
Proceedings of the 10th Conference on Lexical and Computational Semantics, pages 116–128
August 5–6, 2021, Bangkok, Thailand (online) ©2021 Association for Computational Linguistics

116

Evaluating Universal Dependency Parser Recovery of Predicate
Argument Structure via CompChain Analysis

Sagar Indurkhya
LIDS/IDSS, Dept. of EECS

MIT
32 Vassar St.

Cambridge, MA 02139
indurks@mit.edu

Beracah Yankama
LIDS/IDSS, Dept. of EECS

MIT
32 Vassar St.

Cambridge, MA 02139
beracah@mit.edu

Robert C. Berwick
LIDS/IDSS, Dept. of EECS

MIT
Room 32D-728

32 Vassar St.
Cambridge, MA 02139

berwick@csail.mit.edu

Abstract

Accurate recovery of predicate-argument
structure from a Universal Dependency (UD)
parse is central to downstream tasks such as
extraction of semantic roles or event represen-
tations. This study introduces compchains, a
categorization of the hierarchy of predicate de-
pendency relations present within a UD parse.
Accuracy of compchain classification serves
as a proxy for measuring accurate recovery of
predicate-argument structure from sentences
with embedding. We analyzed the distri-
bution of compchains in three UD English
treebanks, EWT, GUM and LinES, revealing
that these treebanks are sparse with respect to
sentences with predicate-argument structure
that includes predicate-argument embedding.
We evaluated the CoNLL 2018 Shared Task
UDPipe (v1.2) baseline (dependency parsing)
models as compchain classifiers for the EWT,
GUMS and LinES UD treebanks. Our results
indicate that these three baseline models
exhibit poorer performance on sentences with
predicate-argument structure with more than
one level of embedding; we used compchains
to characterize the errors made by these
parsers and present examples of erroneous
parses produced by the parser that were identi-
fied using compchains. We also analyzed the
distribution of compchains in 58 non-English
UD treebanks and then used compchains to
evaluate the CoNLL’18 Shared Task baseline
model for each of these treebanks. Our
analysis shows that performance with respect
to compchain classification is only weakly
correlated with the official evaluation metrics
(LAS, MLAS and BLEX). We identify gaps
in the distribution of compchains in several of
the UD treebanks, thus providing a roadmap
for how these treebanks may be supplemented.
We conclude by discussing how compchains
provide a new perspective on the sparsity of
training data for UD parsers, as well as the
accuracy of the resulting UD parses.

1 Introduction

The Universal Dependencies (UD) project
(De Marneffe et al., 2014; Nivre et al., 2016) is a
multilingual annotation scheme for dependency
grammars that has gained wide usage (Zeman
et al., 2017; Kong et al., 2017; Qi et al., 2020).
To this extent, automatically identifying whether
a dependency parse1 is correct or incorrect,
as well as the potential source of such errors,
becomes an important part of NLP pipelines. For
example, such identification can prevent errors
from propagating to downstream applications
such as the identification of predicate-argument
structure, involved in semantic role labeling and
sentiment analysis.2 Furthermore, embedding
of sentences within sentences, and in particular
embedding of predicate-argument structures within
one another, is one of the ways in which humans
have the capability to generate an infinity of
different <sentences, meaning> pairings, and so
it is important to evaluate whether a UD parser
can accurately recover the predicate-argument
structure of sentences with embedding. Thus,
characterizing the limits of how accurately and
consistently UD parsers assign predicate-argument
structure in the context of correct UD annotation
also becomes important (Nivre and Fang, 2017;
Oepen et al., 2017; Fares et al., 2018; White et al.,
2016; Reddy et al., 2017; Mille et al., 2018). That
is the goal of this study.

In this study we introduce compchains, a catego-
rization of the hierarchy of predicate dependency
relations present within a Universal Dependency
(UD) parse; this categorization serves as a proxy for

1This study only considers dependency parse trees anno-
tated with UD. We refer to such a parse tree as a UD parse
tree.

2Furthermore, (Surdeanu et al., 2003) has demonstrated
that correct annotation of predicate-argument structure can
improve the performance of information extraction systems.



117

predicate-argument structure. We use compchains
to evaluate the accuracy of three (English) CoNLL
2018 Shared Task baseline models for the UDPipe
dependency parser (Zeman et al., 2018). We found
that the baseline model for the EWT UD treebank
was more accurate than the baseline models for
the LinES and GUM UD treebanks. We then use
compchains to characterize the errors (relevant to
predicate-argument structure) made by these mod-
els. We found that the accuracy of all three models
dropped significantly when restricting the test set to
samples with predicate-argument structure with em-
bedding. Finally, we extended the analysis above
to languages other than English, computing the dis-
tribution of compchains in 58 UD treebanks and
evaluating the performance of the corresponding
CoNLL 2018 Shared Task baseline models (for the
UDPipe parser) as compchain classifiers. We con-
clude by discussing deficiencies in the distribution
of predicate-argument structure with embedding
present in the UD treebanks, as identified by our
analysis.

2 Related Work

This section reviews prior work on the evaluation
of (Universal) dependency parsers and the charac-
terization of the errors these parsers make. The
CoNLL Shared Task is a well established bench-
mark for evaluating the performance of multilin-
gual (Universal) dependency parsers (Buchholz and
Marsi, 2006; Nivre et al., 2007; Zeman et al., 2017,
2018). The task uses a number of metrics to eval-
uate the accuracy of the parser including: UAS
(unlabeled attached score), LAS (labeled attach-
ment score), CLAS (Content-word LAS) (Nivre
and Fang, 2017), MLAS (Morphologically-aware
LAS) and BLEX (BiLEXical Dependency Score).
However, these metrics rely on the attachment ac-
curacy (of dependency relations)3 and do not take
into account that errors cascade – i.e. if the parser
incorrectly attaches a dependency relation, it may
then be forced to make yet another incorrect at-
tachment (Ng and Curran, 2015), thus making it
difficult to identify the provenance of the error.

