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Abstract

AMR (Abstract Meaning Representation) and
EDS (Elementary Dependency Structures)
are two popular meaning representations in
NLP/NLU. AMR is more abstract and concep-
tual, while EDS is more low level, closer to
the lexical structures of the given sentences. It
is thus not surprising that EDS parsing is eas-
ier than AMR parsing. In this work, we con-
sider using information from EDS parsing to
help improve the performance of AMR pars-
ing. We adopt a transition-based parser and
propose to add EDS graphs as additional se-
mantic features using a graph encoder com-
posed of LSTM layer and GCN layer. Our
experimental results show that the additional
information from EDS parsing indeed gives
a boost to the performance of the base AMR
parser used in our experiments.

1 Introduction

Semantic parsing has long been considered a diffi-
cult task and an important step to natural language
understanding. A number of meaning representa-
tion formalisms have been proposed. Well-known
ones include EDS (Elementary Dependency Struc-
tures; Oepen and Lønning, 2006), UCCA (Univer-
sal Conceptual Cognitive Annotation; Abend and
Rappoport, 2013), and AMR (Abstract Meaning
Representation; Banarescu et al., 2013). Among
them, AMR is more abstract from surface tokens
and tries to capture the meaning of a sentence us-
ing concepts that may not appear in the sentence.
If one views an AMR encoding as a graph, the
AMR graph is always composed of fewer nodes
than other meaning representations and some nodes
in the AMR graph cannot be anchored to tokens or
strings of tokens in the sentence. But EDS tries to
build a meaning representation using lexical terms
that are presented in the sentence, and nodes in their
parse trees are anchored. In comparison, AMR

has a much more fine-grained classification for the
named entities, total of 124 entity types (Lin and
Xue, 2019). Thus not surprisingly, AMR parsers do
not perform as well as the ones for EDS. Currently
the parsing accuracies for AMR are in low 80s,
while they can be high 90s for EDS. In this paper,
we propose to use EDS improve the performance
of the AMR parser.

Figure 1: AMR and EDS graph for ”Imports were at
$50.38 billion, up 19%.”, #20011008 sentence from
the WSJ Corpus, Penn Treebank (Marcus et al., 1993).
Take node #3 in AMR as an example. ”percentage-
entity” is the node label, ”value” is the property of this
node, and ”19” is the specific value. For node #10 in
EDS, ”<35:37>” indicates the span of the correspond-
ing surface string; ”card” is the node label, ”CARG”
which means ”constant argument” is the property, and
”19” is the value.

To see how information from EDS parsing can
be of use to AMR, consider the following sentence
“Imports were at $50.38 billion, up 19%.” from the
Wall Street Journal Corpus, Penn Treebank (Mar-
cus et al., 1993). Its graph encodings in AMR and
EDS are shown in Figure 1. We mentioned that
AMR is more abstract. This can be seen in the
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example as the graph for AMR is a lot smaller, and
the nodes are labeled with conceptual entities. Nev-
ertheless, EDS and AMR edges are labeled using
the same semantic roles (e.g., ARG1, ARG2), in-
dicating the relationship between a predicate and
its arguments (Lin and Xue, 2019). In this exam-
ple, there are some correspondences between their
nodes. For example, the AMR nodes ”percentage-
entity”, ”dollar”, and ”import-01” correspond to
the EDS nodes ” percen n of”, ” dollar n 1”, and

” import n of”, respectively. In our task, the most
important feature of EDS is anchoring. From the
EDS graph, each node has a corresponding span of
text. Conversely, we can find all related EDS nodes
for each token based on the indexes. This suggests
that EDS parsing may serve as an intermediate to
AMR parsing, which motivated this work.

To incorporate EDS parsing into an AMR parser,
we propose an EDS encoder composed of LSTM
networks that capture the contextual information
and a Graph Convolutional Network (GCN, Kipf
and Welling, 2017) that extracts the structure
knowledge. We feed EDS into our proposed en-
coder and produce token-level features. These EDS
token-level features are concatenated to word em-
bedding of tokens and participate in the AMR pars-
ing process. To demonstrate the effectiveness of
our approach, we use the AMR dataset from MRP
2019 (Oepen et al., 2019) and take as our baseline
model the HIT-SCIR (Che et al., 2019), which was
the best overall system at MRP 2019 and the 2nd
best for AMR. Our experimental results show that
our EDS-enhanced parsers clearly outperform the
baseline model. In fact, some of our new models
beat the best score of the official submitted AMR
parsers in this benchmark. We also observed that
the biggest improvements happened to be on those
test data that are least similar to the training data.

