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Abstract

We present InferBert, a method to enhance
transformer-based inference models with rele-
vant relational knowledge. Our approach fa-
cilitates learning generic inference patterns re-
quiring relational knowledge (e.g. inferences
related to hypernymy) during training, while
injecting on-demand the relevant relational
facts (e.g. pangolin is an animal) at test time.
We apply InferBERT to the NLI task over a di-
verse set of inference types (hypernymy, loca-
tion, color, and country of origin), for which
we collected challenge datasets. In this set-
ting, InferBert succeeds to learn general infer-
ence patterns, from a relatively small number
of training instances, while not hurting perfor-
mance on the original NLI data and substan-
tially outperforming prior knowledge enhance-
ment models on the challenge data. It further
applies its inferences successfully at test time
to previously unobserved entities. InferBert is
computationally more efficient than most prior
methods, in terms of number of parameters,
memory consumption and training time.

1 Introduction

Transformer-based pre-trained language models
(LMs), such as BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018) have recently achieved
human-level performance on standard natural lan-
guage inference (NLI) benchmarks (Wang et al.,
2019). However, the performance on this complex
task is achieved in part thanks to large training sets
that facilitate learning of dataset-specific biases and
correlations, and thanks to the similar distributions
between the training and test sets, that rewards
such models (Poliak et al., 2018; Gururangan et al.,
2018). This contrasts with humans, who can learn a
generalized solution from fewer examples (Linzen,
2020). Indeed, NLI models often fail on exam-
ples involving various linguistic phenomena such

as co-hyponymy (Glockner et al., 2018) and nega-
tion (Naik et al., 2018), which they are expected to
acquire indirectly from the NLI training set.

Prior work proposed to provide (“inoculate”)
NLI models with a small number of phenomenon-
specific training examples in order to teach the
model to address them (Liu et al., 2019a). However,
Rozen et al. (2019) showed that when the distribu-
tions of the training and test sets differ with respect
to syntactic and lexical properties, the performance
of such inoculated models drops, concluding that
they do not learn a generalized notion of the phe-
nomenon. In this paper we are motivated by the
following question: how can we facilitate learning
of generalized inference patterns, with respect to
a given linguistic phenomenon, from a relatively
small number of examples?

Ideally, we would like an NLI model to learn
inference patterns detached from their original con-
text, and to be able to apply them in new contexts
involving different concrete facts. For example, an
NLI model may learn that a word entails its hyper-
nym in upward monotone sentences from training
examples such as: Alice ate a banana→ Alice ate
a fruit. Then, to be able to apply this rule to a test
instance with the premise Bob saw a pangolin and
the hypothesis Bob saw an animal, it needs to know
that animal is a hypernym of pangolin. Training a
model on every possible hyponym-hypernym pair
is incredibly inefficient and requires re-training a
model whenever the vocabulary expands. Instead,
we propose to decouple the learning of generic in-
ference patterns from that of the factual knowledge.

To that end, we develop InferBert, a method to
enhance language models with relational knowl-
edge from a knowledge base (KB). In contrast to
recent knowledge-enhancement approaches such
as KnowBert (Peters et al., 2019) and Ernie (Zhang
et al., 2019) that incorporate into LMs knowledge
about individual entities (e.g. pangolin), we inform
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the LM of the relation between a pair of entities that
are involved in an inference instance, e.g. Hyper-
nym(pangolin) = animal. This approach is agnostic
to the identity of the specific entities, allowing mod-
els to learn inference patterns separately from the
individual facts involved in particular instances.

To evaluate the ability of NLI models to learn
inference patterns for specific linguistic phenom-
ena, we follow the evaluation approach taken in
previous work (Naik et al., 2018; Liu et al., 2019a;
Richardson et al., 2020), which demonstrated the
learning ability of models over a few chosen infer-
ence phenomena. We focus on 4 target semantic
relations: hypernymy, location, country of origin,
and color, for which we create challenge sets1 (see
Table 1 for examples). We construct the challenge
sets such that there is no overlap between the train-
ing, validation, and test sets with respect to the tar-
get entities (e.g. pangolin), to allow testing whether
the model had learned an inference phenomenon
in a generic manner, rather than performing lex-
ical memorization. The training sets are deliber-
ately small (660-960 instances), aiming to chal-
lenge models with learning from a relatively small
number of examples per semantic phenomenon.

