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Abstract
Predicting the difficulty of domain-specific vo-
cabulary is an important task towards a bet-
ter understanding of a domain, and to en-
hance the communication between lay people
and experts. We investigate German closed
noun compounds and focus on the interaction
of compound-based lexical features (such as
frequency and productivity) and terminology-
based features (contrasting domain-specific
and general language) across word represen-
tations and classifiers. Our prediction experi-
ments complement insights from classification
using (a) manually designed features to charac-
terise termhood and compound formation and
(b) compound and constituent word embed-
dings. We find that for a broad binary distinc-
tion into easy vs. difficult general-language
compound frequency is sufficient, but for a
more fine-grained four-class distinction it is
crucial to include contrastive termhood fea-
tures and compound and constituent features.

1 Introduction

In times of a constant growth of domain-specific
data, it is more important than ever to analyse char-
acteristics of domain-specific vocabulary. Domains
are topically restricted subject fields containing
domain-specific vocabulary that encode domain
knowledge. The more technical the terminology in
the domain vocabulary, the more difficult it is per-
ceived by lay people unfamiliar with the domain.
Predicting the difficulty of domain-specific vocabu-
lary is therefore an important task for enhancing the
communication between lays and experts. A promi-
nent example in this respect is the medical domain,
where the prediction of difficulty of medical terms
can enhance the communication between doctors
and patients, e.g. by simplifying medical texts
(Abrahamsson et al., 2014; Grabar and Hamon,
2014; Wandji Tchami and Grabar, 2014). While
the medical domain represents a well-researched

focus, the problem of miscommunication appears
across domains.

Previous research on automatic term difficulty
prediction already explored a large number of pa-
rameters, but as to our knowledge there is yet no
study that investigated how difficulty can be at-
tributed to complex phrase formation processes (a
language phenomenon) in interaction with domain
specialization (a domain phenomenon). The cur-
rent study investigates these aspects, goes beyond
domain peculiarities (such as Latin words in the
medical domain), and performs analyses across
three rather different domains: Cooking, DIY (’do-
it-yourself’) and Automotive.

While we choose a diverse set of domains, we
otherwise focus on a special phenomenon within
domain-specific vocabulary: German closed com-
pounds. Closed compounds are complex expres-
sions that consist of several lexemes and are writ-
ten in a single string of characters. An example
is Bremsflüssigkeit ’brake fluid’, which is com-
posed of the two simple words Bremse ’brake’ and
Flüssigkeit ’fluid’. By focusing on closed com-
pounds, the boundaries of the phrases to pre-extract
in text are unambiguous, and feature analysis will
not be biased by how the extraction method is de-
signed. Furthermore, closed compounds are a fre-
quent phenomenon in German: Baroni et al. (2002)
found that 47% of the word types in a general-
language corpus in German are compounds, and
according to Clouet and Daille (2014) compound-
ing is even more productive in specialized domains.
The interaction of domain features and lexical fea-
tures can be easily demonstrated at the examples
of closed compounds: For example, the compound
Hydraulikleitung ‘hydraulic line’ is considered dif-
ficult because it contains the rather technical con-
stituent ’hydraulic’. In contrast, the compound
Blaukochen (lit: ‘blue boiling’, a special kind of
boiling fish by adding acid) only contains con-
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stituents that are well-known to lay people but is
nevertheless difficult for them because the com-
pound is not semantically transparent regarding its
constituent ’blue’, i.e. it is not obvious what the
constituent contributes to the meaning of the com-
pound. In sum, the difficulty of a compound cannot
be derived from only compound attributes; in addi-
tion, it is influenced by the role and properties of
the constituents.

In this study, we want to empirically investi-
gate how phrase formation and domain-specific
termhood1 attributes interact in the automatic pre-
diction of compound difficulty. In order to train
predictive models, we use a German compound
dataset with a total of 1,030 compounds across the
above-mentioned three domains. Based on two set-
tings of the gold standard dataset (a four-class and
a binary version) we apply a decision tree classifier
using manually designed features to characterize
termhood and compound formation, and neural
classifiers using word embeddings.

