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Abstract

Morphological rules with various levels of
specificity can be learned from example lex-
emes by recursive application of minimal gen-
eralization (Albright and Hayes, 2002, 2003).
A model that learns rules solely through min-
imal generalization was used to predict av-
erage human wug-test ratings from German,
English, and Dutch in the SIGMORPHON-
UniMorph 2021 Shared Task, with compet-
itive results. Some formal properties of
the minimal generalization operation were
proved,experimentalntially pruned. An auto-
matic method was developed to create wug-
test stimuli for future experiments that inves-
tigate whether the model’s morphological gen-
eralizations are too minimal.

1 Introduction

In a landmark paper, Albright and Hayes (2003)
proposed a model that learns morphological rules
by recursive minimal generalization from lexeme-
specific examples (e.g., I→ 2 / st N for sting ∼
stung and I→ 2 / fl N for fling ∼ flung general-
ized to I→ 2 / X [−syllabic, +coronal, +anterior,
. . . ] N).1 The model was presented more for-
mally in Albright and Hayes (2002), along with
evidence that the rules it learns for the English
past tense give a good account of native speakers’
productions and ratings in wug-test experiments
(e.g., judgments that splung is quite acceptable as
the past tense of the novel verb spling). In addi-
tion to providing further analysis of the behavioral
data, Albright and Hayes (2003) compared their
proposal with early connectionist models of mor-
phology (e.g., Plunkett and Juola, 1999) and an
analogical or ‘family resemblance’ model inspired

1The square brackets contain all of the the shared phono-
logical feature specifications of /t/ and /l/, which in the
system used here are [−syllabic, +consonantal, −nasal,
−spread.gl, −labial, −round, −labiodental, +coronal,
+anterior, −distributed, −strident, −dorsal].

by research on psychological categories (Nakisa
et al., 2001).

Along with Albright (2002), which presents a
parallel treatment of Italian inflection, Albright &
Hayes’s study of the English past tense is an ideal
example of theory-driven, multiple-methodology,
open and reproducible research in cognitive sci-
ence.2 Their model has enduring significance for
the study of morphological learning and productiv-
ity in English (e.g., Rácz et al., 2014, 2020; Corkery
et al., 2019) and many other languages (e.g., Hi-
jazi Arabic: Ahyad 2019; Japanese: Oseki et al.
2019; Korean: Albright and Kang 2009; Navajo:
Albright and Hayes 2006; Portuguese: Veríssimo
and Clahsen 2014; Russian: Kapatsinski 2010; Tg-
daya Seediq: Kuo 2020; Spanish: Albright and
Hayes 2003; Swedish: Strik 2014).

In this study, we applied a partial reimplemen-
tation of the Albright and Hayes (2002, 2003)
model to wug-test rating data from three lan-
guages (German, English, and Dutch) collected
for the SIGMORPHON-UniMorph 2021 Shared
Task. Our version of the model is based purely
on minimal generalization of morphological rules,
as described in §3.1 of Albright and Hayes (2002)
and reviewed below. It does not include additional
mechanisms for learning phonological rules, and
further expanding or reigning in morphological
rules, that were part of the original model (see Al-
bright and Hayes, 2002, §3.3 - §3.7). We think it is

2Albright & Hayes released both the results of their
wug-test experiments and an implementation of their
model (see http://www.mit.edu/~albright/mgl/
and https://linguistics.ucla.edu/people/
hayes/RulesVsAnalogy/index.html). An im-
pediment to large-scale simulation with the model is
that it runs from a GUI interface only. As part of the
present project, we have added a command line interface
to the original source code and converted the English
input files to a more user-friendly format (available on
request). We are aware of one other implementation of
the minimal generalization model, due to João Verís-
simo, but this was unavailable at the time of our study
(https://www.jverissimo.net/resources).

http://www.mit.edu/~albright/mgl/
https://linguistics.ucla.edu/people/hayes/RulesVsAnalogy/index.html
https://linguistics.ucla.edu/people/hayes/RulesVsAnalogy/index.html
https://www.jverissimo.net/resources


worthwhile to consider minimal generalization on
its own, with other mechanisms ablated, as borne
out by our competitive results on the shared task.