Our results confirm that InferBert manages to
generalize inference patterns to new facts, sub-
stantially improving performance on the challenge
sets upon the knowledge-enhanced baselines (up to
+17.5 points in accuracy from the next best model),
all while maintaining the performance on the origi-
nal MultiNLI test set (Williams et al., 2018).

Moreover, InferBert not only learns from a small
number of training examples (which are insuffi-
cient for the baselines), it is also considerably more
efficient than prior knowledge-enhanced LMs in
terms of training time, resources, and memory. In-
ferBert doesn’t require LM pre-training, which is
a computationally expensive process, and doesn’t
embed entities, only a small number of relations,
substantially reducing the number of parameters
with respect to some of the prior work (e.g. only
23% of KnowBert’s parameters).

Finally, while InferBert is demonstrated on NLI,
it is a general method and may benefit additional
tasks such as question answering and co-reference
resolution which may rely on relational knowledge
between words in given instances.

1All datasets and resources are available at
https://github.com/ohadrozen/inferbert.

Hypernymy
P: He killed another jay this season.
H: He took life away from a bird this season.
Label: Entailment
Relation: Hypernym(jay)= bird

Location
P: It is not located in Baytown.
H: It is located in all cities in Texas except for

one.
Label: Neutral
Relation: LocationOf(Baytown)= Texas

Color
P: Tommy ordered tea and apricots.
H: Tommy did not order any dark brown fruits.
Label: Neutral
Relation: none*

Country of Origin
P: Viesgo deal, from beginning to end, took less

than five weeks.
H: The minimum amount of time it has ever

taken a Spanish company to close a deal is
six weeks.

Label: Contradiction
Relation: CountryOfOrigin(Viesgo) = Spain

Table 1: An example from each phenomenon-specific
challenge set. *By design, for half of the examples
there is no corresponding relation (See Section 3.2).

2 Related Work

2.1 Probing NLI Models

In natural language inference (NLI; Bowman et al.,
2015), originally referred as recognizing textual
entailment (RTE; Dagan et al., 2013), the goal is to
determine whether a first text unit (premise) entails,
contradicts, or is neutral with respect to a second
text (hypothesis). The decision involves various
syntactic and semantic phenomena, including lexi-
cal and world knowledge, coreference resolution,
geographical reasoning, etc. (Clark, 2018). While
neural models have achieved human performance
on the GLUE and SuperGLUE benchmarks (Wang
et al., 2018, 2019), the success of such models
is often due to learning non-generalizable dataset-
specific patterns (Poliak et al., 2018; Gururangan
et al., 2018; McCoy et al., 2019).

Various challenge sets were developed to test
the capabilities of state-of-the-art NLI models in
addressing specific semantic phenomena. For ex-
ample, Glockner et al. (2018) showed that substi-
tuting a single term in the premise with a simi-
lar but mutually-exclusive term (e.g. guitar and
piano) confused NLI models that predicted en-
tailment. Naik et al. (2018) further showed that
NLI models perform poorly on examples involving
antonyms, numerical reasoning, and distractions
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such as high lexical overlap and spelling errors.
NLI models also struggled with examples involving
logic and monotonicity (Richardson et al., 2020;
Yanaka et al., 2020; Geiger et al., 2020).2 Finally,
the GLUE benchmark dedicated a small set for
diagnosing models’ strengths and weaknesses on
various phenomena (Wang et al., 2018).