2 Related Work

Term difficulty prediction (also referred to as term
familiarity or term technicality prediction) can be
seen as a subtask of automatic term extraction.
For automatic term extraction, a major strand of
methodologies are contrastive techniques, where a
term candidate’s distribution in a domain-specific
text corpus is compared to the distribution in a
reference corpus, for example a general-language
corpus (Ahmad et al., 1994; Rayson and Garside,
2000; Drouin, 2003; Kit and Liu, 2008; Bonin
et al., 2010; Kochetkova, 2015; Lopes et al., 2016;
Mykowiecka et al., 2018, i.a.). Many term diffi-
culty prediction studies rely on some variant of
contrastive approaches, mostly frequency-based;
notable exceptions are Zeng-Treitler et al. (2008),
who apply a contextual network, and Bouamor et al.
(2016), who use a likelihood ratio test based on two
language models. Most studies fall into the medi-
cal, biomedical or health domain. They rely on clas-
sical readability features such as frequency, term
length, syllable count, the Dale-Chall readability
formula or affixes (Zeng et al., 2005; Zeng-Treitler
et al., 2008; Vydiswaran et al., 2014; Grabar et al.,
2014). Some features are tailored to the medical
domain, for example relying on neo-classical word

1Termhood refers to the degree to which a lexical unit can
be considered a domain-specific concept (Kageura and Umino,
1996).

components, since medical terminology is consid-
ered to be highly influenced by Greek and Latin
(Deléger and Zweigenbaum, 2009; Bouamor et al.,
2016).

As to our knowledge, there is no previous work
that investigated term difficulty prediction for com-
plex phrases. Regarding the more general task of
automatic term extraction, a few studies included
complex phrases and their constituents. For exam-
ple, the C-value (Frantzi et al., 1998) combines lin-
guistic and statistical information and takes nested
terms into account for evaluating termhood. The
FGM score (Nakagawa and Mori, 2003) relies on
the geometric mean of the number of distinct left
and right neighboring words for each constituent
in a complex term. Contrastive Selection via
Heads (CSvH) (Basili et al., 2001) is a corpora-
comparing measure that computes termhood for a
complex term by biasing the termhood score with
the general-language frequency of the head. Hätty
et al. (2017) combine termhood measures within a
random forest classifier to extract single and mul-
tiword terms and apply the measures recursively
to the components. Hätty and Schulte im Walde
(2018) demonstrate that propagating constituent in-
formation through neural networks improves the
prediction of compound termhood.

3 Data

3.1 German Closed Noun Compounds

Closed compounds are complex expressions that
consist of several lexemes and that are written in a
single string of characters. The lexemes are called
constituents. The constituents of a two-part com-
pound can be divided into modifier and head, where
the latter is word-final in German.

An important empirical compound attribute is
the morphological family size (De Jong et al., 2000)
of a lexeme, which we refer to as productivity
henceforth. Morphological family size is defined as
the type count of morphological family members,
which comprise compounds and derived words that
contain the given lexeme as a constituent. We dis-
tinguish between two kinds of productivity as a
compound attribute: The productivity of a modifier
refers to the number of compound types where a
certain word type occupies the position of the mod-
ifier, and the productivity of a head refers to the
number of compound types where a certain word
type occupies the position of the head.
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3.2 Corpora

As corpus for general language, we rely on the
SdeWaC (Faaß and Eckart, 2013), a cleaned version
of the web-crawled corpus deWaC (Baroni et al.,
2009), containing ≈ 880 million words.

As domain-specific corpora, we use the three
domain corpora that are described by Bettinger
et al. (2020). The corpora were crawled for the
domains of Cooking, DIY and Automotive. They
were selected to include a variety of different do-
mains; for example, the Automotive domain was
chosen because it was expected to be more techni-
cal than the Cooking domain. The domain cor-
pora consist of both user-generated and expert
content. User-generated content was extracted
from Wikipedia, wikihow.de and wikibooks.de,
filtered by domain-related categories. Further,
domain-specific homepages such as kochwiki.org
were crawled. Expert texts include tool manuals
and books (e.g. on Automotive and on Handicraft),
as well as redacted text crawled from homepages
such as 1-2-do.com. Finally, all corpora were re-
duced to the size of the smallest corpus and are
equally-sized with 5.6 million tokens. The texts
are tokenized, lemmatized and POS-tagged with
spaCy2.