1.1 Outline

In §2 we review the definition of minimal general-
ization proposed by Albright & Hayes and prove
a number of original results about the operation
and its recursive application in learning rules. We
also define a generality relation that can be used to
prune insufficiently broad rules without affecting
the model’s predictions. In §3 we describe how
we preprocessed the shared task training data and
generated predicted wug-test ratings, and report
our results on the task. We briefly summarize our
findings in §4 and conclude by discussing a novel
method for constructing wug items that can be used
in future empirical tests of minimal generalization
and other approaches to morphological learning.

2 Minimal Generalization

2.1 Inputs

The model takes as input a set of wordform pairs,
one per lexeme, that instantiate the same morpho-
logical relationship in a language. In simulations of
English past tense formation, these are pairs of bare
verb stems and past tense forms such as 〈owOkn,
owOktn〉, 〈otOkn, otOktn〉, 〈ostINn, ost2Nn〉,
〈oflINn, ofl2Nn〉, and 〈ok2tn, ok2tn〉 for the
lexemes walk, talk, sting, fling, and cut. Word-
forms consist of phonological segments (here, in
broad IPA transcription) delimited by special be-
ginning and end of string symbols. The set Σ of
phonological segments for the language, and the
set Σ# = Σ ∪ {o,n}, are provided to the model.

The model also requires a phonological feature
specification for each of the symbols that appears
in wordforms. We adopted a well-known feature
system, augmenting it with orthogonal and distinct
feature specifications for the delimiters o and n.3

The set Φ contains all possible (partial) specifica-
tions of the features and φ(x) gives the specifica-
tions of x ∈ Σ#.

3The phonological features are available from Bruce
Hayes’s website (https://linguistics.ucla.edu/
people/hayes/120a/Index.htm#features).
These features are all binary, with the possibility of under-
specification, while Albright & Hayes’s original simulations
made use of some multi-valued scalar features. Alternative
sources of binary feature systems that are compatible with our
implementation include PHOIBLE (Moran et al., 2014) and
PanPhon (Mortensen et al., 2016).

2.2 Base rules

For each wordform pair, the model constructs a
lexeme-specific morphological rule by first identi-
fying the longest common prefix (lcp) of the word-
forms excluding n (i.e., the left-hand rule context
C), then the longest common suffix from the re-
mainder (the right-hand context D), and finally
identifying the remaining symbols in the first (A)
and second (B) wordform. The resulting rule is
A → B/C D. The symbol ∅ /∈ Σ# denotes
the empty string in A or B.4 To illustrate, the rule
formed from 〈owOkn, owOktn〉 has the compo-
nents C = owOk, D = n, A = ∅ and B = t (i.e., ∅
→ t / owOk n). The rule for 〈ok2tn, ok2tn〉
is ∅→ ∅ / ok2t n.

2.3 Minimal Generalization

Given any two base rules R1 and R2 that make the
same change (A → B), the model forms a possi-
bly more general rule by aligning and comparing
their contexts. The minimal generalization oper-
ation, R = R1 u R2, carries over the common
change of the two base rules and applies indepen-
dently to their left-hand (C1, C2) and right-hand
(D1, D2) contexts. For convenience, we define
minimal generalization of the right-hand contexts.
Minimal generalization of the left-hand contexts
can be performed by reversingC1 andC2, applying
the definition for right-hand contexts, and reversing
the result.

The minimal generalization D = D1 uD2 is de-
fined precedurally by first extracting the lcp σ1∧2
of the two contexts and then operating on the re-
mainders (D′1, D′2). If both D′1 and D′2 are empty
then D = σ1∧2. If one but not both of them are
empty then D = σ1∧2X , where X /∈ Σ# is a vari-
able over symbol sequences (i.e.,X stands for Σ∗#).
If neither remainder is empty, then the operation
determines whether their initial symbols have any
shared features; for this purpose it is useful to con-
sider φ(x) as a function from symbols to sets of
feature-value pairs, so that common features are
found by set intersection.