Liu et al. (2019a) suggested that NLI models
may perform poorly on specific phenomena they
haven’t observed enough during training, and pro-
posed to “inoculate” LM-based models against
challenge sets by fine-tuning them on a small
number of phenomenon-specific training instances.
Rozen et al. (2019) showed that the inoculation
does not necessarily teach the model a general-
ized notion of the phenomenon of interest, and that
when the challenge test set differs from the cor-
responding training sets in terms of, for example,
syntactic complexity, the performance of the inocu-
lated models drops. Richardson et al. (2020) high-
lighted the sensitivity of the inoculation training to
hyper-parameters, that may result in “catastrophic
forgetting”, i.e. a substantial drop in performance
on the original NLI task.

2.2 Knowledge-Enhanced Models

There is plenty of work on incorporating knowl-
edge from KBs into neural models. Knowledge-
based Inference Model (KIM; Chen et al., 2018)
incorporated semantic relations from WordNet into
an RNN-based NLI model, gaining a modest im-
provement on a challenge set. The incorporation at
various components of the original NLI model is
not straightforward to adapt to other models.

KnowBert (Peters et al., 2019) incorporated
knowledge from Wikipedia and WordNet into a
BERT model through entity embeddings, improv-
ing performance on relation extraction and entity
typing. Ernie (Zhang et al., 2019) and K-Adapter
(Wang et al., 2020a) both targeted similar down-
stream tasks. Ernie embeds entities and relations
from a KB, and alters the BERT pre-training to pre-
dict entities in addition to words. K-Adapter does
not re-train the LM weights, but takes a somewhat
more efficient approach of training an additional
neural component (“adapter”) for each knowledge
type as a plug-in for the LM. KEPLER (Wang et al.,
2020b) learns entity embeddings from their textual
descriptions. These entity-centric methods require

2The “Countries/Travel” genre in Richardson et al. (2020)
is similar to our location phenomenon described in Section 3.1.

pre-training the original LM or its plugins on the
KB, while increasing training time and cost and
storing the entity embeddings (increasing memory
cost). In addition, by design, the knowledge can
capture only entities seen during pre-training, thus
requiring repeating the pre-training process each
time the original input KB gets updated.

Finally, K-BERT (Liu et al., 2019b) is most sim-
ilar to our model, incorporating knowledge regard-
ing individual entities that occur in the input in-
stance. Like our model, knowledge is augmented,
per-instance, at inference time. Unlike our model,
knowledge is augmented per entity, rather than per
a relation between a pair of entities appearing in
the inference instance. Further, K-BERT injects
the KB knowledge in a textual form, which aug-
ments the input instance, while our model embeds
directly structural knowledge. As we show in Sec-
tion 6.1, this encoding is less effective than our
structured incorporation method (Section 4.2), lead-
ing to weaker learning ability of different inference
phenomena that require external knowledge.

3 Data

We focus on four types of semantic relations (Sec-
tion 3.1), each corresponding to a set of facts in the
form of semantic relation triplets. An NLI model
may learn various inference patterns pertaining to
the semantic relation type, such as “a word entails
its hypernym in an upward monotone sentence”.

To evaluate the models’ ability to learn and apply
these rules, we create an NLI challenge set for each
semantic relation, that we derive from MultiNLI
(Section 3.2). As usual, the goal is to determine
the label of a premise-hypothesis pair (p, h) among
entailment, neutral, and contradiction. For a given
semantic relation, each instance in the correspond-
ing challenge set requires applying an inference
pattern associated with the semantic relation in or-
der to determine the correct label (possibly along
with other required inferences).

3.1 Semantic Relations

Hypernymy. An NLI system might learn that a
term generally entails its generalization, for exam-
ple “I ate an apple” entails “I ate a fruit”.3 The
relevant facts for this semantic relation are pairs
of (x, y) terms that appear in a direct or indirect

3The rule applies to upward monotone premises. Down-
ward monotone premises (which typically include a negated
predicate or certain quantifiers) reverse the inference direction.
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KB entry: Emporis CountryOfOrigin (property): Germany

Extracted Premise: These forms will be posted on Apple website.
Premise: These forms will be posted on Emporis website.

