
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 177–187

177

Recognizing Reduplicated Forms: Finite-State Buffered Machines

Yang Wang
Department of Linguistics

University of California, Los Angeles
Los Angeles, CA, USA

yangwangx@g.ucla.edu

Abstract

Total reduplication is common in natural lan-
guage phonology and morphology. However,
formally as copying on reduplicants of un-
bounded size, unrestricted total reduplication
requires computational power beyond context-
free, while other phonological and morpholog-
ical patterns are regular, or even sub-regular.
Thus, existing language classes characterizing
reduplicated strings inevitably include typo-
logically unattested context-free patterns, such
as reversals. This paper extends regular lan-
guages to incorporate reduplication by intro-
ducing a new computational device: finite
state buffered machine (FSBMs). We give
its mathematical definitions and discuss some
closure properties of the corresponding set of
languages. As a result, the class of regular
languages and languages derived from them
through a copying mechanism is characterized.
Suggested by previous literature (Gazdar and
Pullum, 1985), this class of languages should
approach the characterization of natural lan-
guage word sets.

1 The Puzzle of (Total) Reduplication

Formal language theory (FLT) provides computa-
tional mechanisms characterizing different classes
of abstract languages based on their inherent struc-
tures. Following FLT in the study of human lan-
guages, in principle, researchers would expect a
hierarchy of grammar formalisms that matches em-
pirical findings: more complex languages in such a
hierarchy are supposed to be 1) less common in nat-
ural language typology; and 2) harder for learners
to learn.

The classical Chomsky Hierarchy (CH) puts for-
mal languages into four levels with increasing com-
plexity: regular, context-free, context-sensitive, re-
cursively enumerable (Chomsky, 1956; Jäger and
Rogers, 2012). Does the CH notion of formal
complexity have the desired empirical correlates?

Several findings suggest that those four levels do
not align with natural languages precisely, some
leading to major refinements on the CH. First,
the unbounded crossing dependencies in Swiss-
German case marking (Shieber, 1985) facilitated
attempts to characterize mildly context-sensitive
languages (MCS), which extend context-free lan-
guages (CFLs) but still preserve some useful prop-
erties of CFLs (e.g., Joshi, 1985; Seki et al., 1991;
Stabler, 1997). Secondly, it is generally accepted
that phonology is regular (e.g. Johnson, 1972; Ka-
plan and Kay, 1994). However, being regular is
argued to be an unrestrictive property for phonolog-
ical well-formed strings: for example, a language
whose words are sensitive to an even or odd num-
ber of certain sounds is unattested (Heinz, 2018).
With strong typological evidence, the sub-regular
hierarchy was further developed, which continues
to be an active area of research (e.g., McNaughton
and Papert, 1971; Simon, 1975; Heinz, 2007; Heinz
et al., 2011; Chandlee, 2014; Graf, 2017).

In this paper, we analyze another mismatch be-
tween existing well-known language classes and
empirical findings: reduplication, which involves
copying operations on certain base forms (Inkelas
and Zoll, 2005). The reduplicated phonological
strings are either of total identity (total reduplica-
tion) or of partial identity (partial reduplication) to
the base forms. Table 1 provides examples showing
the difference between total reduplication and par-
tial reduplication: in Dyirbal, the pluralization of
nominals is realized by fully copying the singular
stems, while in Agta examples, plural forms only
copy the first CVC sequence of the corresponding
singular forms (Healey, 1960; Marantz, 1982).

Reduplication is common cross-linguistically.
According to Rubino (2013) and Dolatian and
Heinz (2020), 313 out of 368 natural languages
exhibit productive reduplication, in which 35 lan-
guages only have total reduplication, but not partial

178

Total reduplication: Dyirbal plurals (Dixon, 1972, 242)
Singular Gloss Plural Gloss
midi ‘little, small’ midi-midi ‘lots of little ones’
gulgiói ‘prettily painted men’ gulgiói-gulgiói ‘lots of prettily painted men’

Partial reduplication: Agta plurals (Healey, 1960,7)
Singular Gloss Plural Gloss
labáng ‘patch’ lab-labáng ‘patches’
takki ‘leg’ tak-takki ‘legs’

Table 1: Total reduplication: Dyirbal plurals (top); partial reduplication: Agta plurals (bottom).

m i d i m i d i

m i d i i d i m

Figure 1: Crossing dependencies in Dyirbal total redu-
plication ‘midi-midi’ (top) versus nesting dependencies
in unattested string reversal ‘midi-idim’ (bottom)

reduplication. As a comparison, it is widely rec-
ognized that context-free string reversals are rare
in phonology and morphology (Marantz, 1982)
and appear to be confined to language games
(Bagemihl, 1989).

