
Training Strategies for Neural Multilingual Morphological Inflection

Adam Ek and Jean-Philippe Bernardy
Centre for Linguistic Theory and Studies in Probability

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

{adam.ek,jean-philippe.bernardy}@gu.se

Abstract

This paper presents the submission of team
GUCLASP to SIGMORPHON 2021 Shared
Task on Generalization in Morphological In-
flection Generation. We develop a multilin-
gual model for Morphological Inflection and
primarily focus on improving the model by us-
ing various training strategies to improve accu-
racy and generalization across languages.

1 Introduction

Morphological inflection is the task of transforming
a lemma to its inflected form given a set of gram-
matical features (such as tense or person). Dif-
ferent languages have different strategies, or mor-
phological processes such as affixation, circumfix-
ation, or reduplication among others (Haspelmath
and Sims, 2013). These are all ways to make a
lemma express some grammatical features. One
way to characterize how languages express gram-
matical features is a spectrum of morphological
typology ranging from agglutinative to isolating.
In agglutinative languages, grammatical features
are encoded as bound morphemes attached to the
lemma, while in isolating languages each gram-
matical feature is represented as a lemma. Thus,
languages in different parts of this spectrum will
have different strategies for expressing information
given by grammatical features.

In recent years, statistical and neural models
have been performing well on the task of mor-
phological inflection (Smit et al., 2014; Kann and
Schütze, 2016; Makarov et al., 2017; Sharma et al.,
2018). We follow this tradition and implement a
neural multilingual model for morphological inflec-
tion. In a multilingual system, a single model is
developed to handle input from several different
languages: we can give the model either a word in
Evenk or Russian and it perform inflection.

This is a challenging problem for several rea-
sons. For many languages resources are scarce,
and a multilingual system must balance the training
signals from both high-resource and low-resource
languages such that the model learns something
about both. Additionally, different languages em-
ploy different morphological processes to inflect
words. In addition to languages employing a vari-
ety of different morphological processes, different
languages use different scripts (for example Ara-
bic, Latin, or Cyrillic), which can make it hard to
transfer knowledge about one language to another.
To account for these factors a model must learn
to recognize the different morphological processes,
the associated grammatical features, the script used,
and map them to languages.

In this paper, we investigate how far these issues
can be tackled using different training strategies, as
opposed to focusing on model design. Of course, in
the end, an optimal system will be a combination of
a good model design and good training strategies.
We employ an LSTM encoder-decoder architecture
with attention, based on the architecture of Anas-
tasopoulos and Neubig (2019), as our base model
and consider the following training strategies:

• Curriculum learning: We tune the order in
which the examples are presented to the model
based on the loss.

• Multi-task learning: We predict the formal
operations required to transform a lemma into
its inflected form.

• Language-wise label smoothing: We smooth
the loss function to not penalize the model as
much when it predicts a character from the
correct language.

• Scheduled sampling: We use a probability
distribution to determine whether to use the

previous output or the gold as input when de-
coding.

2 Data

The data released cover 38 languages of varying
typology, genealogy, grammatical features, scripts,
and morphological processes. The data for the
different languages vary greatly in size, from 138
examples (Ludic) to 100310 (Turkish). For the
low-resourced languages1 we extend the original
dataset with hallucinated data (Anastasopoulos and
Neubig, 2019) to train on.

With respect to the work of Anastasopoulos and
Neubig (2019), we make the following changes.
We identify all subsequences of length 3 or more
that overlap in the lemma and inflection. We then
randomly sample one of them, denoted R, as the
sequence to be replaced. For each language, we
compile a set CL containing all (1,2,3,4)-grams in
the language. We construct a string G to replace R
with by uniformly sampling n-grams from CL and
concatenating them G = cat(g0, ..., gm) until we
have a sequence whose length satisfy: |R| − 2 ≤
|G| ≤ |R|+ 2.

Additionally, we do not consider subsequences
which include a phonological symbol.2 A
schematic of the hallucination process is shown
in Figure 1.

h e ː k i ː

h e ː k i ː ŋ i t i n

ŋ i t i n

Sample random
subsequence

Sample random
(1,2,3)-grams

r a ː t k ː

r a ː t k ː

Inflection:

Lemma:

New
inflection:

New
lemma:

Figure 1: A example of the data hallucination process.
The sequence R = ki is replace by G = tk.