Manually created hypotheses:
(1) A company in Germany will make the forms available on its website. (Entailment)
(2) The forms cannot be accessed from the website of any German company. (Contradiction)
(3) Several German websites will feature the forms. (Neutral)

Hypotheses with property replacement:
(4) A company in France will make the forms available on its website. (Neutral)
(5) The forms cannot be accessed from the website of any French company. (Neutral)
(6) Several French websites will feature the forms. (Neutral)

Table 2: Example of premise and hypotheses generation from a MultiNLI premise. Hypotheses (1)-(3) were created
by crowdworkers for the altered premise, based on the Wikidata fact that Emporis’ country of origin is Germany.
Hypotheses (4)-(6) were created by replacing German with another country of origin (France) and annotated for
entailment.

Inference Type Train Dev Test All

Hypernymy 960 114 300 1374
Location 660 114 230 1004
Color 840 108 318 1266
Country of Origin 834 114 252 1200

Total 3294 450 1100 4844

Table 3: Statistics of our challenge set.

hypernymy relation in WordNet (Miller, 1995).4

Location. A model may learn that in some con-
texts, substituting a city name by the state in which
it is located yields a factually correct generaliza-
tion (e.g. “John visited Chicago” entails “John
visited Illinois”). We retrieve entities from Wiki-
data (Vrandečić and Krötzsch, 2014), focusing on
US locations using the state property.

Color. We retrieve entities from Wikidata and
their color property. We substitute an entity (e.g.
banana) for a generalization involving its color and
hypernym (e.g. yellow fruit).

Country of Origin. We retrieve knowledge from
Wikidata about companies and their country of ori-
gin, using the country property. We substitute
an entity (e.g. Apple) for a generalization involving
its country of origin (e.g. American organization).

3.2 Challenge Sets

Some of the semantic relations we focused on are
very rare in the original MultiNLI dataset, e.g. by

4Excluding instance hypernyms.

heuristically searching for instances that exhibit
these phenomena we found that less than 0.05% of
the data contained locations. We therefore create
challenge sets focusing on each semantic relation.
In order to create challenge examples in a simi-
lar style and domain, we base our examples on
premises in MultiNLI.

For a given semantic relation r, we extract
premises in the MultiNLI training set that contain
an entity Itail0 whose type corresponds to the re-
lation argument. For example, for the country of
origin semantic relation we extract premises con-
taining company names (e.g. Itail0 = Apple) in our
data. For a given premise p, we modify it by re-
placing Itail0 by a random entity Itail1 of the same
type in the KB (e.g. Emporis), and manually check
that the sentence still makes sense. We specifically
select replacement entities Itail1 such that there ex-
ists a KB assertion R(Itail1 ) = Ihead1 . For example,
CountryOfOrigin(Emporis) = Germany.

From each premise p we created 6 hypotheses
as follows (See Table 2). Similarly to Williams
et al. (2018), we showed p to crowdsourcing work-
ers and asked them to generate a hypothesis for
each label (entailment, neutral and contradiction).
Our instructions further specified that the hypoth-
esis must include Ihead1 (e.g. Germany) but not
Itail1 (e.g. Emporis). Examples (1)-(3) in Table 2
demonstrate the instances created at this step.

After creating 3 hypotheses, all of which include
Ihead1 by design, we replaced Ihead1 with Îhead1 ,
where Îhead1 6= Ihead1 is a random value of the
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Figure 1: Relation embedding example. After ex-
tracting the related entity pairs for the relations
r1 =hypernymy and r2 =location, we place the embed-
ding vectors in R in the indices of the relevant tokens
of the entities. For example, we place ehead2 in the in-
dex of Texas as this entity is the head in the relation
location.

same property R (e.g. France). We then asked an
annotator to label the new hypotheses with respect
to p (Table 2, instances (4)-(6)).