3.3 Gold Standard

We rely on the domain-specific compound diffi-
culty gold standard developed on the basis of the
just-described domain-specific corpora (Bettinger
et al., 2020). The gold standard contains 1,030
closed compounds from the domains of Cooking,
DIY and Automotive. Compounds were automat-
ically identified in text by applying the Simple
Compound Splitter (Weller-Di Marco, 2017). All
compounds with a frequency smaller than three
were excluded, which resulted in a pool of 12,400
Cooking compounds, 16,935 DIY compounds and
20,468 Automotive compounds, A subset was se-
lected which was balanced for the following fea-
tures: frequency of the compound, productivity
of the head, productivity of the modifier and fre-
quency of the head. The final dataset was rated
by 26 annotators on a Likert-like difficulty scale
(Likert, 1932) from 1 (easy; the term does not re-
quire specialized knowledge to be understood) to 4
(difficult; the term requires specialized knowledge).
After the annotation process, the 20 annotations
were selected where annotators agreed most. The

2https://spacy.io/

average pairwise Spearman’s ρ correlations of the
20 annotators is 0.61.
We base our models on two specifications of the
gold standard:
four-class: For each compound, we calculate the
median.3 In case of being between values, we
decide for the upper median (i.e. if the value is .5,
it is rounded up).
binary: We simplify the annotation and break
down the four graded classes into two broader
classes: easy and difficult. We decide to cluster
classes 2, 3 and 4 into a new class ‘difficult’ and
keep class 1 as ‘easy’ for the following reasons:
Annotators agreed most for class 1, so this is by
far the biggest class. Our binary grouping balances
the class sizes more equally and we believe that
annotators can easily recognize when they find a
compound to be easy (because they fully under-
stand it, which is why we get such a good agree-
ment), but when it comes to specifying difficulty
they have more problems to express to which de-
gree they do not understand the compound (due to
the fact that they cannot know how much they do
not understand).

Figure 1 presents the binary and four-class distri-
butions across the three gold standards. The graphs
show that there are more difficult compounds in
Automotive than in Cooking and DIY.

4 Experiments on Predicting Difficulty

Our prediction experiments investigate and com-
plement insights from decision tree classification
using manually designed features to characterise
termhood and compound formation (section 4.1),
and logistic regression (LR) and multilayer per-
ceptron (MLP) classification using compound and
constituent word embeddings (section 4.2).
For evaluation, we use 5-fold cross-validation and
Micro- and Macro-F1 score. As a comparison to
the model results, we apply a majority-class base-
line. When testing for significance, we use the
McNemar’s significance test (McNemar, 1947), a
paired non-parametric statistical hypothesis test.

4.1 Classification with Term and Compound
Features

A core research question for the classification ex-
periments is to which degree attributes that are

3Alternatively, one could calculate the mean compound
difficulty values, but the means are more sensitive to outliers,
and in our dataset therefore less appropriate.

wikihow.de
wikibooks.de
kochwiki.org
1-2-do.com
https://spacy.io/
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Figure 1: Gold standard: binary and four-class distributions across gold standards (figures taken from Bettinger
et al. (2020)).

related to compoundhood influence the prediction,
in contrast and in combination with attributes that
are related to termhood. The feature types tailored
to represent these attributes are the following:

• COMPOUNDHOOD (C) FEATURES4:
frequencies and productivities of compounds,
heads and modifiers in the general-language
and the domain-specific corpora; cosine dis-
tances between compound modifier and com-
pound head embeddings

• TERMHOOD (T) FEATURES:
contrastive measures Weirdness Ratio (Ahmad
et al., 1994), TFITF – Term Frequency In-
verse Term Frequency (Bonin et al., 2010),
and CSvH – Contrastive Selection via Heads
(Basili et al., 2001)

• COMBINED C+T FEATURE:
FGM-Score, a termhood measure that com-
bines compound and termhood attributes
(Nakagawa and Mori, 2003)

Note that we decided against a direct compu-
tation of compound–constituent compositionality
(Reddy et al., 2011; Schulte im Walde et al., 2013,
2016) as a feature, because the compound dataset
was balanced for frequency. It includes infrequent
compounds for which word embeddings and com-
positionality measures would be imprecise.
Method: Decision Trees. Decision tree classi-
fiers (DTs) are supervised machine learning meth-
ods that are represented as tree structures. DTs
were chosen for this task because they are easy to

4Note that for all but one of these features we have a bal-
anced set of compounds in the gold standard, see section 3.3.

interpret. We identify the optimal tree depth of our
decision trees by constantly growing the trees until
results decrease, with relying on Gini impurity as
the branch splitting criterium. In this way we found
an optimal depth of three for the decision tree in
the binary task, and an optimal depth of five for the
decision tree in the four-class task.