In light of this, efforts to further characterize the
errors have proceeded in several directions. One
direction involves studying whether and how the
parsing errors are a result of the design of the de-
pendency parser: (McDonald and Nivre, 2007)

3E.g. UAS (unlabeled attachment score) and LAS (labeled
attachment score).

characterizes and compares the errors produced
by graph-based dependency parsers (e.g. the MST-
Parser by (McDonald and Pereira, 2006); see also
(Kiperwasser and Goldberg, 2016; Cheng et al.,
2016; Zhang et al., 2016)) and transition-based de-
pendency parsers (e.g. the MaltParser by (Nivre
et al., 2006)); (Zhang and Clark, 2008) shows how
the two approaches to dependency parsing may be
combined and documents the resulting improve-
ment in performance.

An alternative direction involves characterizing
the errors in the context of linguistic theory – e.g.
(Kummerfeld et al., 2012) has introduced a method
for classifying erroneous parse trees by repairing
the tree with a series of tree-transformations, with
each tree-transformation having a linguistic inter-
pretation; (Mahler et al., 2017) has shown that it
is possible to systematically break NLP systems
for sentiment analysis by editing sentences with
linguistically interpretable transformations. In this
study we pursue this latter direction, opting to char-
acterize erroneous parse trees by classifying their
predicate-argument structure using compchains.

3 Compchains

Within a UD parse tree, predicate-argument struc-
ture4 is encoded by core argument dependency re-
lations, along with the special dependency relation
root.5 The core-argument dependency relations fall
into two classes: predicate relations and nominal
relations. In this study, we limit our attention to
the two predicate dependency relations that encode
embedding of clausal complements: (i) ccomp – a
dependent, clausal complement, and (ii) xcomp – a
clausal complement lacking a subject; the subject
is determined by an argument that is external to the
xcomp, usually the object (or otherwise subject) of
the next higher clause.6 We will focus on catego-
rizing sequences of these two dependency relations
(with POS marked as Verb) that originate from the
root of a dependency tree (intuitively, the spine of
the predicate-argument structure). This notion is
formalized as follows:
Definition. A compchain is a finite sequence of
dependency relations that traces a path starting at

4See (Hale, 1993; Hale and Keyser, 2002) for further ref-
erence on predicate-argument structure.

5See universaldependencies.org/u/dep/ for
more details.

6xcomp is often used to model control/raising constructions
in which an argument in the embedded clause establishes a
syntactic relation with the predicate in the matrix clause.

universaldependencies.org/u/dep/


118

Figure 1: Examples of compchain classifications (left) for eight UD parses (right) produced by the UDv2.2 EWT
baseline model using UDPipe 1.2. In each parse, the node with no incoming dependency relations is the root.
Sentence 8 is classified as the /0 compchain because the root is not marked as VERB.

the root node of a dependency parse tree and pass-
ing through only xcomp and ccomp dependency
relations, subject to the constraints that: (i) every
node in a compchain must have the POS tag of
Verb; (ii) no node in a compchain should have a
child dependency relation with POS Verb that is
either an xcomp or ccomp and is not in the com-
pchain as well.7 We denote a compchain by listing
the sequence of dependency relations, starting from
the root of the tree, using the notation: R = root;
X = xcomp; C = ccomp. E.g. we would denote
the compchain [root → xcomp → ccomp] as RXC.
See Figure-1 for examples of UD parses and their
compchain classifications.

One way to evaluate (indirectly) how well a
UD parser can identify predicate-argument struc-
ture for sentences in a UD treebank is to evalu-
ate whether the UD parse assigned by the parser
to a sentence in the treebank has the same com-
pchain as the compchain associated with the gold

7This constraint serves to ensure that if a UD parse tree has
a compchain, it is unique and may be derived deterministically.
This constraint also implies that some valid UD parse trees do
not have a compchain – e.g. a parse in which there are two
xcomp dependency relations that are both children of the same
node. We use the symbol /0 to denote that a UD parse tree has
no compchain.

UD parse listed for that sentence (in the treebank);
we refer to this task as compchain classification.
Performance on the compchain classification task
is a proxy for performance on the task of classi-
fying predicate-argument structure that includes
predicate-argument embedding. If a UD parser
performs poorly on the compchain classification
task, predicate-argument structure cannot be reli-
ably recovered from an (output) UD parse tree via
top-down traversal of the sequence of dependency
relations that forms the associated compchain. See
Figure-2 for examples of incorrect compchain clas-
sifications that reflect the parser recovering incor-
rect predicate-argument structure.

4 Experiments

4.1 Evaluation of English UD Treebanks

We evaluated the performance of the CoNLL’18
shared task baseline (parsing) models for English
as compchain classifiers using three UD (v2.2)
English treebanks: the English Web Treebank
(EWT), with a total of 16,622 sentences (Silveira
et al., 2014; Schuster and Manning, 2016); the En-
glish side of the English-Swedish Parallel Treebank
(LinES), with a total of 4,564 sentences (Ahren-



119

Figure 2: Examples of compchain classifications (left) for four UD parses (right). The parses in (1) and (2) are
for the sentence “How come no one bothers to ask any questions in this section?” The parses in (3) and (4) are
for the sentence “Even the least discriminating diner would know not to eat at Sprecher’s.” Both sentences were
taken from the UDv2.2 English Web Treebank. (1) and (3) are gold parse from the treebank whereas (2) and (4)
are produced by UDPipe using the CoNLL’18 baseline language model for UDv2.2 EWT. Both (2) and (4) are
incorrectly classified, reflecting that these two parses encode misinterpretations (compared to the interpretations in
their respective gold parses – i.e. (1) and (3)).

berg, 2007); and the GUM treebank, with a total of
4,390 sentences (Zeldes, 2017).8

We began by computing the distribution of com-
pchains in each of the sections (train, dev, test) for
each of the treebanks (see Table-1). We observed
that although the training section of the EWT (UD)
treebank includes a non-negligible number of UD
parse trees that are classified (according to their
corresponding Gold UD parse) as compchains with
three or more dependency relations, the test sec-
tion of the EWT (UD) treebank does not. This
suggests that performing well on the task of pars-
ing the test section of the EWT (UD) treebank
need not indicate competency in parsing sentences
with predicate-argument embedding of degree two
or more. We also observed that the LinES and
GUM treebanks have a negligible number of parse
trees (across all sections) that are classified as com-
pchains with three or more dependency relations –
i.e. RCC, RCX , RXC and RXX .

Next, we evaluated the CoNLL’18 shared task
baseline (parsing) models9 for the three treebanks
as compchain classifiers. We used UDPipe (v1.2), a
transition-based non-projective dependency parser,
to parse the test section of each of the three tree-

8We used the pretrained word embeddings supplied with
the CoNLL Shared Task for each of the three treebanks; these
embeddings were produced with word2vec (Mikolov et al.,
2013b,a).