The rest of this paper is organized as follows:
Second 2 gives a brief overview on AMR parsers;
Section 3 is concerned with the baseline system we
adopt and our EDS-enhanced model. We present
experimental settings and experimental results in
Section 4 and conclude in Section 5.

2 Related Work

We classify AMR parsing systems into grammar-
based, graph-based, and transition-based ones. The
grammar-based ones generate AMR graphs directly
from grammar trees. Several early AMR parsing
systems were of this type. For example, Artzi

et al. (2015) used combinatory categorial gram-
mar (CCG) parsing to construct AMR, while Peng
et al. (2015) made use of synchronous Hyperedge
Replacement Grammar (SHRG). Generally speak-
ing, grammar-based ones suffer from information
loss during the processes of both grammar tree gen-
eration and AMR conversion. They predated the
current deep learning approaches.

Modern AMR parsers use deep learning meth-
ods. Depending on how the eventual AMR graphs
are generated, we can divide them into graph-based
and transition-based. Both approaches are popular
and their performances are competitive. Briefly, a
graph-based system splits AMR parsing into two
tasks, concept identification and edge prediction,
and then combines them to generate a final AMR
graph. The idea seems to appear first in Flanigan
et al. (2014), and is used in Lyu and Titov (2018);
Zhang et al. (2019a); Cai and Lam (2020); Zhou
et al. (2020). A transition-based system, however,
uses a sequence of transition actions to construct
the graph incrementally. We can include the sys-
tems in Wang et al. (2015); Ballesteros and Al-
Onaizan (2017); Naseem et al. (2019); Che et al.
(2019); Astudillo et al. (2020) in this category.

As we mentioned, our work is about incorporat-
ing EDS information into AMR parsing. We note
that Brandt et al. (2016) considered adding prepo-
sition semantic role labeling to an AMR parser but
found that the extra information did not seem to
help. Hershcovich and Arviv (2019) used a multi-
task learning model but found multi-task TUPA
consistently falls behind the single-task one for
AMR. Arviv et al. (2020) used multi-task learning
on EDS and UCCA parsing, however, EDS didn’t
bring any benefits to UCCA parsing. Adding extra
semantic information like EDS is not easy. It mat-
ters how EDS graphs are encoded and incorporated
into AMR parsing. We conduct our work with the
AMR dataset from MRP 2019, and pick one of
the best performing systems there, HIT-SCIR (Che
et al., 2019), as our baseline model. Our experi-
mental results show that adding EDS information
can indeed give a significant boost to the baseline
model. We believe our method is general and can
be applied to other AMR parsing systems.

3 Model

3.1 Baseline: A Transition-based Parser

Our baseline model is a transition-based system
HIT-SCIR (Che et al., 2019). However, in our
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experiments, we use BERT-base instead of BERT-
large for word embeddings (Devlin et al., 2019) due
to our constraints on computing resources. Never-
theless, when the BERT-base baseline model is en-
hanced with EDS information, it still outperforms
the best AMR parser at MRP 2019.

Task Formalization The main task of a
transition-based model is to generate a sequence of
actions to construct an AMR graph. The sequence
of actions is predicted one at a time, and the graph
is also constructed incrementally.

A state in HIT-SCIR is a tuple (S,L,B,E, V ),
where S is a stack holding processed words, L
is a list holding tokens popped out of S that will
be pushed back in the future, and B is a buffer
holding tokens waiting to be processed. E is
the sets of labeled dependency edges and V is
a set of graph nodes include concept nodes and
surface tokens. The initial state of AMR parser
was ([0], [ ], [w1, . . . , wn], [ ], V ), where V only
contains surface tokens. During parsing, each
token should be parsed individually, and AMR
nodes and edges would be generated through the
selection of actions. The final state should be
([0], [ ], [ ], E, V ′), where list L and buffer B is
empty.

