERTA),

and outputs a binary prediction.

Predicting Decompositions We train a seq-

to-seq model, termed BARTDECOMP , that, given a

question, generates its decomposition token-by-

token. Specifically, we fine-tune BART (Lewis

et al., 2020) on STRATEGYQA decompositions.

Baseline Models As our base model, we train

a model as follows: We take a ROBERTA (Liu

et al., 2019) model and fine-tune it on DROP, 20Q

and BOOLQ (in this order). The model is trained

on DROP with multiple output heads, as in Segal

et al. (2020), which are then replaced with a single

Boolean output.7 We call this model ROBERTA*.

We use ROBERTA* and ROBERTA to train

the following models on STRATEGYQA: without

context (ROBERTA*∅), with question-based

retrieval (ROBERTA*IR-Q, ROBERTAIR-Q), and

with predicted decomposition-based retrieval

(ROBERTA*IR-D).

We also present four oracle models:

• ROBERTA*ORA-P: Uses the gold paragraphs

(no retrieval).

• ROBERTA*IR-ORA-D: Performs retrieval with

the gold decomposition.

• ROBERTA*
last-step
ORA-P-D: Exploits both the gold

decomposition and the gold paragraphs. We

fine-tune ROBERTA on BOOLQ and SQUAD

(Rajpurkar et al., 2016) to obtain a model

that can answer single-step questions. We

then run this model on STRATEGYQA to obtain

answers for all decomposition sub-questions,

and replace all placeholder references with

7For brevity, exact details on model training and

hyper-parameters will be released as part of our codebase.

Model Solver group(s)

ROBERTA∅(20Q) PTD, FNTD

ROBERTA∅(20Q+BOOLQ) PTD, FNTD

ROBERTA∅(BOOLQ) PTD, FNTD

ROBERTAIR-Q(BOOLQ) PTD

ROBERTAIR-Q(MNLI+BOOLQ) PTD

Table 8: QA models used as online solvers during

data collection (§3.1). Each model was fine-tuned

on the datasets mentioned in its name.

Model Accuracy Recall@10

MAJORITY 53.9 -

ROBERTA*∅ 63.6 ± 1.3 -

ROBERTAIR-Q 53.6 ± 1.0 0.174

ROBERTA*IR-Q 63.6 ± 1.0 0.174

ROBERTA*IR-D 61.7 ± 2.2 0.195

ROBERTA*IR-ORA-D 62.0 ± 1.3 0.282

ROBERTA*ORA-P 70.7 ± 0.6 -

ROBERTA*
last-step-raw
ORA-P-D 65.2 ± 1.4 -

ROBERTA*
last-step
ORA-P-D 72.0 ± 1.0 -

Table 9: QA accuracy (with standard deviation

across 7 experiments), and retrieval performance,

measured by Recall@10, of baseline models on

the test set.

the predicted answers. Last, we fine-tune

ROBERTA* to answer the last decomposition

step of STRATEGYQA, for which we have

supervision.

• ROBERTA*
last-step-raw
ORA-P-D : ROBERTA* that is

fine-tuned to predict the answer from

the gold paragraphs and the last step of

the gold decomposition, without replacing

placeholder references.

Online Solvers For the solvers integrated in the

data collection process (§3.1), we use three no-

context models and two question-based retrieval

models. The solvers are listed in Table 8.

5.2 Results

Strategy QA performance Table 9 summarizes

the results of all models (§5.1). ROBERTA*IR-Q

substantially outperforms ROBERTAIR-Q, indicat-

ing that fine-tuning on related auxiliary datasets

before STRATEGYQA is crucial. Hence, we focus

on ROBERTA* for all other results and analysis.

Strategy questions pose a combined challenge

of retrieving the relevant context, and deriving

the answer based on that context. Training
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without context shows a large accuracy gain of

53.9 → 63.6 over the majority baseline. This

is far from human performance, but shows that

some questions can be answered by a large LM

fine-tuned on related datasets without retrieval.

On the other end, training with gold paragraphs

raises performance to 70.7. This shows that

high-quality retrieval lets the model effectively

reason over the given paragraphs. Last, using

both gold decompositions and retrieval further

increases performance to 72.0, showing the utility

of decompositions.

Focusing on retrieval-based methods, we

observe that question-based retrieval reaches

an accuracy of 63.6 and retrieval with gold

decompositions results in an accuracy of 62.0. This

shows that the quality of retrieval even with gold

decompositions is not high enough to improve the

63.6 accuracy obtained by ROBERTA*∅, a model

that uses no context. Retrieval with predicted

decompositions results in an even lower accuracy

of 61.7. We also analyze predicted decompositions

below.