The annotation task was performed using Ama-
zon Mechanical Turk. To ensure the quality of the
work, we required that workers had a minimum
of 96% acceptance rate for prior HITs and pass
a qualification test. We paid $1 for each premise.
The test set was further validated by two trained an-
notators. The first annotator re-labeled an example,
and, in case of disagreement with the original label
(11.9% of the annotations), the second annotator
also labeled the example, and the majority vote5

was used.

Data Split. The statistics of the challenge sets are
shown in Table 3. We split the datasets to 68%-9%-
23% train, dev and test, respectively. The datasets
are split lexically, i.e. such that head and tail enti-
ties in one set do not appear in the other sets. That
way, a good performance on the test set indicates
that the model learned a generalized notion of an
inference rule rather than specific facts, and that it
is capable of applying the rule when provided with
the necessary yet not previously observed facts.

4 InferBert

We present InferBert, a BERT-based NLI model
with a relational knowledge enhancement compo-

5All three annotations were given an equal weight.

nent. The key idea in InferBert is incorporating into
the model relational knowledge (facts) from exter-
nal knowledge resources regarding entities men-
tioned in the input instance. We adopt an inclu-
sive definition of entity, which can refer either to
a named entity (such as entries in Wikidata) or a
common noun (such as WordNet lemmas).

As we discussed in Section 2.2, most prior work
injects external knowledge into models through an
entity’s knowledge base embedding, which cap-
tures in a soft way its relationships with other KB
entities. The limitation of such methods is the cou-
pling of an inference pattern with the related factual
knowledge. Suppose that a model observed during
training that “The boy ate an apple” entails “The
boy ate a fruit”. The test example with the premise
“The woman has a dog” and the hypothesis “The
woman has a pet” is represented differently from
the training example due to the distance between
the entities (e.g. apple and dog) in the KB. Such
a model is likely to fail on examples consisting of
unseen entities.

We propose to decouple learning the inference
pattern from the facts by directly embedding the se-
mantic relations between entities in the text. In the
above example, InferBert can access the KB during
both the training and inference phases, and add an
indicator that fruit=Hypernym(apple). Af-
ter observing enough training examples with the
hypernym indicator, the model can learn a general
rule like “a word entails its hypernym in certain
common context”. During inference, the model
can apply this rule to unseen entities in the KB.

We first describe the KnowBert model (Peters
et al., 2019, Section 4.1) which is the basis for In-
ferBert. Next, we describe how we replace Know-
Bert’s Knowledge Attention and Recontextualiza-
tion component (KAR) by our Simplified KAR
(S-KAR, Section 4.2).

4.1 KnowBert’s KAR

KnowBert is a method to incorporate knowledge
from KBs into transformer-based language mod-
els, which was specifically applied to BERTBASE.
For a given input X = (x1, ..., xN ) of N word
pieces, the BERT contextual embeddings are
computed as Hi = TransformerBlock(Hi−1)
where Hi ∈ RN×D is the i-th hidden
layer (i ∈ {1, ..., L}, and L = 12 lay-
ers) and D is BERT’s embedding dimension.
TransformerBlock operates over a query, key, and
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value, and is defined as TransformerBlock(Hi) =
MLP(MultiHeadAttn(Hi,Hi,Hi)).

The Knowledge Attention and Recontextualiza-
tion component (KAR) is added between BERT
layers i and i− 1, changing the embedding mech-
anism to: H′i = KAR(Hi, C), which is computed
as follows:

Retrieval: The KB entity candidate selector pro-
vides a list of C potential entity links for X , along
with their mention spans in X .

Disambiguation: Each mention span is repre-
sented by applying self-attention pooling over all
word pieces in the span (after projection to the
entity embedding dimension E), yielding S ∈
RC×E . To select the relevant entities in the context,
mention-span self-attention is applied to compute
Se = TransformerBlock(S), followed by com-
puting candidate entity scores ψ based on Se.

Knowledge incorporation: The entity embed-
dings are averaged to ẽ based on their weight ψ,
and are used to enhance the mention-span represen-
tations, yielding S′e = Se + ẽ.