Oracle An action sequence bridges the input sen-
tence and the AMR graph. So the basic require-
ment for the transition-based method is alignments.
Given a gold AMR graph and alignments, one can
convert the graph to an action sequence for model
training. For each state s, HIT-SCIR decides one
of the actions to apply and this is what we called
oracle parser. To solve the problem of parsing con-
cept nodes from surface strings, HIT-SCIR extends
the basic oracle following previous work (Liu et al.,
2018). The transition inventory is the following:

• MERGE is to connect the top two tokens in
the buffer to a single token waiting for being
converted to a concept node.

• CONFIRMX is for converting the top element
of buffer to a concept node X .

• NEWX generates a new node X and pushing
into the buffer.

• ENTITYX does the same thing as CONFIRMX

but adding internal properties of entity X ,
such as year of a date-entity.

• LEFT-EDGEX and RIGHT-EDGEX add an
edge with label X between wj and wi, where
wi is the top element of stack andwj is the top
element of buffer. But they can be performed
only when the top of buffer is a concept node.

• SHIFT is performed when no dependency ex-
ists between wj and any word in S other than
wi, which pushes all words in list and wj into
stack S. It is only allowed to perform when
the top of buffer is a concept node.

• REDUCE is performed only when wi has head
and is not the head or child of any word in
buffer, which pops wi out of stack.

• PASS will be chosen when neither SHIFT or
REDUCE can be performed, which moves wi

to the front of list.

• DROP pops the top of buffer when it is a token.

• FINISH pops the root node and marks the state
as terminal.

Stack-LSTM HIT-SCIR follows Ballesteros and
Al-Onaizan (2017) and uses Stack-LSTM to model
AMR states. The output vector of this LSTM will
consider the stack pointer instead of the rightmost
position of the sequence.

The system models S, L, B and action history
with multiple stack-LSTMs, which supports PUSH

and POP operations. Parsing states from multiple
stack LSTMs are fed into the action oracle classifier
at once. The possibility of action under state s is
calculated as

p(a|s) = exp{ga·STACK LSTM(s)+ba}∑
a′∈A exp{ga′ ·STACK LSTM(s)+ba′}

where the set A represents the actions listed in the
previous paragraph; STACK LSTM(s) encodes the
state s into a vector, ga is the embedding of action
a and ba is the bias vector for action.

In our model, items in S, L and B are the com-
bined embedding of tokens that concatenate the
original BERT word embeddings and EDS encod-
ing for the tokens, introduced in the following sec-
tion.

3.2 EDS Incorporation

In order to incorporate the EDS annotation informa-
tion in the AMR parsing, we extend the EDS graph
to include tokens. We feed the extended EDS graph
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to our proposed EDS encoder and obtain token-
level EDS features. Afterward, we concatenate
token-level EDS features with word embedding
and input them into the transition-based model.

EDS Extension Each node in the EDS graph
has an explicit many-to-many anchoring onto sub-
strings of the input sentence. It means that corre-
sponding related EDS nodes for each token can be
found based on the nodes’ span. Therefore, we add
a bottom layer consisting of the input sentence to-
kens. In this way, the updated embedding of tokens
in this layer can be extracted as EDS features for
each token.

In the preprocessing, the edges labeled as con-
tain are added between token nodes and original
nodes if their spans of strings intersect. Figure 2
is the example of an updated EDS graph for the
sentence ”Not this year.”, #20010002 from WSJ.
We only care about EDS labels in our experiments.
We show contain edges as dash lines and origi-
nal edges as solid lines. In Figure 2, the bottom

Figure 2: Example for adding contain edges in EDS
graph. The bottom layer is the token nodes we add to
the EDS graph. After EDS encoding, embeddings of
token nodes are extracted and combined with original
word embedding as extra semantic features.

four nodes are token nodes, whose embeddings are
used as EDS features. For token node vt, the hid-
den state at layer k is hkvt . The calculation details
can be found in the following paragraph. BERT
splits each token into several pieces. The system
extracts the first piece as its word embedding, de-
noted as BERT(t). Therefore, for each token t, we
get embedding from two parts, BERT embedding
BERT(t) and final hidden state hvt of correspond-

ing new added node vt. Then the concatenation of
two vectors (BERT(t)‖hvt) would be pushed in the
buffer, waiting for the next step of processing.