If there are no common features, φ1∩2 = ∅, then
as before D = σ1∧2X . Otherwise, the set of com-
mon features φ1∩2 6= ∅ is appended to σ1∧2, the
first symbol is removed from D′1 and D′2, and the

4We instead use λ /∈ Σ# to stand for the empty string
in left- and right- hand contexts. Our notation for strings of
phonological segments generally follows Chandlee (2017) and
research cited there.

https://linguistics.ucla.edu/people/hayes/120a/Index.htm#features
https://linguistics.ucla.edu/people/hayes/120a/Index.htm#features


operation processes the remainders. If both remain-
ders are empty then D = σ1∧2φ1∩2, otherwise
D = σ1∧2φ1∩2X .

To summarize, the generalized right-hand con-
text D consists of the longest common prefix
shared by D1 and D2, followed by a single set
of shared features (if any), followed by X in case
there are no shared features or one context is longer
than the other. With the change and generalized
left-hand context C determined as noted above, the
result of applying minimal generalization to the
two base rules is R = A→ B/C D.5

2.4 Recursive Minimal Generalization
LetR1 be the set of base rules (one per wordform
pair in the input data) and R2 be the set contain-
ing all of the base rules and the result of apply-
ing minimal generalization to each eligible pair
of base rules. While the rules of R2 have greater
collective scope than those of R1, they are nev-
ertheless unlikely to account for the level of mor-
phological productivity shown by native speakers.
For example, English speakers can systematically
rate and produce past tense forms of novel verbs
that contain unusual segment sequences, such as
ploamf /ploUmf/ (e.g., Prasada and Pinker, 1993).
Albright & Hayes propose to apply minimal gen-
eralization recursively and demonstrate that this
can yield rules that are highly general (e.g., in our
notation, ∅→ t / X [-voice] n).

In the original proposal, recursive minimal gen-
eralization was defined only for pairs that include
one base rule; it was conjectured that no additional
generalizations could result from dropping this re-
striction. Here we define the operation for any
two right-hand contexts D1, D2 ∈ Σ∗#(Φ)(X). As
before, only rules that make the same change are
eligible for generalization and the operation applies
to left-hand contexts under reversal.

The definition of D = D1 u D2 needed for
recursive application is identical to the one given
above except that we must consider input contexts
that contain feature sets and X (which previously
could occur only in outputs). As before, we first

5There could be a small difference between our defini-
tion of context generalization and that in Albright and Hayes
(2002), hinging on whether the empty feature set is allowed in
rules. In our definition, φ1∩2 = ∅ is replaced by the variable
X . It is possible that the original proposal intended for empty
and non-empty feature sets to be treated alike. The definitions
can diverge when applied to right contexts that are of identical
length and share all but the last segment (resp. left contexts
that share all but the last segment), in which case our version
would result in a broader rule.

identify the lcp of symbols from Σ# in the two
contexts (σ1∧2) and then operate on the remainders
(D′1, D

′
2). If both D′1 and D′2 are empty then D =

σ1∧2. If one but not both of them are empty then
D = σ1∧2X . If both are non-empty then their
initial elements are either symbols in Σ#, feature
sets in Φ, orX . Replace any initial symbol x ∈ Σ#

with its feature set φ(x), extend the function φ so
that φ(X) = ∅, and compute the union φ1∩2 of
the initial elements. The rest of the definition is
unchanged (see end of §2.3).

By construction, the contexts that result from this
operation are also in Σ∗#(Φ)(X) (i.e., no ordinary
symbol can occur after a feature set, there is at
most one feature set, X can only be a terminal
element, etc.). Therefore, the revised definition
supports the application of minimal generalization
to its own products. Let Rk be the set of rules
containing every member of Rk−1 and the result
of applying minimal generalization to each eligible
pair of rules in Rk−1 (for k > 1). In principle,
there is an infinite sequence of rules set related by
inclusion R1 ⊆ R2 ⊆ R3 · · · . In practice, the
equality becomes strict after a small number of
iterations of minimal generalization (typically 6-7),
at which point there are no more rules to be found.