Overall results. Table 1 shows the results for
the decision tree classification using all features.
The classification models significantly outperform
the respective baselines in the binary classification
tasks, but in the four-class distinctions this only
applies to the Automotive domain and across all
domains (non-significant results are in italics). For
the binary task, the results for Automotive are better
than for Cooking and DIY. We assume that this
divergence is due to a higher imbalance of class
sizes across the domains, cf. figure 1.

Results by feature group. Having looked at the
results when using all features at the same time, we
now use coherent groups of features:

1. Domain-specific corpus-related features:
frequencies of compounds, heads and modi-
fiers; productivities of heads and modifiers;
FGM-Score

2. General-language corpus-related features:
frequencies of compounds, heads and mod-
ifiers; productivity of heads and modifiers;
FGM-Score

3. Contrastive features:
weirdness scores and TFITFs of compounds,
heads and modifiers; CSvH

4. Cosine distance features: cosine scores of
word2vec and fastText constituent vectors
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Baselines and Binary Four-class
Gold Standards Micro-F1 Macro-F1 Micro-F1 Macro-F1
Baseline Cooking 0.519 0.342 0.498 0.166
Baseline DIY 0.584 0.369 0.407 0.145
Baseline Automotive 0.667 0.400 0.325 0.123
Baseline All 0.604 0.377 0.376 0.137
Cooking 0.646 0.631 0.543 0.312
DIY 0.712 0.684 0.519 0.406
Automotive 0.750 0.720 0.471 0.286
All 0.732 0.707 0.492 0.405

Table 1: Results for classification using all features. All results but those in italics are significant.

Feature Group Micro-F1 Macro-F1
Baseline 0.604 0.377

Cosine 0.594* 0.391*
Head 0.608* 0.568*

Domain 0.635* 0.593*
Modifier 0.656 0.627

Constituent 0.661 0.648
Contrastive 0.713 0.690

All 0.732 0.707
General 0.735 0.703

Compound 0.736 0.713

Table 2: Binary: results by feature groups.

Feature Group Micro-F1 Macro-F1
Baseline 0.376 0.137

Cosine 0.400* 0.258*
Domain 0.405* 0.300*

Head 0.418 0.287
Constituent 0.455 0.364

Modifier 0.457 0.370
General 0.458 0.359

Compound 0.480 0.342
All 0.492 0.405

Contrastive 0.510 0.408

significant
improve-
ment

Table 3: Four-class: results by feature group.

Feature Micro-F1 Macro-F1
Baseline 0.604 0.377

comp TFITF 0.637 0.566
FREQ head gen 0.642 0.571
FREQ mod gen 0.645 0.619
PROD mod gen 0.653 0.616
comp WEIRD 0.709 0.690
FGM gen 0.713 0.696
FREQ gen 0.732 0.706

Table 4: Binary: individual features which signifi-
cantly outperform the baseline.

Feature Micro-F1 Macro-F1
Baseline 0.376 0.137

comp TFITF 0.412 0.238
FREQ mod dom 0.415 0.280
Num comp 0.417 0.248
PROD head gen 0.426 0.306
FREQ head gen 0.435 0.290
FREQ mod gen 0.454 0.322
PROD mod gen 0.455 0.298
comp WEIRD 0.462 0.330
FREQ gen 0.464 0.343
FGM gen 0.467 0.339

Table 5: Four-class: individual features which sig-
nificantly outperform the baseline.

5. Compound features:
compound frequencies in general-language
and domain-specific corpora; numbers of com-
pound constituents; weirdness scores and
TFITFs of compounds

6. Modifier features:
frequencies and productivities of modifiers
in general-language and domain-specific cor-
pora; weirdness scores and TFITFs of modi-
fiers; CSvH

7. Head features:
frequencies and productivities of heads in
general-language and domain-specific cor-
pora; weirdness scores and TFITFs of heads;
CSvH

8. Constituent features:
union of modifier and head features

Tables 2 and 3 show the results obtained by fea-
ture group, sorted by increase in Micro-F1. We
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Chosen Feature Micro-F1 Macro-F1
+FREQ gen 0.732 0.706

+PROD mod dom 0.739 0.720
+PROD mod gen 0.744 0.725

+mod WEIRD 0.746 0.727
+FREQ dom 0.746 0.727

Table 6: Binary: feature selection.