9These UDPipe models were trained on the training section
of the UDv2.2 EWT/LinES/GUM respectively. We also used
the tagging and tokenization pipeline provided by UDPipe.

banks using the corresponding baseline model
(Straka and Straková, 2017). We then classified
the compchain of each UD parse and compared it
to the compchain associated with the correspond-
ing gold parse. We report the F-measures for this
classification task in Table 2. We observed that the
baseline model for EWT had the best performance
as a compchain classifier. We also computed the
per-compchain F-measures and observed that for
all three baseline models, their per-compchain F1-
score for RX was notably better than for RC. Here
we observed a steep falloff in per-compchain F1-
score as the number of dependency relations in a
compchain increases. This suggests that either the
parsers were not trained on enough examples of
sentences with predicate-argument embedding, or
that they did not adequately generalize from the
limited number of examples that they were trained
on.

Finally, we computed and analyzed the confu-
sion matrix (i.e. error matrix) for each of the
three baseline models, evaluating each model on
the test section of its associated treebank. (see
Figure 3) In each confusion matrix, off-diagonal
entries count instances of parses with erroneous
predicate-argument structure as indicated by the
predicted compchain differing from the actual com-
pchain (if two parse trees have different com-
pchains, then their predicate-argument structure
must differ as well). On-diagonal entries count
instances of parses with correctly classified com-



120

Compchain EWT LinES GUM

Train Dev Test Train Dev Test Train Dev Test

/0 5230 985 1065 591 191 224 879 201 268
R 5500 815 806 1767 608 580 1661 413 419
RC 758 79 79 135 43 43 171 43 33
RX 808 100 104 202 65 50 158 43 41
RCC 47 4 6 1 0 2 8 1 2
RCX 94 7 9 17 1 6 10 2 1
RXC 48 6 3 10 2 6 6 0 2
RXX 39 2 2 12 2 3 13 3 3

Total 12543 2002 2077 2738 912 914 2914 707 769

Table 1: Distributions of compchains across the three treebanks. Counts for compchains with four or more depen-
dency relations are not listed here because their presence in the three treebanks was negligible, although they are
included in the “Total” count. Although there are very few compchains with three or more dependency relations
(e.g. RCC) in the test sections of the treebanks, there are a non-negligible number of them in the training sections.

Compchain EWT LinES GUM

F1 Prec. Rec. Support F1 Prec. Rec. Support F1 Prec. Rec. Support

/0 0.94 0.95 0.94 1065 0.74 0.72 0.75 224 0.85 0.81 0.9 268
R 0.89 0.89 0.9 806 0.85 0.87 0.83 580 0.85 0.89 0.81 419
RC 0.73 0.72 0.73 79 0.43 0.44 0.42 43 0.54 0.53 0.55 33
RX 0.79 0.8 0.79 104 0.53 0.44 0.66 50 0.64 0.57 0.73 41
RCC 0.67 0.67 0.67 6 0 0 0 2 0.4 0.33 0.5 2
RCX 0.4 0.5 0.33 9 0.25 0.5 0.17 6 0.5 0.33 1 1
RXC 0.33 0.33 0.33 3 0.55 0.6 0.5 6 0 0 0 2
RXX 1 1 1 2 0.44 0.33 0.67 3 0.4 0.5 0.33 3

W. Avg. 0.9 0.9 0.9 2077 0.78 0.78 0.77 914 0.82 0.83 0.82 769

Table 2: F-measures for the compchain classification of the parse trees in the EWT, LinES and GUM (UD) tree-
banks. The left most column refers to the true compchain from the appropriate UD treebank. Each row has the
F1-score for the evaluation of the parser (as a compchain classifier) on sentences in the treebank that had the
listed compchain, except for the bottom most row, which is the total (weighted) F1-score over all compchains – i.e.
performance as a multi-way classifier.

Figure 3: Confusion Matrices for Compchain Classification of the EWT, GUM and LinES UD (English) treebanks
using their respective CoNLL’18 UDPipe Baseline Models.

pchains, which indicates that the parse may be cor-
rect (though it may well have errors not related to
predicate-argument structure). We observed, for all
three models, that compchains of length two or less
were very rarely misclassified as compchains of
length three or more, and that compchains of length

two were often misclassified as the R compchain
(see Figure-2 for an example of such a misclassi-
fication). We also observed that in the case of the
baseline model for LinES, the compchain for RC is
frequently misclassified as RX , but the compchain
RX is rarely misclassified as RC; this asymmetry



121

may reflect the difference in number of training
examples in the LinES treebank – 135 in the case
of RC and 202 in the case of RX (see Table-1).

4.2 Multilingual Evaluation of UD Treebanks
We also used the compchain classification task to
evaluate the CoNLL’18 shared task baseline mod-
els (and the respective UD treebanks they were
trained on) for languages other than English; this
was motivated by the observation that since the
UD treebanks are derived from a variety of textual
sources, and thus have varying compchain distribu-
tions, we can use them collectively to evaluate and
characterize the performance of the UDPipe depen-
dency parser under various training conditions.

Figure 4 presents the distribution of compchains
across 61 UD treebanks (including the three En-
glish treebanks analyzed earlier in this study).10

Our analysis reveals that: (i) the UD treebanks for
Hindi and Urdu have no instances of the compchain
RC in either the training or test sections; (ii) the
UD treebanks for Japanese, Korean, Turkish and
Uyghur have no instances of the compchain RC in
either the training or test sections; (iii) the UD tree-
banks for Hindi, Japanese, Turkish and Uyghur do
not include any instances of compchains of length
three or more (i.e. RXX , RCC, RXC, or RCX) in
either the training or test sections.

We computed the F1-scores for the performance
of each baseline model on the compchain classifica-
tion task.11 The F1-score for length-1 compchains
is very weakly correlated with the F1-score for
length-2 compchains, with R2 = 0.265 (see Fig-
ure 5), and F1-scores for the two length-2 com-
pchains (RC and RX) are also very weakly corre-
lated, with R2 = 0.177 (see Figure 6). This suggests
that performance in recovering predicate-argument
structures with differing embedding structures is
largely unrelated and should be measured explicitly,
just as the compchain classification task does. Ad-
ditionally, we observe (as we did with the models
trained on English treebanks) a rapid decline in the
per-class F1-score as the length of the compchain
increases, in particular for compchains of length
two or more. (See Figure 7) This is revealing be-
cause, although the lack of compchains of length

10See Table 4 in the appendix for a complete listing of the
distribution of compchains in the Test and Training treebank
for each of the 61 languages.