Recontextualization: The BERT word piece
representations are recontextualized using a modi-
fied transformer layer in which S′e is used as both
the key and value for MultiHeadAttn. The result-
ing vectors H′i are projected back into the BERT
dimension D.

4.2 S-KAR

The main component of InferBert is the Simpli-
fied Knowledge Attention and Recontextualization
component (S-KAR). Rather than enhancing BERT
with KB entity embeddings, InferBert embeds the
KB relations.

Similarly to KAR, S-KAR replaces BERT’s em-
bedding mechanism between two particular lay-
ers, computing: H′i = S-KAR(Hi, C), which is
then used to compute the next layer: Hi+1 =
TransformerBlock(H′i), and the remainder of
BERT is run as usual. S-KAR operates as follows:

Retrieval: We follow KnowBert (Peters et al.,
2019) and adopt a broad definition for a KB as
a collection of (tail entity, relation, head entity)
triplets, focusing on K relation types of interest:
R = {R1, ..., RK}. For each relation type Rk

we learn two embedding vectors, eheadk and etailk ,

representing the head and the tail entity slots in this
relation.6

We assume that for a given relation set R, the
KB is accompanied by a relation extractor, which
takes a text X as input and returns a list of triplets:

C = {(headm, tailm, rm)|m ∈ 1..|C|, rm ∈ R}

where headm and tailm are the indices of the first
token of the head and tail entities in the text
(1, ..., N), and rm is the relation, as illustrated in
Figure 1.

Disambiguation: We focus on unambiguous en-
tities, i.e. those with a single KB entry, with re-
spect to relation type, and extract only entities of
the relevant type.7 For example, though Pitcher
has multiple entries in Wikidata, only one of them
is a location.

Knowledge incorporation: For a given list of
triplets C, S-KAR creates the relation embedding
matrix R ∈ RN×E such that the head embedding
eheadm is in index headm, the related tail embedding
vector etailm is in index tailm, and the remaining
entries are set to ~0. We incorporate this relation
embeddings into the BERT vectors: S′i = Hproj

i +

R, where Hproj
i is the projection of Hi into the

relation embedding dimension E = 768.

Recontextualization: the recontextualization
step is identical to KAR.

5 Experimental Setup

BERT model. Our model assumes access to a
pre-trained BERT model with or without additional
fine-tuning on the target downstream task. Specif-
ically, we used the English uncased BERTBASE

model (Devlin et al., 2019) fine-tuned on the
MultiNLI dataset (Williams et al., 2018). Based on
preliminary experiments, the S-KAR layer was in-
serted between the first and second layers of BERT.

Relational data. We retrieve relational data from
WordNet and Wikidata (See Section 3.1). For a
given premise p and hypothesis h we retrieve a rel-
evant KB tuple list of triplets {(headm, tailm, rm)}
(Section 4.2) when the head is in the premise, tail is

6We did not explore symmetric relations in this work, but
they can be straightforwardly implemented by learning a sin-
gle vector for both entity slots of the relation.

7We use spaCy NER (Honnibal and Montani, 2017) to
extract the relevant entity types: LOC for locations, ORG for
names of companies, and nouns for hyponyms and colors.
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Model Entities Hypernymy Location Color Origin MultiNLI*

LM-based Model BERT seen 64.7 77.6 62.2 70.6 -
unseen 65.7 68.3 58.5 69.1 83.4

Knowledge-Enhanced
Models

KnowBert seen 74.0 83.5 67.2 78.2 -
unseen 66.7 69.1 59.1 70.6 82.3

K-BERT seen 68.0 81.7 62.2 75.0 -
unseen 68.3 67.6 56.6 71.4 83.2

InferBert seen 81.7 83.3 77.2 86.9 -
unseen 82.0 83.9 72.0 88.9 82.3

Table 4: Performance on the challenge test sets and MultiNLI. Models were tested on either entities that appear in
the training set (seen) or new entities (unseen). *Seen and unseen results are not relevant for MultiNLI.

in the hypothesis, and head 6= tail. Since we focus
on unambiguous entities (in the context of a given
relation), we do not need to use an entity linker.
We make sure that the target entities in the train,
validation, and test sets are distinct, but that they
all have entries in the relevant KB.