Chosen Feature Micro-F1 Macro-F1
+FGM gen 0.467 0.339

+head TFITF 0.487 0.350
+PROD mod gen 0.493 0.362
+PROD head gen 0.511 0.370

+NUM comp 0.511 0.370

Table 7: Four-class: feature selection.

can see that most feature groups achieve lower re-
sults in comparison to using all features (in bold
font), but at the same time ‘All’ does not achieve
the best results. The categories Cosine, Domain
and Head perform worst and do in most cases not
even significantly improve over the baseline. The
modifier features are better than the head features,
which is in line with the results in (Hätty et al.,
2017) where the modifier features are more impor-
tant for detecting termhood than head features. For
both the binary and the four-class tasks, the groups
General, Compound and Contrastive perform best,
with Compound as the winner for the binary task
and Contrastive as the winner for the four-class
task. The arrows in the result tables indicate which
group results are significantly different to the win-
ner group result.

Individual features. Tables 4 and 5 show the re-
sults for those individual features which perform
significantly better than the respective baseline,
sorted by increase in F1. For the four-class task,
three more features perform significantly better
than the baseline in comparison to the binary task;
these features are marked in bold. The best indi-
vidual features are the same for both tasks, with
almost the same rankings. The best three individual
features address distinct attributes of a compound
term: a compound’s general-language frequency
(FREQ gen), a termhood measure involving con-
stituents (FGM gen), and a contrastive termhood
measure (comp WEIRD).

Best feature combination. Tables 6 and 7 an-
alyze how features interact: We perform feature
selection by repeatedly adding the best-performing
individual feature for each task, based on Micro-F1,
until the scores stagnate or decrease. The resulting
best feature combinations provide us with the best
results for each task, while only comprising five
individual feature types in both tables. The opti-
mal combinations address attributes of the whole
compounds and attributes of constituents.

Analyzing frequency and productivity. For in-
vestigating the influence of frequency and produc-
tivity properties of compounds and constituents, we
created subsets of the gold standard where we dis-
tinguished between tertiles regarding compound
frequency and constituent productivity: ‘low’,
‘mid’ and ‘high’. Each property type is assessed
once for the general-language and once for the
domain-specific language. The 6 × 3 tertiles are
determined by sorting all elements regarding one
property and cutting the data into three equally-
sized portions. The resulting ranges are shown in
table 8.

We then compare the classifier results for the two
extreme tertiles, ‘low’ and ‘high’, using all features
on these subsets. The results are shown in the right-
hand part of table 8. It is obvious that across all
properties better results are achieved for the ‘low’-
category, as indicated by the bold font. The gap
between the results for ‘low’ and ‘high’ is espe-
cially large for the productivities of modifiers and
heads. Thus low productivity represents a rather
clear indicator for a compound to be either easy
or difficult (given that the model achieves better
results in the prediction), while high productivity is
an attribute of harder to distinguish easy and diffi-
cult terms. In order to investigate this effect further,
we inspect the gold label distribution in the ‘low’
and ‘high’-categories. We find a dominance of
difficult compounds in the ‘low’-categories, while
there is a higher balance between easy and difficult
compounds in the ‘high’-categories. This shows
that low productivity and frequency are indicators
of difficulty, while high productivity and frequency
are less distinctive.

4.2 Classification with Word Embeddings

For our second kind of classification experiments,
we do not use hand-crafted features anymore but
semantic representations of compounds and com-
ponents for general-language and domain. Two
kinds of word embeddings are used in the follow-
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Compound and Constituent Tertiles and Ranges Micro-F1
Properties low mid high low high
compound frequency (domain) 3–4 4–8 8–444 0.773 0.722
compound frequency (general) 0 0–17 17–53,569 0.779 0.722
modifier productivity (domain) 1–14 14–55 55–665 0.863 0.658
modifier productivity (general) 0–101 103–588 590–4,976 0.884 0.661
head productivity (domain) 1–14 14–61 62–1,157 0.802 0.652
head productivity (general) 0–119 119–786 786–8,293 0.812 0.693