11See Table-5 for a complete listing of performance on the
compchain classification task for each UD treebank using the
associated baseline model, including a breakdown of perfor-
mance per-compchain.

two or more in the UD treebanks suggests that we
should not necessarily expect a dependency parser
trained on the treebank to generalize out of the
training domain, there is empirical evidence that
humans do have the capacity to acquire a grammar
from sentences with at most degree-1 embedding
(corresponding to compchains of length 2) and then
later correctly parse sentences with a degree of em-
bedding of two or more (Wexler and Culicover,
1980; Morgan, 1986; Lightfoot, 1989); thus, the
poor performance on compchains of length three
or more suggests that the CoNLL 2018 Shared Task
baseline models are not able to generalize beyond
the distribution of syntactic structures they were
trained upon, in contrast to human learners.

4.2.1 Impact of Word Ordering
Word ordering data (i.e. head-directionality) for
each of the 61 languages in the UD treebanks was
obtained from the WALS Online database (Dryer,
2013); we retrieved this information because the
word ordering dictates whether a predicate pre-
cedes or succeeds its complement with respect to
the linear ordering of the words in a sentence, and
we wanted to understand whether this had an im-
pact on the parser’s performance on the compchain
classification task. (See Table-5 in the appendix for
the word-order of each language) The 47 languages
with verb-object (VO) ordering had a median and
mean weighted average F1-score of 0.85 and 0.88
respectively; the 18 languages with object-verb
(OV) ordering had a median and mean weighted
average F1-score of 0.86 and 0.85 respectively. It
thus appears that the word-ordering does not ap-
pear to impact the weighted average F1-score. The
F1-scores associated with compchains of length
2 (i.e. RX and RC) tell a different story: in the
case of the RC compchain, the median F1-scores
for verb-object and object-verb were 0.68 and 0.55
respectively, and in the case of the RX compchain,
the median F1-scores for verb-object and object-
verb were 0.72 and 0.42 respectively; thus for both
compchains of length 2, models trained on verb-
object ordered languages performed significantly
better than models trained on object-verb ordered
languages.12 Given that the orderings of verb-
object (i.e. head-initial) and object-verb (i.e. head-
final) control whether a language will be associated
with right-branching or left-branching structures
respectively, our results suggest that the UDPipe

12These results also hold when comparing the mean F1-
scores for compchains of length 1.



122

Figure 4: Distribution of Compchains in UD Training and Test Treebanks. 59 of the 61 languages had degree-2
compchains present in the test treebank; the languages with no degree-2 compchains in the test treebank were
turkish-imst and urdu-udtb.

Figure 5: F1-scores for Length 2 vs. Length 1 com-
pchains for each language in the UD treebank.

Figure 6: F1-scores for Length 2 compchains (i.e. RC
and RX) for each language in the UD treebanks.

parser has difficulty dealing with left-branching
structures.

4.2.2 Impact of Sentence Length
We carried out a regression analysis to investigate
the relationship between the correctness of com-
pchain classification and sentence length; this was

Figure 7: Distributions of F1-scores for length-3 com-
pchains over all UD languages. For each length-3 com-
pchain, F1-scores were reported for languages that had
that compchain present in the test-treebank.

motivated by the observation that sentences with
higher degrees of embedding, and thus longer com-
pchains, tend to be longer sentences. We fitted
a logistic function for each sentence in the test
treebank, with the log of the sentence length (i.e.
the number of tokens including punctuation) serv-
ing as the independent variable, and the (binary)
dependent variable being whether the compchain
associated with that sentence was correctly classi-
fied. We interpreted a good-fitting logistic function
to indicate that compchain accuracy is dependent
on sentence length. To evaluate the fit of the logis-
tic function, we computed the Area Under Curve
(AUC) measure of the Receiver Operator Charac-
teristic (ROC) curve for the fitted logistic function.
Figure 8 presents the distribution of AUCs for the
test corpus of each of: (a) the 43 UD treebanks for
languages with verb-object (VO) word-ordering,
and (b) the 18 UD treebanks for langauges with



123

Figure 8: Histogram of Area-under-Curve (AUC) of
Receiver Operator Characteristic (ROC) curve for Lo-
gistic Regression model of per-Sentence Compchain
Classification Accuracy vs. log(Sentence Length). The
AUC of ROC curve was computed for each UD test
treebank.

object-verb (OV) word-ordering. We observe that
the AUC for the majority of the treebanks falls
between 0.55 and 0.65, and virtually none of the
AUCs surpass 0.7, which is generally considered
a minimum threshold for a binary-classifier to be
considered accurate. Additionally, we observe that
the OV languages tend to have a slightly higher
AUC than the VO languages. We conclude that
accuracy of compchain classification is weakly cor-
related with the log of the length of the sentence,
and that this correlation is slightly higher for OV
languages than for the VO languages. (Similar re-
sults were obtained when the analysis was carried
out directly on the length of the sentence.)

4.2.3 Comparison with Other Eval. Metrics
In order to understand whether the compchain met-
ric is simply a proxy for one of the three official
evaluation metrics (LAS, BLEX and MLAS), we
computed the pairwise linear correlation between
each of the metrics for each of the 61 UD tree-
banks.13 Table 3 presents the coefficient of de-
termination for each pairing of the metrics. We
observe that although LAS, MLAS and BLEX are
all highly correlated with one another, they are
weakly correlated with the compchain-metrics (i.e.
weighted avg. of F1-score over all compchains and
per-compchain F1-scores); notably, performance
on compchain classification for RX is very weakly
correlated with LAS, MLAS and BLEX (R2 < 0.1).

13LAS, MLAS and BLEX scores for CoNLL
Shared Task baseline models were obtained from
https://universaldependencies.org/
conll18/baseline.html#baseline-results.