EDS Encoder The emergence of neural net-
works has had tremendous impacts on many fields,
including graph data parsing systems. GCNs (Kipf
and Welling, 2017; Marcheggiani and Titov, 2017)
have emerged to be the neural networks of choice
for encoding graphs. Our proposed EDS encoder
consists of an LSTM layer to capture context in-
formation and GCN layers to encode structural
knowledge.

EDS represents the meaning of a sentence in a
directed graph where nodes represent logical predi-
cates and edges to labeled arguments. The defini-
tion of EDS is G = {V, E , LV , LE} where V is a
set of nodes (v, `v), E is a set of edges (vi, vj , `e)
and LV , LE are vocabularies for node labels and
edge labels respectively.

To reinforce relations between nodes through
layers, we add self edges (vi, vi) for every node
in the graph and inverted edges (vj , vi) with la-
bel inv `e for each directed edge (vi, vj) with label
`e, including the new added contain edges. There-
fore, G becomes {V ′, E ′, LV ′ , LE ′}. V ′ = V ∪ T ,
where T is the set of token nodes. E ′ = E ∪
{contain, self}∪I , where I is the set of inverted
edges.

The goal of our EDS encoder is to update repre-
sentation of each node considering the whole EDS
graph. First, we adopt GCN to update word embed-
ding based on their neighbors. Directed edges in
the EDS graph represent the relationship of nodes,
so we make the same assumption that the GCN
parameters are label-specific as Marcheggiani and
Titov (2017). Therefore, we calculate the hidden
state of node v at k-th layer hkv as:

hkv = ReLU

 ∑
u∈N (v)

W
(k−1)
L(u,v)h

(k−1)
u + b

(k−1)
L(u,v)


where N (v) represents the neighbor nodes of v;
ReLU is the rectifier linear unit activation func-
tion. However, to reduce the size of parameters
and simplify the calculation, we classify edges into
three kinds: self edge, edges in the original direc-
tion including contain and inverted edges. There-
fore, instead of using WL(u,v), we define them as
WL(u,v) = Vdir(u,v), where dir(u, v) specifies the
kind of edge.
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EDS annotation in this experiment is automat-
ically generated by EDS parser, so accepting all
information from the EDS graph is risky. To solve
this problem, we adopt gate schema. We calculate
a scalar gate for each edge node pair in the form
as:

gku,v = σ
(
v̂kdir(u,v)h

k
u + b̂kL(u,v)

)
where σ is the logistic sigmoid function; v̂kdir(u,v)
and b̂kL(u,v) are weights and a bias for the gate.
Therefore, the final formalism of the hidden state
calculation is:

hkv =ReLU(∑
u∈N (v)

g(k−1)u,v (V
(k−1)
dir(u,v)h

(k−1)
u + b

(k−1)
L(u,v))).

GCN introduced so far learns effective represen-
tation on the structure. Still, there is the limitation
in that nodes can only be updated based on their im-
mediate neighbors on each GCN layer. Nodes far
away from each other with n-order in the graph are
hard to encode on GCN models. Adding an LSTM
layer can compensate for this limitation. The hid-
den states of LSTM instead of embedding of EDS
nodes are fed into GCN layers, that is, h0v = sv
where sv is the final LSTM state of node v.

Figure 3: Example for EDS Encoder structure. Nodes
embedding (circles) are sequentially fed into an LSTM
layer and GCN layers. In GCN layers, solid lines are
original edges in the EDS graph, dash lines represent
the inverted edges and gray lines are self edges.

The structure of the EDS encoder is illustrated in
Figure 3. The embeddings of EDS nodes (hollow
circles) are first fed into an LSTM layer. After pro-
cessing in the LSTM layer, contextual information

is included in the light gray circles. After several
GCN layers, dark gray circles that hold edges and
neighbors information are the final hidden states of
GCN layers.

4 Experiment

4.1 Experimental Setup

Our experiments were done using the toolkit Al-
lenNLP (Gardner et al., 2018).