2.5 Completeness

Having defined minimal generalization for arbitrary
contexts (as allowed by the model), we can revisit
the conjecture that nothing is lost by restricting the
operation to pairs at least one of which is a base
rule. This is a practical concern, as the number of
base rules is a constant determined by the input data
while the number of generalized rules can increase
exponentially.

Conceptually, each rule learned by unrestricted
minimal generalization has a (possibly non-unique)
‘history’ of base rules from which it originated. A
base rule R ∈ R1 has the history {R}. A rule in
R ∈ R2 has the history {R1, R2} consisting of the
two base rules from which it derived. In general,
the history of each rule in Rk is the union of the
histories of two rules inRk−1 (k > 1).

Because all rules are learned ‘bottom-up’ in this
sense, the conjecture can be proved by showing that
the minimal generalization operation is associative;
we also show that it is commutative — both prop-
erties inherited from equality, lcp, set intersection,
and other more primitive ingredients. As before,
we explicitly consider right-hand contexts, from



which parallel results for left-hand contexts and
entire rules follow immediately. It follows that any
ruleR can be replaced, for the purposes of minimal
generalization, with the base rules in its history (in
any order).

Commutative. Let D = D1 u D2 for any
D1, D2 ∈ Σ∗#(Φ)(X). We prove by construc-
tion that D is also equal to D2 u D1. The lcp
of elements from Σ# is the same regardless of the
order of the contexts (σ1∧2 = σ2∧1) as are the
remainders (D′1 and D′2). If both remainders are
empty, then the result of minimal generalization
is σ1∧2 = σ2∧1. If one but not both of them are
empty then the result is σ1∧2X = σ2∧1X; note
that X appears regardless of which input context
is longer. If both are non-empty then we ensure
that their initial elements are (possibly empty) fea-
ture sets and take their intersection, which is order
independent: φ1∩2 = φ2∩1. If φ1∩2 = ∅ then the
result is σ1∧2X = σ2∧1X . Otherwise, the initial
elements are removed and the operation continues
to the remainders. If both remainders are empty
the result is σ1∧2φ1∩2 = σ2∧1φ2∩1, otherwise it is
the same expressions terminated by X .

Associative. Let D = (D1 uD2) uD3 for any
D1, D2, D3 ∈ Σ∗#(Φ)(X). We prove by construc-
tion that D is equal to E = D1 u (D2 uD3). Let
σ be the longest prefix of symbols from Σ# in D.
Because σ occurs in D iff it is the lcp of this type
in (D1 uD2) and D3, it must be a prefix of each
of D1, D2, D3 and the longest such prefix that ap-
pears in all of them. It follows that σ is also the
lcp of symbols from Σ# in D1 and (D2 u D3).
Therefore, D and E both begin with σ. We now
remove the prefix σ from all of the input contexts
and consider the remainders D′1, D

′
2, D

′
3.

If all of the remainders are empty, then D =
E = σ. If all but one of them are empty, then
D = E = σX .6 If none of the remainders is empty,
let φ1, φ2, φ3 be their (featurized) initial elements.
The intersection of those elements is independent
of grouping, φ = (φ1∩φ2)∩φ3 = φ1∩(φ2∩φ3). If
the intersection is empty then again D = E = σX .
If the intersection is non-empty then D and E both
begin σφ. Finally, remove the initial elements of
each of D′1, D

′
2, D

′
3 and compare the lengths of the

remainders to determine whether X appears at the

6If D′1 or D′2 is the longest context, assume by com-
mutativity that it is D′1. The minimal generalizations are
(D′1 u D′2) = X and X u D′3 = X , which gives the same
result as (D′2uD′3) = λ andD′1uλ = X . Similar reasoning
applies if D′3 is the longest context.

end of D and E; this is independent of grouping
along the same lines shown previously.