LAS MLAS BLEX

Compchain:W. Avg. 0.402 0.267 0.359
Compchain:R 0.329 0.180 0.277
Compchain:RC 0.399 0.305 0.388
Compchain:RX 0.074 0.089 0.096

LAS 1.000 0.780 0.918
MLAS 0.780 1.000 0.822
BLEX 0.918 0.822 1.000

Table 3: Coefficient of determination (R2) for pair-
wise (linear) correlations of metric-scores over all
CoNLL’18 Shared Task baseline models.

This suggests that the compchain metric is mea-
suring an aspect of the parser’s performance that
is not brought to the fore by any of the three offi-
cial evaluation metrics, and that a baseline model
having a good LAS, MLAS or BLEX score does not
necessarily indicate that the model will correctly
predict the embedding structure of a sentence with
even a single level of embedding.

5 Conclusion

In this study, we defined compchains and used them
to evaluate how accurately a UD parser can parse
sentences with predicate-argument structure that
contains embedded clauses. We also used com-
pchains to classify the errors, relevant to predicate-
argument structure with embedding, made by a
UD parser. Overall model performance on the com-
pchain classification task (as measured by weighted
F-measure) was found to be dominated by parse
trees in the training set with no embedding (com-
pchain R); closer inspection of per-compchain per-
formance revealed that parser accuracy dropped
precipitously as the degree of embedding in the
predicate argument structure (i.e. length of com-
pchain) increased. Finally, our results indicate
that UD treebanks have very few parse trees with
degree of embedding (i.e. length of compchain)
greater than two. This presents an opportunity: if
the test sets of the UD treebanks were augmented
with parses with predicate-argument structure with
degree of embeddings greater than two, then UD
parsers can be evaluated in terms of their capacity
to generalize from constructions (in the training
set) with (mostly) low degree of embedding, just
as a child must in some models of first language
acquisition (Wexler and Culicover, 1980; Berwick,
1985; Lightfoot, 1989).

https://universaldependencies.org/conll18/baseline.html#baseline-results
https://universaldependencies.org/conll18/baseline.html#baseline-results


124

Acknowledgments

We would like to thank three anonymous reviewers
for their valuable feedback and suggestions.

References
Lars Ahrenberg. 2007. Lines: An english-swedish par-

allel treebank. In Proceedings of the 16th Nordic
Conference of Computational Linguistics (NODAL-
IDA 2007), pages 270–273.

Robert C. Berwick. 1985. The acquisition of syntactic
knowledge. MIT press.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the tenth conference on computa-
tional natural language learning, pages 149–164.
Association for Computational Linguistics.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. arXiv preprint
arXiv:1608.02076.

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D Manning. 2014. Universal
stanford dependencies: A cross-linguistic typology.
In LREC, volume 14, pages 4585–4592.

Matthew S. Dryer. 2013. Order of subject, object and
verb. In Matthew S. Dryer and Martin Haspelmath,
editors, The World Atlas of Language Structures On-
line. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig.

Murhaf Fares, Stephan Oepen, Lilja Ovrelid, Jari
Bjorne, and Richard Johansson. 2018. The 2018
shared task on extrinsic parser evaluation: on the
downstream utility of english universal dependency
parsers. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 22–33.

Kenneth Hale. 1993. On argument structure and the
lexical expression of syntactic relations. In Ken
Hale and Samuel J. Keyser, editors, The view from
Building 20: Essays in linguistics in honor of Syl-
vain Bromberger. MIT Press.

Kenneth Locke Hale and Samuel Jay Keyser. 2002.
Prolegomenon to a theory of argument structure, vol-
ume 39. MIT press.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Lingpeng Kong, Chris Alberti, Daniel Andor, Ivan Bo-
gatyy, and David Weiss. 2017. Dragnn: A transition-
based framework for dynamically connected neural
networks. arXiv preprint arXiv:1703.04474.

Jonathan K Kummerfeld, David Hall, James R Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of er-
ror types in parser output. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1048–1059. Associa-
tion for Computational Linguistics.

David Lightfoot. 1989. The child’s trigger experience:
Degree-0 learnability. Behavioral and Brain Sci-
ences, 12(2):321–334.

Taylor Mahler, Willy Cheung, Micha Elsner, David
King, Marie-Catherine de Marneffe, Cory Shain,
Symon Stevens-Guille, and Michael White. 2017.
Breaking NLP: Using morphosyntax, semantics,
pragmatics and world knowledge to fool sentiment
analysis systems. In Proceedings of the First Work-
shop on Building Linguistically Generalizable NLP
Systems, pages 33–39, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL).

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 11th Conference of the European Chapter
of the Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Simon Mille, Anja Belz, Bernd Bohnet, and Leo Wan-
ner. 2018. Underspecified universal dependency
structures as inputs for multilingual surface reali-
sation. In Proceedings of the 11th International
Conference on Natural Language Generation, pages
199–209.

James L Morgan. 1986. From simple input to complex
grammar. The MIT Press.

Dominick Ng and James R Curran. 2015. Identify-
ing cascading errors using constraints in dependency
parsing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 1148–1158.

https://wals.info/chapter/81
https://wals.info/chapter/81
https://doi.org/10.18653/v1/W17-5405
https://doi.org/10.18653/v1/W17-5405
https://doi.org/10.18653/v1/W17-5405


125

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In LREC.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies, 22 May, Gothenburg Sweden, 135, pages 86–
95. Linköping University Electronic Press.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The conll 2007 shared task on depen-
dency parsing. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

Joakim Nivre, Johan Hall, Jens Nilsson, Svetoslav
Marinov, et al. 2006. Labeled pseudo-projective
dependency parsing with support vector machines.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 221–225.

Stephan Oepen, L Ovrelid, Jari Bjorne, Richard Johans-
son, Emanuele Lapponi, Filip Ginter, and Erik Vell-
dal. 2017. The 2017 shared task on extrinsic parser
evaluation towards a reusable community infrastruc-
ture. Proceedings of the 2017 Shared Task on Ex-
trinsic Parser Evaluation, pages 1–16.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Siva Reddy, Oscar Tackstrom, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal semantic
parsing. arXiv preprint arXiv:1702.03196.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In LREC, pages 23–28. Portorož,
Slovenia.

Natalia Silveira, Timothy Dozat, Marie-Catherine
De Marneffe, Samuel R Bowman, Miriam Connor,
John Bauer, and Christopher D Manning. 2014. A
gold standard dependency corpus for english. In
LREC, pages 2897–2904.