Training data. We train a single model on the
combination of the challenge sets to learn phe-
nomena related to all the semantic relations. To
avoid “catastrophic forgetting”, i.e. decrease in
the performance on the original task (MultiNLI),
we mix the challenge training set with a random
sample of 10K MultiNLI training set instances and
train on the mixed datasets. The training objec-
tive assigns more weight to the challenge exam-
ples: L′BERT = γ · LBERT, where γ > 1 is a hyper-
parameter fine-tuned on the validation set.

Training procedure. The model consists of a
pre-trained BERT model and randomly initialized
InferBert parameters (S-KAR weights and relation
embeddings). To embed both sets of parameters
in the same space, we follow KnowBert and train
the model in two phases. In the first phase, we
freeze the pre-trained BERT parameters and update
only the S-KAR and the relation embeddings for
3 epochs. In the second phase we freeze the re-
cently trained InferBert parameters and unfreeze
the BERT parameters, training for another epoch.8

Baselines. We compare InferBert with two repre-
sentative knowledge-informed models, KnowBert
and K-BERT, as well as a BERTBASE NLI model.
All the baselines are trained on MultiNLI and fur-
ther fine-tuned on the the joint challenge set (mixed
with a subset of MultiNLI).

For fair comparison, K-BERT used the same
entity extraction mechanism, followed the same

8The first phase of KnowBert trains only the entity em-
beddings but not KAR, while we also include the S-KAR
weights.

fine-tuning procedure, and was given access to the
exact same data as InferBert. KnowBert, on the
other hand, requires re-training a new model on
new data. Because of its resource requirements, we
used the available pre-trained KnowBert model. It
is enhanced with knowledge about 470K entities
from Wikipedia and all of WordNet, fully covering
the knowledge in our hypernymy and location chal-
lenge sets, but only some of the entities in the color
and country of origin sets9. Thus, the results for
KnowBert on these two phenomena are not fully
comparable to those of InferBert.

Hyper-parameters. Fine-tuning on MultiNLI
followed the original hyper-parameters described
in Devlin et al. (2019). When fine-tuning InferBert
on the challenge sets, we selected the best hyper-
parameter values based on the performance on the
validation sets. The learning rate for S-KAR was
chosen between 0.003-0.007 in steps of 0.001, and
was set to 0.006. The rest of the parameters were
trained with a learning rate of 9e-6 (selected be-
tween 3e-6 and 4e-5). We tested γ values among
{2, 4, 6, 8, 10, 12} and selected γ = 4. Fine-tuning
was done on a single GeForce GTX 1080 GPU
with batch size of 32. A single InferBert forward
and backward pass took 0.35 seconds. K-BERT’s
best validation performance was achieved after 3
epochs with a learning rate of 3e-5 and KnowBert’s
after 4 epochs with a learning rate of 2e-5.

6 Experiments

We present the results of InferBert and the base-
lines on the various challenge sets (Section 6.1).
We also test the ability of models to learn relational
knowledge about entities seen during training (Sec-
tion 6.2). Finally, we analyze InferBert’s efficiency

9All entities in our hypernymy challenge set are covered in
WordNet, and all entities in our location set has corresponding
entries in the Wikipedia subset used by KnowBert.
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in terms of memory and runtime compared to the
baselines (Section 6.3).

6.1 Performance on the Challenge Sets

Table 4 (“unseen" lines) shows the performance
of InferBert and the baselines on the various chal-
lenge sets and on the MultiNLI10 development set.
The knowledge-enhanced baseline models slightly
outperform BERT on all semantic relations. In-
ferBert performs the best, with a large gap from
the baselines (up to 20 points), demonstrating its
ability to learn and generalize inference patterns
and apply them to new relation instances, as well
as to new entities.