Sampling n-grams instead of individual charac-
ters allow us to retain some of the orthographical
information present in the language. We generate a
set of 10 000 hallucinated examples for each of the
low-resource languages.

1We consider languages with less than 10 000 training
examples as low-resource in this paper.

2Thus in Figure 1 a subsequence of length 2 is selected
as the sequence to be replaced, since the larger subsequences
would include the phonological symbol :

3 Method

In this section, the multilingual model and training
strategies used are presented. 3 We employ a single
model with shared parameters across all languages.

3.1 Model
To account for different languages in our model
we prepend a language embedding to the input
(similarly to Johnson et al. (2017); Raffel et al.
(2019)). To model inflection, we employ an
encoder-decoder architecture with attention. The
first layer in the model is comprised of an LSTM,
which produces a contextual representation for
each character in the lemma. We encode the tags us-
ing a self-attention module (equivalent to a 1-head
transformer layer) (Vaswani et al., 2017). This
layer does not use any positional data: indeed the
order of the tags does not matter (Anastasopoulos
and Neubig, 2019).

To generate inflections, we use an LSTM de-
coder with two attention modules. One attending
to the lemma and one to the tags. For the lemma
attention, we use a content-based attention mod-
ule (Graves et al., 2014; Karunaratne et al., 2021)
which uses cosine similarity as its scoring method.
However, we found that only using content-based
attention causes attention to be too focused on a sin-
gle character, and mostly ignores contextual cues
relevant for the generation.

To remedy this, we combine the content-based
attention with additive attention as follows, where
superscript cb indicate content-based attention, add
additive attention and k the key:

aadd = softmax(w>tanh(Wak +Wbh))

attadd =

T∑
t=1

aaddt haddt

acb = softmax(cos(k, h))

attcb =

T∑
t=1

acbt h
cb
t

att = W[attcb; attadd]

In addition to combining content-based attention
and additive attention we also employ regulariza-
tion on the attention modules such that for each
decoding step, the attention is encouraged to dis-
tribute the attention weights a uniformly across

3Our code is available here:
https://github.com/adamlek/
multilingual-morphological-inflection/

https://github.com/adamlek/multilingual-morphological-inflection/
https://github.com/adamlek/multilingual-morphological-inflection/

the lemma and tag hidden states (Anastasopoulos
and Neubig, 2019; Cohn et al., 2016). We employ
additive attention for the tags.

In each decoding step, we pass the gold or pre-
dicted character embedding to the decoding LSTM.
We then take the output as the key and calculate
attention over the lemma and tags. This representa-
tion is then passed to a two-layer perceptron with
ReLU activations.

3.2 Multi-task learning

Instead of predicting the characters in the inflected
form, one can also predict the Levenshtein opera-
tions needed to transform the lemma into the in-
flected form; as shown by Makarov et al. (2017).

A benefit of considering operations instead of
characters needed to transform a lemma to its in-
flected form is that the script used is less of a fac-
tor, since by considering the operations only we
abstract away from the script used. We find that
making both predictions, as a multi-task setup, im-
proves the performance of the system.

The multi-task setup operates on the character
level, thus for each contextual representation of a
character we want to predict an operation among
deletion (del), addition/insertion (add), substi-
tution (sub) and copy (cp). Because add and
del change the length, we predict two sets of op-
erations, the lemma-reductions and the lemma-
additions. To illustrate, the Levenshtein operations
for the word pair (valatas, ei valate) in Veps (uralic
language related to Finnish) is shown in Figure 2.

v a l a t a s

v a l a t ee i

add add add cp cp cp cp cp del sub

Inflection:

Lemma:

Operations:

Figure 2: Levenshtein operations mapped to characters
in the lemma and inflection.

