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Abstract

We present new results for the problem of se-
quence metaphor labeling, using the recently
developed Visibility Embeddings. We show
that concatenating such embeddings to the in-
put of a BiLSTM obtains consistent and signif-
icant improvements at almost no cost, and we
present further improved results when visibil-
ity embeddings are combined with BERT.

1 Introduction

When browsing through vision-language datasets,
one can make the intuitive observation that their
textual parts (“visual corpora”) contain more phys-
ical language, mostly descriptive, which tends to
be non-metaphorical by nature (See, for example,
typical images from the Visual Genome dataset in
Figure 1). Recently, this property was used to build
visibility embeddings, which aim to provide a good
estimation of a word’s concreteness, a feature that
has been long related to metaphoricity (Lakoff and
Johnson, 1980; Turney et al., 2011).

Many metaphors indeed involve noticeable dif-
ferences between the abstractness of words con-
structing them, like “clean conscience” (vs. “clean
air”). Metaphors are not created in isolation, com-
monly do not stand alone as non-literal expressions,
and are highly context-dependent in nature. Even
the most concrete and physical text can be consid-
ered as metaphorical when mentioned in a different
context than its original one, or in proximity to an-
other text from the target domain. For example, a
single use of a verb like “push” or “leak” can have
both literal and metaphorical meanings, in relation
to its context (see Figure 1).

Technically, the task of metaphor detection at
the sentence level is commonly approached as one
of the following two tasks:
(1) Sequence Labeling, in which each token in the
sentence is classified as either “metaphorical” or

Figure 1: Images from the Visual Genome (Krishna
et al., 2016) along with their literal (“L”) description,
and a metaphorical (“M”) sentence with a similar verb
from the MOH-X dataset (Mohammad et al., 2016)
(concrete words in green and abstract words in red).

“literal” (multiple outputs per sentence).
(2) Classification of a specific target word, usually
the main verb (one output per sentence). This task
is sometimes called “verb classification”.

Recently, Kehat and Pustejovsky (2020) pre-
sented the simply constructed Visibility Embed-
dings (VE), which use references to visual/non-
visual corpora to estimate word concreteness, and
applied it to the task of verb-classification. In this
paper we apply VE also to the sequence labeling
task, and show how they consistently improve the
result of a BiLSTM model with BERT. We also
discuss possible problems when reporting results
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on very small annotated datasets, and the effect on
adding GloVe to the model input.

2 Background and Previous Work

2.1 Visibility Embeddings

Visibility embeddings (VE) were shown by (Kehat
and Pustejovsky, 2020) to be useful for metaphor
detection when concatenated to the input of BiL-
STM models for the verb classification task. These
simple and no-cost embeddings, are created by
checking the occurrence of each word in a set of
different visual and non-visual corpora, as a way to
estimate its concreteness. They developed the big
visual corpus (BVC), which contains the textual
parts of multiple vision-language datasets, such as
Visual Genome (Krishna et al., 2016), ImageNet
(Deng et al., 2009), MSCOCO (Lin et al., 2014)
and Flick r 30K (Young et al., 2014), as well as
a “non-visual” corpus, Brown−BV C, which is
the subtraction of the BVC from the Brown corpus
(Francis and Kucera, 1964). These two corpora
were previously shown (Kehat and Pustejovsky,
2017) to be highly concrete and highly abstract on
average, respectively.

2.2 Metaphor Detection

The current state-of-the-art in metaphor detection is
achieved by neural methods, enriched with contex-
tual word embeddings (such as ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019)), and com-
monly combined with varied linguistic features and
metrics. Some notable results are the ones by Gao
et al. (2018) who used ELMo and BiLSTM, Mao
et al. (2019) who also experimented with BERT and
features that rely on human metaphor processing,
Dankers et al. (2019) who performed joint learn-
ing with emotion prediction, and Le et al. (2020)
who used graph convolutional neural networks with
dependency parse trees.