EDS Parser In this study, we adopted open-
source distribution LOGON (Lønning and Oepen,
2006) to generate EDS annotations. LOGON 1

package contains ERG parsers and the ERG-to-
EDS converter. Compared to the purely data-driven
parsers, general-purpose grammatical knowledge
encoded in the ERG aids EDS parsing (Oepen and
Flickinger, 2019). We applied ERG release 1214
and use LOGON in one-best mode. However, LO-
GON failed to parse part of sentences due to lim-
itation of search tree or other reasons (about 15%
of data), so we used the EDS model of Che et al.
(2019) to parse those sentences.

Baseline Model As we mentioned, we adopt
HIT-SCIR as our baseline model. However, we
use the smaller pre-trained model, BERT-base, for
word embeddings due to GPU limitation. For align-
ments, the baseline model uses an enhanced rule-
based aligner TAMR (Liu et al., 2018) to generate
transition actions for AMR graph. More details on
hyper-parameters can be found Table 3 in appendix.
Our experiments were done using GeForce RTX
2080 Ti GPU. During model training, each epoch
took about 4 hours on one GPU.

Dataset We use the dataset from MRP 2019 so
that we can compare our models with the officially
submitted models there. The shared task has con-
straints on which additional data or pretrained mod-
els can be used for reasons of comparability and
fairness. Our models meet the requirements as both
our baseline model (HIT-SCIR) and the EDS parser
that we use to generate EDS graphs for use by the
baseline model satisfy them.

There are 56,240 sentences in MRP 2019 AMR
training set. The test set contains 1,998 sentences,
and among them are 100 randomly selected sen-
tences from the novel The Little Prince. MRP 2019
provided results for AMR parsing models on both

1http://wiki.delph-in.net/
LogonProcessing

http://wiki.delph-in.net/LogonProcessing
http://wiki.delph-in.net/LogonProcessing
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the entire test set (called All Data) and the sub-
set of the setences from The Little Prince (called
Lpps). The reason for the special interest on the
latter was that the sentences from the novel are pre-
sumably least similar to the training data, which are
mostly from the WSJ-corpus. Indeed, most models
at MRP 2019 have lower scores on Lpps than on
All Data. We will have more to say about this in
the next section on our experimental results.

Metrics MRP 2019 used two metrics to evaluate
the models: the standard SMATCH scorer (Cai and
Knight, 2013) included in the open-source mtool
software (the Swiss Army Knife of Meaning Repre-
sentation) 2, and an MRP 2019 specific scorer that
is similar to SMATCH but can compare two mean-
ing representation graphs (the ground truth and the
model output) according to certain fine-grained at-
tributes such as edges, node labels and so on. We’ll
mainly use the SMATCH metric but also give MRP
metric for the Lpps test set. We refer the reader to
Oepen et al. (2019) for more details on MRP 2019
datasets and metrics.

4.2 Results

Results on Different Structures Our SMATCH

experimental results are summarized in Table 1.
To see the effects of different encodings of
EDS graphs, we tried five EDS-enhanced sys-
tems. Among the five, three use only GCNs
([G1],[G2],[G3]), from single layer to three lay-
ers, and two with a single BiLSTM layer plus one
or two GCN layers ([LG1],[LG2]). As can be seen
from Table 1, LG1 achieves the highest F1 score,
outperforming Amazon (Cao et al., 2019), the best
overall AMR parser at MRP 2019.

We note that all our five EDS-enhanced systems
perform better than HIT-SCIR, our reference base-
line model. Interestingly, the number of GCN lay-
ers matters and it’s not necessarily the more the
better. The reason for GCN performance degrada-
tion in our work is possible to be over-smoothing,
which was discussed in previous work (Li et al.,
2018).

Among the three with GCN layers only
([G1],[G2],[G3]), the best is G2. When BiLSTM
is added, one layer of GCN ([LG1]) is better than
two ([LG2]). It’s possible there is some theoreti-
cal explanation for this but we suspect it also has
something to do with the dataset. For example, for

2https://github.com/cfmrp/mtool

All Data, the F1 score of BiLSTM plus one layer
of GCN is the same as the one with two layers.