In our setup, the task of lemma-reductions is
performed by predicting the cp, del, and sub
operations based on the encoded hidden states in
the lemma. The task of lemma-additions then is
performed by predicting the cp, add, and sub
operations on the characters generated by the de-
coder. We use a single two-layer perceptron with
ReLU activation to predict both lemma-reduction
and lemma-additions. 4

4In the future, we’d like to experiment with including the
representations of tags in the input to the operation classifier.

3.3 Curriculum Learning

We employ a competence-based curriculum learn-
ing strategy (Liu et al., 2020; Platanios et al., 2019).
A competence curriculum learning strategy con-
structs a learning curriculum based on the compe-
tence of a model, and present examples which the
model is deemed to be able to handle. The goal of
this strategy is for the model to transfer or apply
the information it acquires from the easy examples
to the hard examples.

To estimate an initial difficulty for an example
we consider the character unigram log probability
of the lemma and inflection. For a word (either the
lemma or inflection) w = c0, ..., cK , the unigram
log probability is given by:

log(PU (w)) =

K∑
k=0

log(p(ck)) (1)

To get a score for a lemma and inflection pair
(henceforth (x, y)), we calculate it as the sum of
the log probabilities of x and y:

score(x, y) = PU (x) + PU (y) (2)

Note that here we do not normalize by the length
of the inflection and lemma. This is because an
additional factor in how difficult an example should
be considered is its length, i.e. longer words are
harder to model. We then sort the examples and use
a cumulative density function (CDF) to map the
unigram probabilities to a score in the range (0, 1],
we denote the training set of pairs and their scores
((x, y), s)0, . . . , ((x, y), s)m, wherem indicate the
number of examples in the dataset, as D.

To select appropriate training examples from D
we must estimate the competence c of our model.
The competence of the model is estimated by a
function of the number of training steps t taken:

c(t) = min

(
1,

√
t
1− c(1)2
c(1)2

+ c(1)2

)
(3)

During training, we employ a probabilistic ap-
proach to constructing batches from our corpus,
we uniformly draw samples ((x, y), s) from the
training set D such that the score s is lower than
the model competence c(t). This ensures that for
each training step, we only consider examples that
the model can handle according to our curriculum
schedule.

However, just because an example has low un-
igram probability doesn’t ensure that the exam-
ple is easy, as the example may contain frequent
characters but also include rare morphological pro-
cesses (or rare combinations of Levenshtein op-
erations), to account for this we recompute the
example scores at each training step. We sort the
examples in each training step according to the
decoding loss, then assign a new score to the ex-
amples in the range (0, 1] using a CDF function.

We also have to take into account that as the
model competence grows, “easy” (low loss or high
unigram probability) examples will be included
more often in the batches. To ensure that the
model learns more from examples whose difficulty
is close to its competence we compute a weight w
for each example in the batch. We then scale the
loss by dividing the score s by the model compe-
tence at the current time-step:

weighted loss(x, y) = loss(x, y)× score(x, y)

c(t)
(4)

Because the value of our model competence
is tied to a specific number of training steps,
we develop a probabilistic strategy for sampling
batches when the model has reached full compe-
tence. When the model reaches full competence we
construct language weights by dividing the number
of examples in a language by the total number of
examples in the dataset and taking the inverse dis-
tribution as the language weights. Thus for each
language, we get a value in the range (0, 1] where
low-resource languages receive a higher weight. To
construct a batch we continue by sampling exam-
ples, but now we only add an example if r ∼ ρ,
where ρ is a uniform Bernoulli distribution, is less
than the language weight of the example. This strat-
egy allows us to continue training our model after
reaching full competence without neglecting the
low-resource languages.

In total we train the model for 240 000 training
steps, and consider the model to be fully competent
after 60 000 training steps.

3.4 Scheduled Sampling
Commonly, when training an encoder-decoder
RNN model, the input at time-step t is not the
output from the decoder at t − 1, but rather the
gold data. It has been shown that models trained
with this strategy may suffer at inference time. In-
deed, they have never been exposed to a partially

incorrect input in the training phase. We address
this issue using scheduled sampling (Bengio et al.,
2015).

We implement a simple schedule for calculat-
ing the probability of using the gold characters or
the model’s prediction by using a global sample
probability variable which is updated at each train-
ing step. We start with a probability ρ of 100% to
take the gold. At each training step, we decrease ρ
by 1

totalsteps . For each character, we take a sample
from the Bernoulli distribution of parameter ρ to
determine the decision to make.