Table 8: Ranges of selected properties across tertiles, and results on binary classification for extreme ‘low’ and
‘high’ tertiles when using all features (cf. All in Table 2 with Micro-F1=0.732).

ing: word2vec (Mikolov et al., 2013) and fastText
(Bojanowski et al., 2017).5

We use the word2vec model, because it is a stan-
dard model for natural language processing appli-
cations. The fastText model works on character
n-grams and not on words, and Bojanowski et al.
(2017) argues that it performs well on closed com-
pounds. This model is particularly interesting for
us because a compound embedding is learned par-
tially from the same n-grams as the embeddings
of its constituents. Thus, we implicitly have a rep-
resentation of the constituents in the compound
embedding, which we expect to be beneficial for
our classification task. Inspecting some words and
their nearest neighbors for the two models con-
firms our intuition. For the verb kochen (“cook”)
the following six words are the most similar ac-
cording to word2vec: sieden (“to boil”), garen (“to
refine”), brutzeln (“to sizzle”), braten (“to fry”),
grillen (“to barbecue”) and zubereiten (“to pre-
pare”). According to fastText we find the near-
est neighbors erkochen (“to reach by cooking”),
garkochen (“to cook sth. well”), teekochen6 (“to
make tea”), reiskochen (“to cook rice”), eierkochen
(“to cook eggs”) and bekochen (“to cook for some-
one”). The similarity in word2vec neighbors is
more on the semantic level in contrast to fastText,
where the words are highly similar on a surface
morphological level. The embeddings are trained
for each domain individually, by concatenating
SdeWaC and the respective domain data as input.

Methods: LR and MLP We use our pre-trained
word embeddings for compounds and constituents
as features and apply two kinds of classifiers:

5We do not use state-of-the-art contextualized word em-
beddings such as BERT (Devlin et al., 2019), because we
predict difficulty on a type-based, not context-dependent level.

6We cite words in their original lowercased version as used
in the model.

• logistic regression: simple neural network
with only input and output layers but no hid-
den layer,

• multilayer perceptron: neural network with
each one input, hidden and output layer.

For the binary classification task, the classifiers use
a sigmoid activation in the output layer, for the four-
class task the classifiers use softmax activation. For
the multilayer perceptron, we also use a sigmoid
activation for the hidden layer. Concerning the
parameters, the batch size is set to 32, there are 50
epochs and the hidden layer has a dimension of 64.

Results. We compare three different input set-
tings for the classification tasks: The first model
only takes the compound word embeddings as in-
put (see ‘compound’ in table 9). For all settings, we
distinguish between two differently trained word
embeddings: the word-based word2vec and the
character-based fastText word embedding models.
The second model (‘comp+const’) takes the con-
catenated embeddings of the compound and of its
constituents (binary split, i.e. two constituents) as
input, to evaluate the impact of the constituents.
The third model (‘only const’) only uses the con-
catenated constituent vectors, to evaluate if this
information is competitive.

The results for the classifications are shown in
table 9. For the binary task we reach the best results
(marked in bold) with word2vec when using a com-
bination of compound and constituent information,
and with fastText when only using the compound
embeddings. This tendency was expected: Since
fastText embeddings are character-based, the con-
stituents are implicitly encoded as well. Using
only constituent information provides lower result
scores in comparison to using compound informa-
tion, which is in line with the results of the previous
section.
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The distribution of the results of the four-class
task in table 9 is similar to the binary task, except
for now also for fastText the combination of com-
pound and constituent information works best. This
might be caused by the more difficult task and is
also indicated by the fact that for the four-class task
MLP with the additional hidden layer produces the
best results, while for the binary task the simpler
model LR obtains the best results.

Interestingly, word2vec models mostly perform
better than fastText models, although fastText im-
plicitly contains constituent information. We argue
that because 171 infrequent compound vectors are
missing for word2vec (with a minimum frequency
threshold for word vectors to be trained), these 171
compounds are assigned to the same random vector.
Given that low frequency is a reasonable indicator
for difficulty, the model might learn from the miss-
ing vectors which compounds are infrequent.