Complete. We now prove by induction
that, for any R ∈ Rk and R1, R2 ∈ Rk−1 (k > 1)
such that R = R1 u R2, rule R can also be de-
rived by applying minimal generalization to R1

and one or more base rules (i.e., the rules in the
history of R2).7 For R ∈ R2 this is true by def-
inition. For R ∈ R3, we have R = R1 u R2 =
R1 u (R21 u R22) = (R1 u R21) u R22, where
R21 and R22 are base rules whose minimal gener-
alization results in R2. In general, suppose that the
statement is true for k − 1 > 0. Then it is also true
for k becauseR ∈ Rk can be derived byR1uR2 =
R1u (uni=1R2i) = (((R1uR21)uR22) · · ·uR2n)
where R1, R2 ∈ Rk−1 and each R2i is a base rule
in the history of R2.

These results validate the rule learning algorithm
proposed by Albright and Hayes (2002) and used in
our implementation. Any minimal generalization
of two rules R1 and R2 allowed by the model can
be derived fromR1 (orR2) by recursive application
of minimal generalization with one or more base
rules.

2.6 Relative generality

While not required for the minimal generalization
operation itself, we define here a (partial) generality
relation on rules. The definition uses the same
notation as above and is employed in pruning rules
after recursive minimal generalization has applied
(see §3.4 below).

Relative generality is defined only for rules R1

and R2 that make the same change. As usual, it
is sufficient to consider the right-hand contexts D1

and D2 and then apply the same definition to the
reversed left-hand contexts. Conceptually, context
D2 is at least as general as context D1, D1 v D2,
iff the set of strings represented by D2 is a superset
of that represented by D1 when both contexts are
considered as regular expressions over Σ∗#. The
procedural definition is complicated somewhat by
X , which can appear at the end of either context.

Replace each symbol x ∈ Σ# in D1 or D2 with
its feature set φ(x), treat X as equivalent to ∅, and
let |D| be the length of context D. Then D1 v D2

iff (i) |D1| ≥ |D2| and D1[k] ⊆ D2[k] for all
1 ≤ k ≤ |D1|, except when |D1| = |D2| + 1
and the last element of D1 but not D2 is X , or (ii)
|D1| = |D2| − 1, D1[k] ⊆ D2[k] for all 1 ≤ k ≤

7We ignore rules that are carried over fromRk−1 toRk.



|D1|, and the last element of D2 is X . Context
D2 is strictly more general than D1, D1 @ D2,
iff D1 v D2 and D2 6v D1. Rule R2 is at least
as general as R1, R1 v R2, iff C1 v C2 and
D1 v D2; it is a strictly more general rule iff
either of the context relations is strict.

3 System Description and Results

Our system for the shared task preprocesed the
input wordforms, learned rules with recursive min-
imal generalization, scored the rules in two alter-
native ways, pruned rule that have no effect on
the model’s predictions, and applied the remaining
rules to wug forms to yield predicted ratings.

3.1 Preprocessing

The shared task provided space-separated broad
IPA transcriptions of the training and wug word-
forms (e.g., /w O k/, /w O k t/, /s t I N/, /s t 2 N/).
As already mentioned, we added explicit beginning
and end of string symbols. Because minimal gener-
alization requires each wordform symbol to have a
phonological feature specificiation, but some seg-
ments in the data lack entries in our feature chart,
we further simplified or split the symbols as fol-
lows.

For German, we split the diphthongs /ai
“

au
“

oi
“i:@ e:@ E:@/ into their component vowels and addi-

tionally regularized /i
“

u
“
/ to /i u/. For English, we

split the diphthongs /aI aU OI u:I/ into their com-
ponents and /3~/ into /E ô/, simplified /eI @U/ to
/e o/, and regularized /m

"
n
"

r l
"
Õ/ to /m n ô l O/.

We also deleted all length marks /:/ and instances
of /G/. For Dutch, we split /EI AU UI/ into their
components.

Checking that all wordform symbols appear in a
phonological feature chart is useful for data clean-
ing. It helped us to identify a few thousand Dutch
wordforms containing ‘+’ (indicating a Verb +
Preposition juncture), which we removed. And it
caught an encoding error in which two distinct but
perceptually similar Unicode symbols were used
for the voiced velar stop /g/.