3.5 Training

We use cross-entropy loss for the character gener-
ation loss and for the operation predictions tasks.
Our final loss function consists of the character gen-
eration loss, the lemma-reduction, and the lemma-
addition losses summed. We use a cosine anneal-
ing learning rate scheduler (Loshchilov and Hutter,
2017), gradually decreasing the learning rate. The
hyperparameters used for training are presented in
Table 1.

HYPERPARAMETER VALUE

Batch Size 256
Embedding dim 128
Hidden dim 256
Training steps 240000
Steps for full competence 60000
Initial LR 0.001
Min LR 0.0000001
Smoothing-α 2.5%

Table 1: Hyperparameters used. As we use a proba-
bilistic approach to training we report number of train-
ing steps rather than epochs. In total, the number of
training steps we take correspond to about 35 epochs.

Language-wise Label smoothing We use
language-wise label smoothing to calculate the
loss. This means that we remove a constant
α from the probability of the correct character
and distribute the same α uniformly across the
probabilities of the characters belonging to the
language of the word. The motivation for doing
label smoothing this way is that we know that
all incorrect character predictions are not equally
incorrect. For example, when predicting the
inflected form of a Modern Standard Arabic (ara)
word, it is more correct to select any character
from the Arabic alphabet than a character from

tu
r

ol
o

ve
p

sa
h

po
r

po
l

ar
a

ty
v

km
r

ru
s

sp
a

ay
m

de
u

ce
s

kr
l

bu
l

nl
d

am
h

he
b

af
b

ar
z

cn
i

ck
b

in
d

ev
n

se
e

am
e

itl sy
c

br
a

ai
l

m
ag vr
o

ko
d

sj
o

gu
p

ck
t

lu
d

0
5
0
,0
0
0

1
·
1
0
5

0
5
0

1
0
0

Figure 3: Number of examples (green indicate natu-
ral and blue hallucinated examples, left x-axis) plotted
against the exact match accuracy (right x-axis) of our
system on the development data (blue) and the test data
(red).

the Latin or Cyrillic alphabet. A difficulty is that
each language potentially uses a different set of
characters. We calculate this set using the training
set only— so it is important to make α not too
large, so that there is not a too big difference
between characters seen in the training set and
those not seen. Indeed, if there were, the model
might completely exclude unseen characters from
its test-time predictions. (We found that α = 2.5%
is a good value.)

4 Results

The results from our system using the four straining
strategies presented earlier are presented in Table 2.
Each language is evaluated by two metrics, exact
match, and average Levenshtein distance. The aver-
age Levenshtein distance is on average, how many
operations are required to transform the system’s
guess to the gold inflected form. One challenging
aspect of this dataset for our model is balancing
the information the model learns about low- and
high-resource languages. We plot the accuracy the
model achieved against the data available for that
language in Figure 3.

We note that for all languages with roughly more
than 30 000 examples our model performs well,
achieving around 98% accuracy. When we con-
sider languages that have around 10 000 natural
examples and no hallucinated data the accuracy
drops closer to round 50%. For the languages with
hallucinated data, we would expect this trend to
continue as the data is synthetic and does not take
into account orthographic information as natural