Results on Lpps Some interesting observations
can be made on the Lpps test set. As we mentioned,
this test set contains 100 random sentences from
the book The Little Prince. These sentences seem
to be quite different from those in the training set
given at MRP 2019. So not surprisingly, most
models have poorer performance on this test set
except for Saarland (Donatelli et al., 2019) which
somehow performs better in this test set than the
All Data set. As for HIT-SCIR, its performance on
Lpps is a lot worse than that on All Data. What
is worthwhile noting is that our models, which are
basically HIT-SCIR enhanced with EDS in various
ways, boost its performance on Lpps significantly.
Our best model is even better than Saarland on this
test set. Compared to HIT-SCIT, it increases its F1
scores by 4.6% (from .680 to .726) on Lpps while
only 1.1% on All Data (from .725 to .736). So the
extra EDS information really pays off on this test
set.

SMATCH is a general tool for computing the
overall differences between two answers. To give a
more fine-grained comparison between two mean-
ing representations, MRP has its own scorer to
compute what are called the Tops, Labels, Proper-
ties, Edges, and All scores, where the All scores
are close to the SMATCH score. Table 2 gives MRP
F1 scores for the Lpps test set for our baseline
model HIT-SCIR and our EDS-enhanced models.
Again we see that our models improve the perfor-
mance of the baseline model significantly in all
subtasks, especially in Labels and Properties. For
F1 score on Tops, Labels, Properties, the model
LG1 performs best, 5%, 6% and 9% improvement
respectively. Whereas, G2 performs best in Edge
F1 score, about 3% improvement.

Our model can handle these ”out of domain”
cases better because we have accurate EDS parsing
for them. Consider the verb ”look” in the sen-
tence ”I shall look as if I were suffering.” In the
baseline model, the predicted AMR node for it
is ”look-01”, which is wrong. Our model with
the extra information from EDS correctly labels
it ”look-02”. The possible reason why the base-
line model selects ”look-01” is that ”look-01” ap-
pears nearly twice as often as ”look-02” in train-
ing data: the former 198 times and the latter 103.
However, the EDS subgraph for the phrase ”sb.
look as if ” is node(pron)-edge(arg1)-node(look-v)-

https://github.com/cfmrp/mtool
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System Precision Recall F1
All Data Lpps All Data Lpps All Data Lpps

Amazon (Cao et al., 2019) .75 .70 .71 .71 .730 .704
Saarland (Donatelli et al., 2019) .70 .73 .63 .71 .661 .722
SJTU-NICT (Li et al., 2019) .75 .71 .68 .69 .714 .696
Suda-Alibaba (Zhang et al., 2019b) .73 .66 .70 .69 .713 .674

HIT-SCIR (Che et al., 2019) .77 .71 .69 .65 .725 .680

+EDS (GCNs, K=1)[G1] .787 .738 .683 .671 .731 .703
+EDS (GCNs, K=2)[G2] .780 .763 .691 .689 .733 .724
+EDS (GCNs, K=3)[G3] .783 .752 .689 .674 .733 .711
+EDS (BiLSTM+GCNs, K=1)[LG1] .785 .770 .692 .687 .736 .726
+EDS (BiLSTM+GCNs, K=2)[LG2] .785 .774 .690 .678 .735 .723

Table 1: SMATCH scores on the evaluation data, ”All Data” means results on all evaluation data and ”Lpps” is
results on 100 sentences of The Little Prince. In this table, the top part is the official results for four systems
achieving competitive results in MRP 2019; the middle part is the results for our baseline model; the bottom part
”+EDS” are our proposed EDS-enhanced models. For example, ”GCNs, K=1” means EDS graph encoder consists
of one GCN layer, denoted as [G1]; ”BiLSTM+GCN, K=2” represents EDS graph encoder is composed of one
BiLSTM layer and two GCN layers, denoted as [LG2].