Two acknowledged limitations of the original
version of the minimal generalization model, and
our version, are relevant here. First, the model
learns rules for individual morphological relations
(e.g., mapping a bare stem to a past tense form), not
for entire morphological systems jointly. Therefore,
we retained from the preprocessed input data only
the wordform pairs that instantiate the relations

targeted by the shared task: formation of past par-
ticiples in German (Clahsen, 1999) and past tenses
in English and Dutch (Booij, 2019).

Second, the model cannot learn sensible rules
for circumfixes (Albright and Hayes, 2002, §5.2).
This could be remedied by allowing the model to
form rules that simultaneously make changes at
both wordform edges, or by allowing it to apply
multiple rules when mapping inputs to outputs. As
a workaround, we simply removed the prefix /g@-/
whenever it occured at the beginning of a German
past participle (training or wug wordform).

3.2 Rules

Given the preprocessed and filtered input data, a
base rule was learned for each lexeme and then
minimal generalization was applied recursively as
in §2. This resulted in tens of thousands of morpho-
logical rules for each of the three languages (see
Table 1).

A major goal of Albright & Hayes was to learn
rules that can construct outputs from inputs (as
opposed to merely rating or selecting outputs that
are generated by some other source). Their model
achieved this goal, and a substantial portion of its
original implementation was dedicated to rule ap-
plication. We instead delegated the application
of rules to a general purpose finite-state library
(Pynini; Gorman, 2016; Gorman and Sproat, 2021),
as follows.

Each component of a rule A→ B/C D was
first converted to a regular expression over symbols
in Σ# by mapping any feature set φ ∈ Φ to the
disjunction of symbols that bear all of the specified
features and deleting instances of X . Segments
were then encoded as integers using a symbol table.
Pynini provides a function cdrewrite that com-
piles rules in this format to finite-state transducers,
a function accep for converting input strings to
linear finite-state acceptors encoded with the same
symbol table, a composition function @ that applies
rules to inputs yielding output acceptors, and the
means to decode the output back to strings.8

8The technique of mapping feature matrices to disjunctions
(i.e., natural classes) of segments and beginning/end symbols,
and ultimately to disjunctions of integer ids, was also used in
the finite-state implementation of Hayes and Wilson (2008).
X was deleted here because it occurs only at the beginning of
left-hand contexts and at the end of right-hand contexts, both
positions where Pynini’s rule compiler implicitly adds Σ∗#.
Pynini’s implementation of finite-state automata wraps and
extends OpenFst (Riley et al., 2009) and its rule compilation
algorithm is due to Mohri and Sproat (1996).



3.3 Scoring

The score of a rule is related to its accuracy on the
training data. The simplest notion of score would
be just accuracy: the number of training outputs
that are correctly predicted by the rule (hits), di-
vided by the number of training inputs that meet the
structural description of the rule (scope). Albright
& Hayes propose instead to discount the scores of
rules with smaller scopes, using a formula previ-
ously applied to linguistic rules by Mikheev (1997).
Our implementation also includes this way of scor-
ing rules, which Albright & Hayes call confidence.9

Because confidence imposes only a modest
penalty on rules with small scopes, we also con-
sidered a score function of the form scoreβ =
hits/(scope + β), where β is a non-negative dis-
count factor (here, β = 10). A rules that is per-
fectly accurate and applies to just 5 cases has high
confidence (.90) but much lower score10 (.33); one
that applies perfectly to 1000 cases has a near-
maximal value (> .99) regardless of how the score
is calculated. Clearly, these are only two of a wide
range of score functions that could be explored.

3.4 Pruning

When applied to training data consisting of thou-
sands of lexemes, recursive minimal generalization
can produce tens of thousands of distinct rules. Al-
bright & Hayes mention but do not implement the
possibility of pruning the rules on the basis of their
generality and scores. We pursued this suggestion
by first partitioning the set of all learned rules ac-
cording to their change and imposing a partial order
on each of the resulting subsets.