Test Dev
LANG EM LEV EM LEV

afb 90.29 0.17 91.29 0.15
ail 6.84 3.6 7.69 3.62
ame 70.72 0.75 73.67 0.64
amh 97.44 0.04 96.87 0.04
ara 98.69 0.03 98.59 0.04
arz 91.65 0.14 92.48 0.14
aym 99.8 0.0 99.75 0.01
bra 62.38 0.71 64.05 0.59
bul 98.16 0.03 98.02 0.03
ces 93.41 0.12 94.01 0.12
ckb 68.27 0.77 68.91 0.73
ckt 60.53 1.37 55.56 1.72
cni 91.99 0.11 91.38 0.12
deu 93.95 0.09 93.28 0.1
evn 51.7 1.47 50.41 1.5
gup 22.95 3.92 26.67 3.1
heb 95.86 0.09 94.97 0.1
ind 62.32 1.3 60.28 1.33
itl 22.63 2.89 22.16 3.11
kmr 98.19 0.02 98.32 0.02
kod 79.57 0.58 80.43 0.37
krl 97.62 0.05 97.83 0.04
lud 62.16 0.73 66.67 0.44
mag 70.2 0.53 63.64 0.71
nld 92.51 0.12 92.31 0.12
olo 99.39 0.01 99.36 0.01
pol 97.34 0.04 97.51 0.04
por 98.41 0.03 98.3 0.03
rus 97.02 0.05 96.8 0.05
sah 99.86 0.0 99.86 0.0
see 49.77 1.7 50.37 1.51
sjo 29.76 1.73 32.43 1.83
spa 98.66 0.02 98.65 0.02
syc 9.43 5.25 15.7 5.41
tur 98.69 0.03 98.86 0.03
tyv 98.61 0.03 98.51 0.03
vep 99.26 0.01 99.3 0.01
vro 82.17 0.31 80.7 0.42

Table 2: Results on the development data.

language examples do. That is, when construct-
ing hallucinated examples, orthography is taken
into account only indirectly because we consider
n-grams instead of characters when finding the re-
placement sequence. However, we find that for
many of the languages with hallucinated data the
exact match accuracy is above 50%, but varies a
lot depending on the language.

Two of the worst languages in our model is
Classical Syriac (syc) and Xibe (sjo). An issue
with Classical Syriac is that the language uses
a unique script, the Syriac abjad, which makes
it difficult for the model to transfer information
about operations and common character combina-
tions/transformations into Classical Syriac from
related languages such as Modern Standard Arabic
(spoken in the region). For Xibe there is a similar
story: it uses the Sibe alphabet which is a variant
of Manchu script, which does not occur elsewhere
in our dataset.

5 Language similarities

Our model process many languages simultaneously,
thus it would be encouraging if the model also was
able to find similarities between languages. To
explore this we investigate whether the language
embeddings learned by the model produce clusters
of language families. A t-SNE plot of the language
embeddings is shown in Figure 4.

ame

ind

sah
syc

ckt

kmr

gup
itl

ail olo

deu

kod

sjo

bul

ces

krl

hebamh

arz

evn
nld

cni

spa

vro ckb

pol

lud
bra

vep

ara

rus
aym

see
afb

tyv
por

mag

tur

Figure 4: t-SNE plot of the language embeddings. Dif-
ferent colors indicate different language families.

The plot shows that the model can find some
family resemblances between languages. For ex-
ample, we have a Uralic cluster consisting of the
languages Veps (vep), Olonets (olo), and Karelian
(krl) which are all spoken in a region around Russia
and Finland. However, Ludic (lud) and Võro (vro)
are not captured in this cluster, yet they are spoken
in the same region.

We can see that the model seem to separate lan-
guage families somewhat depending on the script
used. The Afro-Asiatic languages are split into
two smaller clusters, one cluster containing the
languages that use Standard Arabic (ara, afv and

arz) script and one cluster that use Amharic and
Hebrew (amh, heb) script. As mentioned earlier
Classical Syriac uses its another script and seems
to consequently appear in another part of the map.

In general, our model’s language embeddings ap-
pear to learn some relationships between languages,
but certainly not all of them. However, that we find
some patterns in encouraging for future work.

6 Scheduled Sampling

We note that during the development all of our
training strategies showed a stronger performance
for the task, except one: scheduled sampling. We
hypothesize this is because the low-resource lan-
guages benefit from using the gold as input when
predicting the next character, while high-resource
languages do not need this as much. The model has
seen more examples from high-resource languages
and thus can model them better, which makes us-
ing the previous hidden state more reliable as input
when predicting the next token. Indeed, the sched-
uled sampling degrade the overall performance by
3.04 percentage points, increasing our total aver-
age accuracy to 83.3 percentage points, primarily
affecting low-resource languages.