Retrieval Evaluation A question decomposi-

tion describes the reasoning steps for answering

the question. Therefore, using the decomposi-

tion for retrieval may help obtain the relevant

context and improve performance. To test this,

we directly compare performance of question-

and decomposition-based retrieval with respect

to the annotated gold paragraphs. We compute

Recall@10, that is, the fraction of the gold para-

graphs retrieved in the top-10 results of each

method. Since there are 3 annotations per ques-

tion, we compute Recall@10 for each annotation

and take the maximum as the final score. For a fair

comparison, in decomposition-based retrieval, we

use the top-10 results across all steps.

Results (Table 9) show that retrieval per-

formance is low, partially explaining why

retrieval models do not improve performance

compared to ROBERTA*∅, and demonstrating

the retrieval challenge in our setup. Gold

decomposition-based retrieval substantially out-

performs question-based retrieval, showing that

using the decomposition for retrieval is a promis-

ing direction for answering multi-step questions.

Still, predicted decomposition-based retrieval

does not improve retrieval compared to question-

based retrieval, showing better decomposition

models are needed.

To understand the low retrieval scores, we

analyzed the query results of 50 random

decomposition steps. Most failure cases are

due to the shallow pattern matching done by

BM25—for example, failure to match synonyms.

This shows that indeed there is little word

overlap between decomposition steps and the

evidence, as intended by our pipeline design. In

other examples, either a key question entity was

missing because it was represented by a reference

token, or the decomposition step had complex

language, leading to failed retrieval. This analysis

suggests that advances in neural retrieval might

be beneficial for STRATEGYQA.

Human Retrieval Performance To quantify

human performance in finding gold paragraphs,

we ask experts to find evidence paragraphs for

100 random questions. For half of the questions

we also provide decomposition. We observe

average Recall@10 of 0.586 and 0.513 with

and without the decomposition, respectively. This

shows that humans significantly outperform our

IR baselines. However, humans are still far from

covering the gold paragraphs, since there are

multiple valid evidence paragraphs (§4.2), and

retrieval can be difficult even for humans. Lastly,

using decompositions improves human retrieval,

showing decompositions indeed are useful for

finding evidence.

Predicted Decompositions Analysis shows that

BARTDECOMP’s decompositions are grammatical

and well-structured. Interestingly, the model

generates strategies, but often applies them to

questions incorrectly. For example, the question

Can a lifeboat rescue people in the Hooke Sea? is

decomposed to 1) What is the maximum depth of

the Hooke Sea? 2) How deep can a lifeboat dive?

3) Is #2 greater than or equal to #1?. While the

decomposition is well-structured, it uses a wrong

strategy (lifeboats do not dive).

6 Related Work

Prior work has typically let annotators write

questions based on an entire context (Khot et al.,

2020a; Yang et al., 2018; Dua et al., 2019;

Mihaylov et al., 2018; Khashabi et al., 2018).

In this work, we prime annotators with minimal

information (few tokens) and let them use their
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imagination and own wording to create questions.

A related priming method was recently proposed

by Clark et al. (2020), who used the first 100

characters of a Wikipedia page.

Among multi-hop reasoning datasets, our

dataset stands out in that it requires implicit

decompositions. Two recent datasets (Khot et al.,

2020a; Mihaylov et al., 2018) have considered

questions requiring implicit facts. However, they

are limited to specific domain strategies, while in

our work we seek diversity in this aspect.

Most multi-hop reasoning datasets do not fully

annotate question decomposition (Yang et al.,

2018; Khot et al., 2020a; Mihaylov et al., 2018).

This issue has prompted recent work to create

question decompositions for existing datasets

(Wolfson et al., 2020), and to train models that

generate question decompositions (Perez et al.,

2020; Khot et al., 2020b; Min et al., 2019). In

this work, we annotate question decompositions

as part of the data collection.

7 Conclusion

We present STRATEGYQA, the first dataset of

implicit multi-step questions requiring a wide-

range of reasoning skills. To build STRATEGYQA,

we introduced a novel annotation pipeline for

eliciting creative questions that use simple

language, but cover a challenging range of

diverse strategies. Questions in STRATEGYQA are

annotated with decomposition into reasoning steps

and evidence paragraphs, to guide the ongoing

research towards addressing implicit multi-hop

reasoning.
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