Milan Straka and Jana Straková. 2017. Tokenizing, pos
tagging, lemmatizing and parsing ud 2.0 with udpipe.
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 88–99.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and
Paul Aarseth. 2003. Using predicate-argument struc-
tures for information extraction. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics.

Kenneth. Wexler and Peter W. Culicover. 1980. Formal
principles of language acquisition. MIT Press.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal decompositional semantics on universal de-
pendencies. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1713–1723.

Amir Zeldes. 2017. The gum corpus: Creating mul-
tilayer resources in the classroom. Lang. Resour.
Eval., 51(3):581–612.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
dePaiva, Kira Droganova, Héctor Martínez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donca, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. Conll 2017 shared task: Multilingual pars-
ing from raw text to universal dependencies. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–19. Association for Computational
Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2016. Dependency parsing as head selection. arXiv
preprint arXiv:1606.01280.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. In Proceedings of the Conference

https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/K17-3001


126

on Empirical Methods in Natural Language Process-
ing, pages 562–571. Association for Computational
Linguistics.

A Appendix

Table-4 presents the distribution of compchains
across 61 UD treebanks (including the three
English treebanks analyzed earlier in this study).
Table-5 presents the F1-scores for the performance
of each baseline models on the compchain
classification task. The rows of Table 4 and Table 5
were seriated using the Google OR-Tools library so
that rows with similar values appear close together:
Table 4 is seriated so that languages with similar
compchain distributions are clustered together;
Table 5 is seriated so that languages with similar
F1-scores are clustered together.

Computing Infrastructure: All experiments
reported in this study were performed on a
MacBook Pro (Retina, 15-inch, Late 2013) with
a 2.3 GHz Intel Core i7 processor, and 16 GB of
1600 MHz DDR3 RAM. We used Python v3.7.9,
Pandas v1.2.1 and Matplotlib v3.2.1.

(The remainder of this page intentionally blank.
Please see the next page.)