7 Conclusions and future Work

We have presented a single multilingual model for
morphological inflection in 38 languages enhanced
with different training strategies: curriculum learn-
ing, multi-task learning, scheduled sampling and
language-wise label smoothing. The results indi-
cate that our model to some extent capture simi-
larities between the input languages, however, lan-
guages that use different scripts appears problem-
atic. A solution to this would be to employ translit-
eration (Murikinati et al., 2020).

In future work, we plan on exploring curriculum
learning in more detail and move away from esti-
mating the competence of our model linearly, and
instead, estimate the competence using the accu-
racy on the batches. Another interesting line of
work here is instead of scoring the examples by
model loss alone, but combine it with insights from
language acquisition and teaching, such as sorting
lemmas based on their frequency in a corpus (Ionin
and Wexler, 2002; Slabakova, 2010).

We also plan to investigate language-wise label
smoothing more closely, specifically how the value
of α should be fine-tuned with respect to the num-
ber of characters and languages.

Acknowledgments

The research reported in this paper was supported
by grant 2014-39 from the Swedish Research Coun-
cil, which funds the Centre for Linguistic Theory
and Studies in Probability (CLASP) in the Depart-
ment of Philosophy, Linguistics, and Theory of
Science at the University of Gothenburg.

References
Antonios Anastasopoulos and Graham Neubig. 2019.

Pushing the limits of low-resource morphological in-
flection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 984–
996. Association for Computational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1171–1179.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, San Diego California, USA, June 12-17, 2016,
pages 876–885. The Association for Computational
Linguistics.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Martin Haspelmath and Andrea Sims. 2013. Under-
standing morphology. Routledge.

Tania Ionin and Kenneth Wexler. 2002. Why is ‘is’ eas-
ier than ‘-s’?: acquisition of tense/agreement mor-
phology by child second language learners of en-
glish. Second language research, 18(2):95–136.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Katharina Kann and Hinrich Schütze. 2016. Med: The
lmu system for the sigmorphon 2016 shared task on
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 62–70.

Geethan Karunaratne, Manuel Schmuck, Manuel
Le Gallo, Giovanni Cherubini, Luca Benini, Abu
Sebastian, and Abbas Rahimi. 2021. Robust high-
dimensional memory-augmented neural networks.
Nature communications, 12(1):1–12.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-based curriculum learning for
neural machine translation. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-
10, 2020, pages 427–436. Association for Compu-
tational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
stochastic gradient descent with warm restarts. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
Vancouver, BC, Canada, August 3-4, 2017, pages
49–57. Association for Computational Linguistics.

Nikitha Murikinati, Antonios Anastasopoulos, and Gra-
ham Neubig. 2020. Transliteration for cross-lingual
morphological inflection. In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 189–197, Online. Association for Computa-
tional Linguistics.

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabas Poczos, and Tom M Mitchell.
2019. Competence-based curriculum learning
for neural machine translation. arXiv preprint
arXiv:1903.09848.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Abhishek Sharma, Ganesh Katrapati, and Dipti Misra
Sharma. 2018. IIT(BHU)–IIITH at CoNLL–
SIGMORPHON 2018 shared task on universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection, pages 105–111,
Brussels. Association for Computational Linguis-
tics.

Roumyana Slabakova. 2010. What is easy and what is
hard to acquire in a second language?

Peter Smit, Sami Virpioja, Stig-Arne Grönroos, and
Mikko Kurimo. 2014. Morfessor 2.0: Toolkit for
statistical morphological segmentation. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,

https://doi.org/10.18653/v1/D19-1091
https://doi.org/10.18653/v1/D19-1091
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://doi.org/10.18653/v1/n16-1102
https://doi.org/10.18653/v1/n16-1102
http://arxiv.org/abs/1410.5401
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://doi.org/10.18653/v1/K17-2004
https://doi.org/10.18653/v1/K17-2004
https://doi.org/10.18653/v1/2020.sigmorphon-1.22
https://doi.org/10.18653/v1/2020.sigmorphon-1.22
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.18653/v1/K18-3013
https://doi.org/10.3115/v1/e14-2006
https://doi.org/10.3115/v1/e14-2006

EACL 2014, April 26-30, 2014, Gothenburg, Swe-
den, pages 21–24. The Association for Computer
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