We ordered rules by generality (§2.6), score, and
length when expressed with features (Chomsky and
Halle, 1968). Rule R2 dominates rule R1 in the
order, R1 ≺ R2 iff R2 is at least as general as R1

(R1 v R2) and (i) R2 has a higher score or (ii)
the rules tie on score and R2 is either strictly more
general (R1 @ R2) or shorter. Dominated rules
were pruned without affecting the predictions of
the model, as we discuss next.

3.5 Prediction

Once rules have been learned by minimal general-
ization and scored, they can be used for multiple
purposes: to generate potential outputs for input
wordforms (by finite-state composition), to deter-

9The confidence formula has one free parameter, which we
set to α = .55 following Albright and Hayes (2003, p. 127).

mine possible inputs for a given output wordform
(by composition with the inverted transducer), and
to assign scores to input/output mappings. Follow-
ing Albright & Hayes, we assume that the score
of a mapping is taken from the highest-scoring
rule(s) that could produce it. Rules neither ‘gang
up’ — multiple rules cannot contribute to the score
of a mapping — nor do they compete — rules that
prefer different outputs for the same input do not
detract from the score. When no rule produces a
mapping, we assigned it the minimal score of zero.

As for the scoring function itself, many other
possibilities could be considered. For example,
rule scores could be normalized within or across
changes, a type of competition that is inherent
to probabilistic models. See Albright and Hayes
(2006) for a different kind of competition model in
which rules learned by minimal generalization are
weighted as conflicting constraints.

3.6 Results

Table 1 provides quantitative details of our simu-
lations for the three morphological relations in the
shared task. The AIC values were calculated with
an evaluation script provided by the organizers,
which compares average human ratings of output
wordforms with ratings predicted by the model.
(Values are not directly comparable across the lan-
guages because the number of wug forms differed.)

We used whichever scoring method, confidence
or score10, achieved a better AIC value on the de-
velopment wug data. For German and English, this
was confidence; for Dutch it was score10. Upon
close inspection of the development data for En-
glish, we found it plausible that human participants
had down-rated regular past tense forms of bare
forms ending in coronal stops /t d/ because these
might appear to be ‘double past’ inflections (e.g.,
/vaInd@d/ for the stem /vaInd/, which has a rime
/aInd/ that is rare outside of past tense forms).
Therefore, in generating predictions for the English
wug test we added a penalty to the model score
for such outputs. The magnitude of the penalty
was fit by linear regression to the development data.
As the development and test wugs were generated
by different methods, addition of this factor could
have had a detrimental effect on the model’s per-
formance. On the contrary, our model had the best
AIC for the German and English test data and the
best overall AIC (summed over the languages).



Language Lexemes Rules (all) Rules (pruned) AIC (dev wugs) AIC (test wugs)
German (past part.) 3,417 31,562 3,629 -127.6 -135.0
English (past) 5,803 30,728 263 -112.0 -62.2
Dutch (past) 7,823 55,114 1,862 -58.5 -76.5

Table 1: Number of lexemes (wordform pairs) used for training, number of rules learned by minimal generalization
(before and after pruning), and evaluation on average human wug-test ratings for each language. Lower AIC values
indicate a better match between model predictions and behavioral results.

4 Summary and Future Directions

We have described the minimal generalization op-
eration for morphological rules as proposed by Al-
bright & Hayes and presented some new formal
results on this operation. We have also described
our partial implementation of their model — a pure
minimal generalization learner — and applied it
to wug-test data from three related languages. We
conclude with some remarks on how our imple-
mentation could be extended and how the central
concept of minimal generalization could be empiri-
cally tested in future behavioral experiments.

4.1 Extensions

The most obvious extension of the present study
would be to compare our stripped-down model with
the original one. For some of the additional mech-
anisms proposed by Albright & Hayes this would
be straightforward and we have alreay begun to
do so; other modifications would require larger
changes to the model and enhancements to the train-
ing data. For example, Albright and Hayes (2002,
§3.4) motivate a second generalization mechanism
that creates cross-context (or more jocularly ‘Dop-
pelgänger’) rules: for each pair of rules A →
B/C D and A → B′/C ′ D′, their model
adds A→ B′/C D and A→ B/C ′ D′. This
is a simple change to our implementation that, us-
ing the results of §2, need only apply to base rules.