Impressive results1 were presented in the 2018
Metaphor Detection Shared Task (Leong et al.,
2018), with most of the groups using neural models
with other linguistic elements like POS tags, Word-
Net features, concreteness scores and more (Wu
et al., 2018; Swarnkar and Singh, 2018; Praman-
ick et al., 2018; Bizzoni and Ghanimifard, 2018),
as well as in the more recent 2020 Shared Task
(Leong et al., 2020), with the majority of groups

1yet not directly comparable to ours, since they used dif-
ferent train-test separations and evaluation, see Dankers et al.
(2020)

using some variation of BERT in addition to the
other features (Su et al., 2020; Gao and Zhang,
2002; Kuo and Carpuat, 2020; Torres Rivera et al.,
2020; Kumar and Sharma, 2020; Hall Maudslay
et al., 2020; Stemle and Onysko, 2020; Liu et al.,
2020; Brooks and Youssef, 2020; Chen et al., 2020;
Alnafesah et al., 2020; Li et al., 2020; Wan et al.,
2020; Dankers et al., 2020).

Embedding-based approaches such as in Köper
and Schulte im Walde (2017) and Rei et al. (2017)
proved to work effectively on several annotated
datasets. Different types of word embeddings were
studied, including embeddings trained on corpora
representing different levels of language mastery
(Stemle and Onysko, 2018), and embeddings repre-
senting different dictionary categories in the form
of binary vectors for each word (Mykowiecka et al.,
2018). Previous work by Turney et al. (2011),
Tsvetkov et al. (2014) and Köper and Schulte im
Walde (2017) showed concreteness scores to be
effective for Metaphor Detection, however, they all
used fix concreteness score lists, such as the MRC
(Coltheart, 1981) and the 40K list by Brysbaert
et al. (2014), either as a reference or for training.

3 Model Details

As a base structure we use the simple BiLSTM
architectures presented by Gao et al. (2018). The
sequence labeling model (see Figure 2) consists of
two layers, a BiLSTM and a feedforward layer, to
get a label for each word in the sentence. We imple-
mented the model in Python using the AllenNLP
package (Gardner et al., 2017).

Figure 2: Simple sequence model with multiple out-
puts, one per word in the sentence.

We use a pretrained BERT model provided by
the AllenNLP package, with 24 layers and 1024
hidden states, trained on cased English text. The
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input vector for the model consists of the concate-
nation of the 1024-dimensions BERT vector (using
all the layers of the BERT model), the GloVe em-
beddings (Pennington et al., 2014) (not in all cases,
see discussion in Section 4.3), and the VE of varied
length (we experimented with vectors from length
50 and 300). Hyperparameters are fine-tuned on
each dataset.

4 Experiment Setting and Results

We present results and comparison for two of the
most common datasets for metaphor detection:
VUA (Steen et al., 2010) and MOH-X (Moham-
mad et al., 2016). Annotated datasets for the valida-
tion and training of metaphor detection systems are
not easily created, and require a level of expertise.
The available datasets are therefore relatively small,
hand crafted sets of several hundreds to a few thou-
sands sentences, mostly only partially annotated
for the metaphoricity of their main verb. As a re-
sult, the F1-scores vary highly, even with the slight
change in parameters. In order to provide a consis-
tent evidence to our algorithm’s performance, we
chose to compare not only the maximal F1-scores
gained by each model, but also present a “param-
eterized” F1-score, over different learning rates.
This would allow us to analyze the results while
ignoring very highly-frequent fluctuations in the
performance of the models.

4.1 VUA

We used the labels assigned to each token by the
original VUA annotators. The verbs used for verb-
testing are the ones used by Gao et al. (2018) (a
large subset of all the verbs). Adding VE to the
simple BiLSTM-BERT model achieves very high
results (See Table 1). In order to provide more
detailed comparison with previous models, results
per POS are shown in Table 2.

Figure 3 demonstrates the consistent improve-
ment gained by using VE by comparing four types
of input vectors with different BERT - VE - GloVe
combinations. Very similar learning rates (+-
0.0001) can vary in up to +2 F1-Score, demon-
strating the high variance those models have given
the relatively small dataset. The random vector
is of the same length and value range as the VE,
with each value chosen randomly, to demonstrates
that the length of the input vector has some effect
on the results in terms of when the model reaches
its maximum F1-score, as seen by the shifted gray

Model P R F1
Verb Wu et al.* 60.0 76.3 67.2
Testing Gao et al. 68.2 71.3 69.7

Mao et al. 69.3 72.3 70.8
Su et al.* 78.9 81.9 80.4
BERT+VE 72.2 75.0 73.6

All Wu et al.* 60.8 70.0 65.1
POS Gao et al. 71.6 73.6 72.6
Testing Mao et al. 73.0 75.7 74.3

Dankers et al. — — 76.8
Su et al.* 75.6 78.3 76.9
BERT+VE 77.1 77.8 77.4

Table 1: Sequence metaphor labeling on the VUA. Re-
sults denoted by * are not directly comparable.

line (BERT only). In this specific case, adding the
GloVe vector improves the results (see discussion
in Section 4.3).