K-BERT performs slightly better than KnowBert,
yet worse than InferBert. We hypothesize that K-
BERT and InferBert enjoy the advantage of having
access to relational knowledge at inference time,
which facilitates learning general inference patterns
and applying them to new facts, on demand. With
that said, the K-BERT method of incorporating re-
lational knowledge as free text is less structured
and likely leads to less efficient learning of infer-
ence patterns (with the limited amount of available
training data).

InferBert retains a high performance on the
MultiNLI matched development set, with 2.3%
reduction from the original BERTBASE model
(84.6%). KnowBert achieve similar performance,
while K-BERT performs slightly better on it.

6.2 Seen vs. Unseen Entities

In contrast to our original test sets, in which the
entities has not been seen during training, in this ex-
periment we analyze how the models perform with
entities that were all seen in the challenge training
set. For that, we duplicated our test sets, while re-
placing test triplets (head, tail, relation) with others
that are included in the training set. The rest of the
words remained the same, and we made sure (man-
ually) that the new test examples are analogously
sensible and that their entailment labels have not
changed. Results are shown in Table 4 in the seen
rows. Evidently, InferBert shows impressive ro-
bustness when facing unseen entities, unlike other
models that seem to depend significantly on seeing
the test entities already in training time. In fact,
when faced with new entities, the other models per-
formance gets closer to that of original BERT (with
no knowledge injected).

10We used MultiNLI dev-matched.

6.3 Efficiency Analysis

While large language models lead to performance
boost on standard benchmarks, the NLP commu-
nity had begun paying more attention to develop-
ing more resource-efficient NLP models (Moosavi
et al., 2020). In the design of InferBert we took
efficiency into consideration. First, InferBert is sig-
nificantly less memory consuming than KnowBert,
which stores up-front the embeddings for all enti-
ties in memory. KnowBert trained on Wikipedia
and WordNet uses BERTBASE (110M parameters),
to which it adds the KAR component (7.3M) and
the embeddings of 471K entities (406M parame-
ters), resulting in 523.3M parameters. Conversely,
instead of entity embeddings, InferBert supports
up to K = 500 relation types × 2 vectors (tail
and head) × each with dimension E = 768, result-
ing in 768K parameters. The SKAR component
takes up 8.3M parameters. Overall, InferBert has
119.1 parameters, only 23% of KnowBert’s param-
eters. Second, as opposed to InferBert, KnowBert
required a pre-training step in which the 471K in-
stances (corresponding to KB entities) were pro-
cessed.

InferBert achieved better performance than
KnowBert on the challenge set with as little as
1,000 examples per relation (Table 4). We conjec-
ture that the InferBert training is more data effi-
cient as it is not required to learn about specific
head or tail entities (e.g. Emporis and Germany)
but about relationships, (e.g. Hypernymy) which
occur more frequently in the training data.

Finally, we note that, similar to our model, K-
BERT is also memory and parameter efficient since
it does not store entity embeddings (as KnowBert
does). Rather, it only involves fine-tuning the
BERT parameters, thanks to representing the en-
hanced knowledge in textual form as part of the
instance input. Our model does incorporate a mod-
est number of additional parameters for structured
relation embeddings, which, as shown in our exper-
iment, leads to substantial performance gains over
K-BERT’s textual representations.

7 Conclusions

We presented InferBert, a generic and efficient
method to incorporate relational knowledge into
transformer-based inference models. Our approach
targets specific inference phenomena that require
external relational knowledge, allowing the model
to learn generic inference patterns decoupled from
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the factual knowledge required for a particular in-
stance, which is injected at inference time. Our
experiments show that InferBert successfully ap-
plies the learned patterns to unseen facts, where
other knowledge enhancement models fail. Un-
like most prior work, InferBert does not require
pre-training the LM on a KB, and consumes less
memory.

Our work joins the effort of others to improve
models by teaching them specific inference phe-
nomena (Liu et al., 2019a; Richardson et al., 2020).
A natural direction for future work would be to
apply our methodology to a broader range of in-
ference phenomena and adapt them for additional
inference tasks.
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