Learning phonological rules along with morphol-
ogy, as in Albright and Hayes (2002, §3.3), would
require the training data to contain lexeme frequen-
cies. This is because the original implementation
processes the training lexemes in order of descend-
ing frequency, ensuring that a phonological rule
learned on the basis of one lexeme is consistent
with all previous (i.e., higher frequency) training
examples. We have not yet begun to explore this or
alternative means of incorporating phonology into
the model; this is an important extension because,
as Albright & Hayes demonstrate, learning fully
general morphological rules requires taking into

account the downstream effects of phonology. We
have also not explored impugnment (Albright and
Hayes, 2002, §3.7), which unlike the other compo-
nents of the model seeks to limit rather than expand
upon minimal generalization.

4.2 Near misses
As the organizers of the shared task have empha-
sized, implemented models can be used not only
to predict the results of behavioral experiments but
also to generate stimuli. Ideally, stimulus items
would be designed to test the core tenets of a single
model or to probe systematic differences in predic-
tion among models. As part of our implementation,
we have developed an automatic method of select-
ing wug items to investigate a main concern about
minimal generalization: namely, that by learning
rules in a strictly bottom-up way it will undergen-
eralize, predicting sharp contrasts in inflectional
behavior on the basis of slight differences in form.

We illustrate our method with the English irreg-
ular pattern I→ 2, which attracted new members
in the history of English and has elicited relatively
high production rates and acceptability ratings in
previous wug tests (e.g., Bybee and Moder, 1983;
Albright and Hayes, 2003). We extracted all of the
onsets and rimes that appear in the bare forms of
monosyllabic English verbs and freely combined
them to create a large pool of possible stimulus
items. We eliminated items that are real verbs, then
shrunk the pool to those items that are one (segmen-
tal) edit away from some existing irregular verb that
undergoes I → 2. We further required each item
to share its rime with at least one such irregular
verb.10 All of the wugs in the final pool are highly
similar, in this sense, to existing irregulars.

We then divided the pool into two sets: items
that are within the scope of at least one I→ 2 rule
learned by minimal generalization (potential hits),
and items that are outside the scope of all such

10Studies of English irregular verbs have focused primarily
on vowels and codas of monosyllables, though see Bybee and
Moder (1983) on the potential role of onsets.



rules (near misses). For the former, we recorded
the highest-scoring applicable rule. We wanted to
provide the model with the opportunity to form
rules that were as broad as possible — making it
more difficult for us to find near misses — and
therefore implemented cross-context base rules as
described earlier.11

Some of the potential hits and near misses are
minimal pairs. For example, /lIN/ (.67) and /SIN/
(.61) could potentially undergo I → 2 rules with
the indicated confidence values. But /fIN/ and
/vIN/ are ineligible for the change according to
the model (because no existing irregular verb of
this type has a non-coronal fricative immediately
before the vowel). Other differences in the onset
can also dramatically affect the model’s predictions:
/TôINk/ (.88) and /glIN/ (.67) are potential hits but
/smINk/ and /smIN/ are near misses. The second
two are phonotactically challenged (Davis, 1989),
but are /Tô2Nk/ and /gl2N/ far superior to /sm2Nk/
and /sm2N/ when the phonotactic acceptability of
their bare forms is factored out?

The same procedure can be applied to any irreg-
ular (or indeed regular) change. For i → Ept (as
in sleep ∼ slept), we find that the potential hits in-
clude /gip/ (.85) and /flip/ (.73, one of Albright &
Hayes’s wug items) while /fip/, /vip/, /nip/, and
/snip/ are among the near misses. Would native
English speakers rate the novel past form /gEpt/
much higher than /fEpt/, as the model predicts?12

We look forward to future empirical tests of min-
imal generalization, along these lines and others, as
part of the collective effort to find out where we are
and how much further we have to go in cognitive
modeling of inflection.
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