Figure 3: F1-scores as a function of the learning rate for
VUA-ALL. The lines are moving averages of the corre-
sponding points. Yellow - BERT + Visibility Embed-
dings + GloVe, Red - BERT + Visibility Embeddings,
Orange - BERT + random vector, Gray - BERT only.

Figure 4 shows a similar comparison but in this
case, the model is maximized on just the verbs
of the classification task (as opposed to all words
above). In all cases, adding visibility embeddings
to the BERT embeddings achieves a no-cost im-
provement in the F1-score, both on average and as
the maximal result gained for the model (over the
given learning-rates gaps).
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Figure 4: VUA target verbs testing. Yellow - BERT +
Visibility Embeddings, Orange - BERT + random vec-
tor, Red - BERT with embeddings based on vocabu-
lary (uniform positive value for all valid words), Gray
- BERT only.

POS P R F1
VERB 71.92 75.62 73.72
NOUN 71.33 67.85 69.55
ADP 89.36 91.55 90.44
ADJ 69.10 62.84 65.82

Table 2: Results by POS tags of the best model for
VUA-All (BERT + GloVe + VE).

4.2 MOH-X

The MOH-X dataset (as a subset of the largest
MOH dataset) was originally annotated for the
main verbs only. It is small, and contains around
650 sentences. For the sequence labeling task, we
use the default base case of assigning the rest of the
tokens a “literal” label (as demonstrated in previous
work). The results are presented in Table 3.

As a direct result from its size, testing on the
MOH-X using ten-fold-CV with random splits
yields fluctuating results. After conducting 50 ran-
dom ten-fold-CVs (500 splits over all), we got an
average F1-score of 82.3, with a maximum of 84.0
and a minimum of 81.0. Even though these two
vary significantly, the minimum F1-score obtained
is still higher in 1.0 F1-score point than the one
recently reported by Mao et al. (2019) .

The above observation makes it hard to optimize
and fine-tune the parameters of the model. We
noticed that in general, higher F1-scores are gained
for splits where the training set and evaluation set
contain instances of the same verbs. Previously

Model P R F1
Gao et al. (2018) 79.1 73.5 75.6
Le et al. (2020) 79.7 80.5 79.6
Mao et al. (2019) 77.5 83.1 80.0
BERT+VE 83.8 85.8 84.6
BERT+VE (rand-CV) 80.8 84.7 82.3

Table 3: Results on the MOH-X dataset using sequence
labeling. Our model improves upon the previous state
of the art by Mao et al. (2019).

reported results did not explicitly mention this issue.
To maintain consistency with the results by Gao
et al. (2018) and Le et al. (2020), we present our
results both on their prechosen sets, as well as on
randomly chosen splits (rand-CV).

4.3 Further Discussion
In some cases, adding the GloVe to the input vec-
tor does not help to improve the results, and even
worsens them. This is true for both the sequence
and classification tasks on the MOH-X dataset, and
varies in the VUA (as can be seen in Figures 3, 4),
though the differences are relatively small.

Concatenating GloVe to the input vector pro-
vides additional generalized non-domain-specific
(the pre-trained GloVe was trained on Wikipedia)
context for each word in a sentence. The MOH-X
dataset contains shorter sentences, so on average,
every word in the sentence has more weight when
determining the metaphoricity of the target verb.
In particular, when the verb is used metaphorically,
the few other words in the sentence play a special
role in giving us clues about it, say, when they be-
long to different domains. Adding the information
from GloVe might smooth this effect.

When applied to the VUA, the Glove’s effect is
minimized, since it contains longer sentences and
we have more words that are not directly related
to the main metaphor presented by the target verb.
In general, the VUA gets much lower results than
the MOH-X on all performed tasks, since it was
created from real sentences, while the MOH-X was
handcrafted from WordNet sample sentences for
the specific task of detecting non-direct language.
in real world texts, we should expect similar lower
performances.

5 Summary

We have presented new and improved results for se-
quence metaphor labeling for the VUA and MOH-
X datasets using visibility embeddings and BERT
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as inputs for a simply constructed BiLSTM. We
provided detailed comparison for the effect of
adding VE to the model, and showed it to be a
useful no-cost component to a metaphor detection
system.
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