System
Tops Labels Properties Edges All

P R F P R F P R F P R F P R F

HIT-SCIR .81 .81 .81 .78 .74 .76 .51 .57 .54 .66 .56 .61 .722 .660 .689
+EDS [G1] .84 .84 .84 .81 .77 .79 .77 .48 .59 .65 .57 .61 .746 .678 .710
+EDS [G2] .82 .84 .83 .83 .78 .81 .76 .52 .62 .69 .59 .64 .771 .697 .732
+EDS [G3] .83 .84 .83 .81 .77 .79 .73 .50 .59 .68 .58 .63 .761 .682 .720
+EDS [LG1] .86 .86 .86 .85 .79 .82 .80 .52 .63 .68 .58 .62 .779 .695 .734
+EDS [LG2] .83 .85 .84 .85 .78 .81 .84 .48 .61 .69 .58 .63 .783 .686 .732

Table 2: MRP scores of Lpps AMR sub tasks. In this table, HIT-SCIR is our baseline model (Che et al.,
2019). ”+EDS(G1)” to ”+EDS(LG2)” correspond to the EDS-enhanced model ”+EDS(GCNs, K=1)” to
”+EDS(BiLSTM+GCNs, K=2)” in Table 1 according to the indexes.

edge(arg1)-node(as+if), which suggests ”look-02”.
EDS graphs often encode multiple tokens as one
node, and this helps predict edges more accurately.
An example is ” blow v away” in ”The wind blows
them away.” The baseline model predicts the edge
label between ”blow” and ”away” as ”:ARG2”,
whereas the gold answer is ”:direction”, which can
be predicted by EDS-enhanced model. Here we
believe the EDS subgraph ”node( blow v away)-
edge(contain)-node(away)” affects the final result.

Results on gold EDS annotations Finally, we
notice that MRP provided gold EDS annotation for
Lpps test data. We tried our models using these
gold EDS annotations on the Lpps test set, and
observed that this actually resulted in a minor re-
duction in F1 scores, around 0.0001 worth than the

model using silver EDS annotations. The reason
the gold label actually performed a bit worse is be-
cause the model was trained using the actual EDS
parsing results, so seems to ”adapted” to the bias
of the EDS parser used.

As a footnote, we remark here that we are aware
of the new results on AMR parsers at MRP 2020
that were released in late November 2020. This
work was done prior to MRP 2020. While MRP
2020 also used Lpps as a test set, the results there
and our results here are not directly comparable as
they were done using different training sets. Fur-
thermore, the main purpose of this paper is about
incorporating EDS graphs into AMR parsing, so
the comparison with the baseline model is more
meaningful.
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5 Conclusions

In this study, we incorporate the EDS, a meaning
representation that is more accessible than AMR,
to improve the performance of AMR parsing. To
encode EDS graphs for AMR parsing, we used
both LSTM and GCN layers. As a case study, we
enhanced a transition-based AMR parser with EDS
graphs, and showed that on the AMR benchmarks
that the baseline model already performs well, our
EDS-enhanced parsers can further improve its per-
formance. The improvements are especially no-
ticeable on the Lpps (The Little Prince) test set
where the baseline parser performs poorly and lags
behind other AMR parsers at MRP 2019. In fact,
on the Lpps test set, our EDS enhanced parsers
outperform even the best one submitted there.

We can also see some other implications of this
work. For us, the ultimate goal of semantic parsing
is to use it in downstream tasks such as question
answering, reasoning, and knowledge extraction
from texts. Given that almost all meaning represen-
tations are graph-based, we believe our encoding
of EDS graphs with LSTM and GCN layers can
be applied in these downstream tasks. We are cur-
rently exploring this as a future work. Another
insight from this work is about possible connec-
tions among different meaning representations. We
have demonstrated the usefulness of EDS graphs
for AMR parsing. It is likely they can also be useful
for other frameworks, even vice versa. More gen-
erally, whether there is a universal semantic parser
that can take advantages of information from each
framework is an interesting question worth investi-
gating.
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Table 3 contains the values of hyper-parameters.

HYPER PARAMETER VALUE

Word Embeddings
source BERT
dim 768

Model Parameters
Action dim 128
Entity dim 64
Relation dim 64
Hidden dim 256
Dropout 0.2
Layer dropout 0.2
Recurrent dropout 0.2
EDS nodes embedding 64
EDS LSTM hidden dim 64
EDS GCN hidden dim 128
Trainer Parameters
Learning rate scheduler slanted triangular
Gradual unfreezing True
Cut Frac 0.1
Ratio 32
Base learning rate 1× 10−3

BERT learning rate 5× 10−5

Batch size 6
Epoch 20
Gradient clipping 5
Gradient norm 5
Optimizer Adam
β1, β2 0.9,0.999

Table 3: Hyper-parameters settings
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