127

Treebank Total R RC RX RCC RCX RXC RXX

vietnamese-vtb 1400/800 48.1/48.9 11.4/10.8 10.9/8.2 1.1/1.5 1.6/1.4 0.6/1.0 0.9/0.2
chinese-gsd 3997/500 52.6/53.4 11.1/11.4 10.0/8.6 1.2/0.6 1.5/1.0 1.1/0.8 0.9/0.4
catalan-ancora 13123/1846 65.0/66.5 10.1/7.9 5.8/6.1 0.6/0.2 0.6/0.5 0.2/0.1 0.2/0.2
serbian-set 2935/491 53.2/58.0 10.4/10.0 4.9/5.5 0.7/0.4 1.7/0.8 0.3/- -/-
spanish-ancora 14305/1721 59.5/58.8 12.2/13.5 5.3/5.5 0.8/0.5 0.9/0.8 0.1/- 0.1/0.2
greek-gdt 1662/456 62.1/59.9 13.0/9.9 5.6/5.0 1.0/0.4 1.1/0.7 0.4/0.7 -/-
galician-ctg 2272/861 58.5/57.6 14.0/13.6 1.8/1.3 2.2/1.4 0.2/0.6 0.1/- -/0.1
persian-seraji 4798/600 46.5/46.5 15.1/18.2 0.1/- 2.4/2.2 -/- -/- -/-
romanian-rrt 8043/729 72.4/71.9 10.1/12.1 1.5/2.3 0.7/1.2 0.1/- 0.0/- -/-
korean-kaist 23010/2287 61.3/61.1 8.3/6.8 0.1/- 0.3/0.2 -/- -/- -/-
bulgarian-btb 8907/1116 66.1/64.7 9.5/14.0 3.5/1.3 0.7/0.6 0.3/0.1 0.3/- 0.1/-
slovak-snk 8483/1061 66.1/59.8 8.2/2.1 4.6/3.3 0.3/- 1.0/0.5 0.4/0.1 0.0/-
portuguese-bosque 8329/477 58.1/59.3 7.6/8.4 4.5/2.5 0.5/0.2 0.6/0.4 0.3/- 0.3/-
latin-proiel 15906/1260 67.9/64.6 7.6/6.7 5.3/6.0 0.4/0.6 0.3/0.6 0.2/0.1 0.1/0.1
latvian-lvtb 5424/1228 62.3/60.7 7.7/7.2 6.2/4.8 0.4/0.2 0.7/0.9 0.5/0.7 0.1/-
czech-fictree 10160/1291 63.7/59.5 7.7/8.1 6.3/8.1 0.3/0.4 1.0/1.0 0.5/0.7 0.0/-
hebrew-htb 5241/491 62.5/61.7 6.5/3.7 6.8/6.1 0.2/- 0.7/1.0 0.1/- -/-
english-ewt 12543/2077 43.8/38.8 6.0/3.8 6.4/5.0 0.4/0.3 0.7/0.4 0.4/0.1 0.3/0.1
basque-bdt 5396/1799 72.5/74.1 5.8/5.3 5.9/5.3 0.1/0.1 0.7/0.8 0.3/0.4 0.1/-
swedish-lines 2738/914 63.3/65.4 6.5/6.0 5.7/6.2 0.2/0.1 0.6/0.4 0.3/0.4 0.2/0.3
english-gum 2914/769 57.0/54.5 5.9/4.3 5.4/5.3 0.3/0.3 0.3/0.1 0.2/0.3 0.4/0.4
ancient_greek-proiel 15015/1047 72.9/72.5 5.6/4.9 5.2/6.7 0.2/0.3 0.2/0.6 0.1/0.1 0.1/0.1
slovenian-ssj 6478/788 65.5/62.2 6.0/7.4 4.8/5.7 0.2/0.4 0.6/0.8 0.4/0.6 0.0/0.1
danish-ddt 4383/565 59.5/57.0 6.6/9.9 3.7/4.1 0.2/0.4 0.3/0.5 0.0/0.2 0.0/-
finnish-ftb 14981/1867 65.0/64.9 5.4/6.4 4.1/4.0 0.1/0.4 0.3/0.4 0.2/0.1 0.0/-
norwegian-bokmaal 15696/1939 59.8/63.2 5.0/6.0 3.0/3.2 0.1/0.1 0.2/0.4 0.1/0.1 0.0/0.1
norwegian-nynorsk 14174/1511 53.4/54.5 4.7/4.0 3.0/2.9 0.2/0.1 0.2/0.1 0.1/- 0.1/-
italian-postwita 5368/674 46.0/47.2 4.3/4.0 3.3/2.4 0.1/0.1 0.2/- 0.2/0.3 0.1/0.1
swedish-talbanken 4303/1219 66.7/66.0 3.7/5.0 2.3/2.5 0.1/0.1 0.1/- 0.1/0.2 0.0/-
arabic-padt 6075/680 20.8/20.3 4.0/4.4 0.6/0.7 0.1/- 0.1/0.1 0.1/- -/-
korean-gsd 4400/989 69.9/70.7 4.8/5.6 -/- 0.2/0.3 -/- -/- -/-
afrikaans-afribooms 1315/425 71.1/73.2 3.8/3.3 0.3/0.2 0.2/- -/- -/- -/-
uyghur-udt 1656/900 81.0/79.6 3.1/3.7 -/- -/- -/- -/- -/-
japanese-gsd 7164/557 65.9/62.5 2.0/2.0 -/- -/- -/- -/- -/-
turkish-imst 3685/975 63.3/61.1 0.1/- -/- -/- -/- -/- -/-
urdu-udtb 4043/535 87.9/90.3 -/- 0.0/- -/- -/- -/- -/-
hindi-hdtb 13304/1684 87.5/84.7 -/- 0.0/0.1 -/- -/- -/- -/-
dutch-lassysmall 5789/876 40.1/39.8 1.1/0.8 1.8/1.5 0.0/- 0.1/- -/- 0.0/0.1
german-gsd 13814/977 69.0/59.5 2.0/9.6 2.1/3.3 0.0/0.3 0.1/0.1 0.1/0.1 0.1/-
hungarian-szeged 910/449 75.6/75.7 0.7/0.7 4.2/6.2 -/- 0.1/- -/- -/-
italian-isdt 13121/482 61.0/69.9 3.5/1.9 3.9/3.1 0.2/0.6 0.2/0.2 0.1/- 0.1/-
dutch-alpino 12269/596 63.2/63.9 4.6/5.5 4.8/4.4 0.3/0.3 0.3/0.7 0.2/1.0 0.2/-
estonian-edt 20827/2737 60.4/59.8 3.4/4.2 5.1/4.6 0.1/0.1 0.4/0.4 0.2/0.1 0.1/0.1
finnish-tdt 12217/1555 60.1/58.7 3.0/4.1 5.1/5.8 0.0/0.1 0.3/0.3 0.2/0.3 0.1/0.1
ukrainian-iu 4513/783 62.6/65.1 3.1/4.1 5.9/5.1 0.0/- 0.3/0.5 0.2/- 0.1/-
russian-syntagrus 48814/6491 60.6/60.9 3.4/2.8 6.6/6.5 0.0/0.0 0.4/0.3 0.2/0.2 0.1/0.1
ancient_greek-perseus 11476/1306 83.7/68.3 4.1/12.6 7.0/7.6 0.2/0.5 0.4/1.1 0.1/0.2 0.2/0.4
latin-ittb 15808/750 52.0/51.5 5.0/4.0 6.8/9.2 0.2/- 0.2/0.3 0.4/- 0.1/-
czech-pdt 68495/10148 53.8/54.6 4.9/4.6 6.9/6.6 0.2/0.2 0.9/0.9 0.3/0.3 0.1/0.1
croatian-set 6983/1057 53.8/55.2 5.8/8.6 7.4/6.5 0.2/0.1 1.1/1.1 0.3/0.8 0.0/0.1
gothic-proiel 3387/1029 75.4/77.5 6.7/6.3 8.6/7.7 0.2/0.3 0.5/0.5 0.1/- 0.1/0.2
old_church_slavonic-proiel 4123/1141 80.4/82.6 6.0/5.2 8.3/7.2 0.1/0.1 0.8/0.4 -/0.1 0.3/0.1
english-lines 2738/914 64.5/63.5 4.9/4.7 7.4/5.5 0.0/0.2 0.6/0.7 0.4/0.7 0.4/0.3
polish-sz 6100/1100 72.5/72.9 5.0/5.3 7.6/7.2 0.0/0.2 0.6/0.6 0.4/0.4 0.1/-
old_french-srcmf 13909/1927 79.2/78.6 4.8/4.0 7.7/8.2 0.1/0.1 0.4/0.4 0.2/0.2 0.2/0.1
french-gsd 14554/416 61.0/54.6 3.1/3.8 8.2/8.7 0.2/0.7 0.5/1.0 0.2/- 0.3/0.5
polish-lfg 13774/1727 80.9/79.7 2.8/2.7 8.4/8.9 0.0/0.1 0.3/0.6 0.2/0.2 0.1/0.1
czech-cac 23478/628 59.2/61.3 2.2/2.4 6.8/6.7 0.1/- 0.4/0.3 0.3/0.2 0.1/0.2
french-spoken 1153/726 49.6/52.6 1.6/4.8 7.7/4.5 0.1/0.1 0.2/0.8 0.2/- 0.1/0.1
indonesian-gsd 4477/557 62.0/63.9 2.2/2.9 9.0/7.7 0.1/0.2 0.3/0.2 0.1/- 0.7/0.9
french-sequoia 2231/456 44.1/41.9 3.0/3.5 13.2/12.9 -/- 1.0/1.1 1.0/0.7 0.6/0.4

Table 4: Distribution of Compchains in UD 2.2 Gold Treebanks. The column Total presents the number of trees
in the training and test sections of each treebank, and is formatted as CountTraining/CountTest ; the columns for
each compchain present the percent of trees with that compchain in the training and test sections of the treebank
respectively – e.g. with respect to the English-EWT treebank, 6% of the 12543 trees in the training section have
the compchain RC whereas only 3.8% of the 2077 trees in the test section have the compchain RC. A dash (“-”)
indicates an absence of trees with that compchain (i.e. 0%).