Although models using both compound and con-
stituent information seem to be superior to models
using only compound information, these results
can only be treated as a tendency. For word2vec
and both the binary and the four-class tasks, models
using both compound and constituent embeddings
are not significantly better than models using only
compound embeddings. However, although models
using compound embeddings perform significantly
better than models using only constituent embed-
dings (which is intuitive), the latter still perform
significantly better than the baseline. This shows
that constituent embeddings carry informative char-
acteristics for classifying compounds for difficulty.

4.3 Discussion

Our experiments investigated how compound for-
mation and termhood and domain attributes influ-
ence the prediction of compound difficulty.

Compounds and constituents. The binary task,
as the presumably simpler task, reached better re-
sults with simpler means: General-language fre-
quency of the compound is a good indicator (2%
better than the second-best feature for Micro-F1);
in addition, there is a 5% gap between compound
and constituent features (table 4), which shows that
compound features are sufficient for this task. For
the four-class task, features differ less; the best
results include compound and constituent informa-
tion (table 5). However for both tasks we can see: a
combination of compound and constituent features
leads to best results (tables 6 and 7).

The experiments with using neural networks
show the same tendency (table 9): While for half
of the cases in the binary task the compound vector
is sufficient, the improvement over ‘comp+const’
is not significant, and overall using both compound
and constituent vectors (‘comp+const’) provides
the best results. We conclude that constituents in-
fluence the degree of difficulty of the compounds.

Termhood. Contrastive features (i.e. termhood
features) are more important for the four-class task
than for the binary task (tables 2 and 3): For the
four-class task, they perform significantly better
than the general-language features, while for the
binary task ‘FREQ gen’ is the best individual fea-
ture (table 4). In sum, for a broad difficulty dis-
tinction as for the binary task, general-language
information might be sufficient, but for the more
fine-grained four-class task contrastive termhood
features are supportive.

Domains. There are no striking differences in the
predictive power of the models across domains (ta-
ble 1). For all three gold standards, the binary clas-
sification models outperform the respective base-
lines. In the four-class distinction, this is only the
case for Automotive, which includes more difficult
compounds than Cooking and DIY. Presumably,
prediction differences are due to the differently
(im)balanced sizes of the classes.

Low versus high productivity and frequency.
When contrasting the lower and upper tertile value
ranges for compound frequency and constituent
productivity, we found that low productivity and
low frequency are very salient indicators for the
level of difficulty. This seems counterintuitive: e.g.
high frequency could be a reliable indicator for
simplicity of a compound, while low frequency
could indicate difficulty, but low frequency could
also indicate that concepts are newly coined (which
does not mean that they are difficult), or because
of spelling or inflection errors. The dataset was
cleaned for the latter, but the former case was not
paid attention to. Concerning productivity, the gap
between ‘high’ and ‘low’ is even more extreme. We
hypothesize that this could be due to a compound
being judged as difficult because of one difficult
constituent, but an easy compound requires all con-
stituents to be easy. This is why single easy con-
stituents might be no good indicators – difficulty
depends on the other constituent for the compound
to be easy or difficult.
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network word2vec fastText word2vec fastText
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

compound LR 0.760 0.722 0.746 0.724 0.514 0.385 0.459 0.338
MLP 0.761 0.729 0.738 0.720 0.518 0.383 0.469 0.341

comp+const LR 0.771 0.758 0.734 0.715 0.515 0.429 0.465 0.355
MLP 0.749 0.735 0.732 0.716 0.525 0.431 0.477 0.369

only const LR 0.701 0.685 0.703 0.679 0.460 0.362 0.447 0.355
MLP 0.714 0.697 0.713 0.696 0.493 0.389 0.469 0.365

Table 9: LR/MLP Classifiers: Mi(cro)-F1 and Ma(cro)-F1 results for the Binary (left) and Four-Class (right) task.

5 Conclusion
This study investigated the automatic prediction of
difficulty for domain-specific German compounds
across three domains. We asked to what extent com-
pound formation attributes and domain-specific
termhood attributes influence and interact in the
prediction. We found that plain general-language
compound frequency is a reliable indicator for dif-
ficulty in our dataset, which shows that effects of
domain-specialization and compound formation
are reflected to a large extent by general corpus
frequency. However, for a more fine-grained four-
class distinction of difficulty going beyond a broad
binary distinction into ’easy’ and ’difficult’, con-
trastive termhood features and compound and con-
stituent information are crucial.
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