128

Treebank Word Order W. Avg R RC RX RCC RCX RXC RXX

polish-lfg verb-object 0.94 0.97 0.84 0.89 1.00 0.87 0.29 1.00
french-gsd verb-object 0.89 0.92 0.62 0.81 0.80 0.75 - 1.00
spanish-ancora verb-object 0.89 0.92 0.81 0.78 0.55 0.60 - 0.67
english-ewt verb-object 0.90 0.89 0.73 0.79 0.67 0.40 0.33 1.00
croatian-set verb-object 0.90 0.92 0.79 0.87 0.67 0.75 0.71 1.00
czech-pdt verb-object 0.92 0.93 0.79 0.89 0.72 0.80 0.64 0.67
finnish-tdt verb-object 0.89 0.92 0.74 0.68 0.50 0.75 0.67 0.40
slovenian-ssj verb-object 0.88 0.91 0.84 0.79 0.50 0.67 0.80 0.40
russian-syntagrus verb-object 0.93 0.95 0.83 0.85 0.50 0.59 0.74 0.44
catalan-ancora verb-object 0.91 0.94 0.81 0.83 0.25 0.53 1.00 0.67
czech-cac verb-object 0.92 0.94 0.67 0.86 - 1.00 1.00 1.00
norwegian-bokmaal verb-object 0.90 0.92 0.84 0.74 0.00 0.83 0.80 0.67
french-sequoia verb-object 0.86 0.86 0.71 0.78 0.00 0.80 0.50 0.80
english-lines verb-object 0.78 0.85 0.43 0.53 0.00 0.25 0.55 0.44
latin-proiel object-verb 0.86 0.92 0.57 0.70 0.36 0.40 0.33 0.50
english-gum verb-object 0.82 0.85 0.54 0.64 0.40 0.50 0.00 0.40
bulgarian-btb verb-object 0.85 0.91 0.58 0.39 0.55 0.67 0.00 -
portuguese-bosque verb-object 0.85 0.89 0.72 0.50 0.50 1.00 - -
italian-isdt verb-object 0.91 0.94 0.60 0.72 0.40 1.00 0.00 -
serbian-set verb-object 0.92 0.95 0.81 0.84 0.29 0.67 0.00 -
ukrainian-iu verb-object 0.89 0.92 0.69 0.72 - 0.60 0.00 -
old_church_slavonic-proiel verb-object 0.89 0.94 0.61 0.65 0.00 0.67 0.00 0.00
ancient_greek-proiel object-verb 0.87 0.93 0.55 0.72 0.00 0.50 0.00 0.00
hebrew-htb verb-object 0.77 0.83 0.63 0.78 - 0.25 - -
latin-ittb object-verb 0.85 0.87 0.52 0.79 - 0.00 - -
dutch-lassysmall object-verb 0.91 0.89 0.59 0.52 - - - 0.00
arabic-padt verb-object 0.88 0.76 0.61 0.36 - 0.00 - -
japanese-gsd object-verb 0.94 0.95 0.76 - - - - -
uyghur-udt object-verb 0.87 0.93 0.56 - - - - -
afrikaans-afribooms verb-object 0.86 0.90 0.52 0.00 - - - -
korean-kaist object-verb 0.79 0.84 0.52 - 0.29 - - -
korean-gsd object-verb 0.83 0.88 0.49 - 0.50 - - -
persian-seraji object-verb 0.85 0.86 0.80 - 0.72 - - -
romanian-rrt verb-object 0.85 0.92 0.71 0.41 0.57 - - -
german-gsd object-verb 0.80 0.85 0.68 0.49 0.50 0.00 0.00 -
swedish-talbanken verb-object 0.88 0.92 0.69 0.67 1.00 0.00 0.00 -
greek-gdt object-verb 0.87 0.92 0.82 0.52 0.80 0.33 0.00 0.00
danish-ddt verb-object 0.80 0.85 0.68 0.37 0.80 0.33 0.00 -
norwegian-nynorsk verb-object 0.88 0.90 0.70 0.59 1.00 0.50 - 0.00
finnish-ftb verb-object 0.85 0.89 0.69 0.74 0.67 0.43 0.33 0.00
basque-bdt object-verb 0.85 0.91 0.64 0.69 0.67 0.29 0.44 0.00
old_french-srcmf verb-object 0.88 0.93 0.64 0.72 0.67 0.35 0.50 0.40
swedish-lines verb-object 0.84 0.89 0.67 0.59 0.50 0.50 0.75 0.00
czech-fictree verb-object 0.89 0.92 0.78 0.88 0.25 0.69 0.78 -
polish-sz verb-object 0.90 0.94 0.76 0.87 0.00 0.67 0.89 -
slovak-snk verb-object 0.92 0.93 0.74 0.84 - 0.73 0.67 0.00
dutch-alpino object-verb 0.83 0.89 0.56 0.61 0.00 0.67 0.55 -
latvian-lvtb verb-object 0.80 0.86 0.57 0.74 0.00 0.58 0.55 -
estonian-edt verb-object 0.87 0.90 0.68 0.74 0.00 0.53 0.33 0.22
french-spoken verb-object 0.80 0.83 0.60 0.47 0.00 0.50 0.00 0.40
gothic-proiel verb-object 0.82 0.91 0.38 0.59 0.00 0.33 - 0.67
italian-postwita verb-object 0.85 0.87 0.63 0.60 0.00 0.00 0.00 1.00
indonesian-gsd verb-object 0.81 0.87 0.22 0.55 0.00 0.00 0.00 0.50
ancient_greek-perseus object-verb 0.70 0.84 0.30 0.36 0.00 0.17 0.00 0.18
hindi-hdtb object-verb 0.97 0.98 - 0.00 - - - -
urdu-udtb object-verb 0.94 0.97 - - - - - -
turkish-imst object-verb 0.81 0.86 - - - - - -
vietnamese-vtb verb-object 0.51 0.63 0.21 0.29 0.20 0.08 0.00 0.00
chinese-gsd verb-object 0.61 0.72 0.35 0.34 0.22 0.00 0.33 0.00
galician-ctg verb-object 0.63 0.70 0.31 0.47 0.12 0.00 0.00 0.00
hungarian-szeged object-verb 0.85 0.91 0.00 0.79 - - - -

Table 5: F1-Scores for Compchains Classifications for each UD 2.2 Gold Treebanks. The test section of each gold
treebank was parsed using the corresponding pre-trained UDPipe language model; the compchain classification
was computed for each pair of gold and parsed treebanks, and we report: (i) the weighted average F1-score (over
all compchains); (ii) the (per-class) F1-score for each compchain. Entries for which the F1-score could not be
computed due to a lack of support are marked with a dash (“-”).