Unrestricted total reduplication, or unbounded
copying, can be abstracted as Lww = {ww |w ∈
Σ∗}, a well-known non-context free language
(Culy, 1985; Hopcroft and Ullman, 1979).1 Its non-
context-freeness comes from the incurred crossing
dependencies among symbols, similar to Swiss-
German case marking constructions. However,
the typologically-rare string reversals wwR demon-
strate nesting dependencies, which are context-free
(see Fig. 1 as an illustration).

Given most phonological and morphological pat-
terns are regular, how can one fit in reduplicated
strings without including reversals? Gazdar and
Pullum (1985, 278) made the remark that

1Total reduplication does not immediately guarantee un-
boundedness. When the set of bases is finite, i.e, {ww |w ∈
L} when L is finite, total reduplication can be squeezed in
languages described by 1 way finite state machines (Chandlee,
2017), though doing so eventually leads to state explosion
(Roark and Sproat, 2007; Dolatian and Heinz, 2020). Com-
putationally, only total reduplication with infinite number of
potential reduplicants is true unbounded copying. With care-
ful treatment, unbounded copying, externalizing a primitive
copying operation, can be justified as a model of reduplication
in natural languages. More in-depth discussion of 1): bounded
versus unbounded and 2): copying as a primitive operation
can be found in Clark and Yoshinaka (2014); Chandlee (2017);
Dolatian and Heinz (2020).

regular
aibj

context sensitive

mildly context sensitivecontext-free

wwR

a ib ja ib j

ww

aibjcidj

Figure 2: The class of regular with copying languages
in CH

We do not know whether there exists an
independent characterization of the class
of languages that includes the regular
sets and languages derivable from them
through reduplication, or what the time
complexity of that class might be, but
it currently looks as if this class might
be relevant to the characterization of NL
word-sets.

Motivated by Gazdar and Pullum (1985), this
article aims to give a formal characterization of
regular with copying languages. Specifically, it ex-
amines what minimal changes can be brought to
regular languages to include stringsets with two ad-
jacent copies, while excluding some typologically
unattested context-free patterns, such as reversals,
shown in Fig. 2. One possible way to probe such
a language class is by adding copying to the set of
operations whose closure defines regular languages.
Instead, the approach we take in this paper is to
add reduplication to finite state automata (FSAs),
which compute regular languages.

179

Various attempts followed this vein:2 one ex-
ample is finite state registered machine in Cohen-
Sygal and Wintner (2006) (FSRAs) with finitely
many registers as its memory, limited in the way
that it only models bounded copying. The state-of-
art finite state machinery that computes unbounded
copying elegantly and adequately is 2-way finite
state transducers (2-way FSTs), capturing redupli-
cation as a string-to-string mapping (w → ww)
(Dolatian and Heinz, 2018a,b, 2019, 2020). To
avoid the mirror image function (w → wwR),
Dolatian and Heinz (2020) further developed sub-
classes of 2-way FSTs which cannot output any-
thing during right-to-left passes over the input (cf.
rotating transducers: Baschenis et al., 2017).

It should be noted that the issue addressed by 2-
way FSTs is a different one: reduplication is mod-
eled as a function (w → ww), while this paper fo-
cuses on a set of languages containing identical sub-
strings (ww). The stringset question is non-trivial
and well-motivated for reasons of both formal as-
pects and its theoretical relevance. Firstly, since
the studied 2-way FSTs are not readily invertible,
how to get the inverse relation ww → w remains
an open question, as acknowledged in Dolatian and
Heinz (2020). Although this paper does not directly
address this morphological analysis problem, rec-
ognizing which strings are reduplicated and belong
to Lww or any other copying languages may be an
important first step.3

As for the theoretical aspects, there are some
attested forms of meaning-free reduplication in
natural languages.Zuraw (2002) proposes aggres-
sive reduplication in phonology: speakers are
sensitive to phonological similarity between sub-
strings within words and reduplication-like struc-
tures are attributed to those words. It is still ar-
guable whether those meaning-free reduplicative
patterns of unbounded strings are generated via a
morphological function or not. Overall, it is de-
sirable to have models that help to detect the sub-
string identity within surface strings when those
sub-strings are in the regular set.

This paper introduces a new computational de-
vice: finite state buffered machine (FSBMs). They

2Some other examples, pursuing more linguistically sound
and computationally efficient finite state techniques, are
Walther (2000), Beesley and Karttunen (2000) and Hulden
(2009). However, they fail to model unbounded copying.
Roark and Sproat (2007), Cohen-Sygal and Wintner (2006)
and Dolatian and Heinz (2020) provide more comprehensive
reviews.

3Thanks to the reviewer for bringing this point up.

are two-taped finite state automata, sensitive to
copying activities within strings, hence able to de-
tect identity between sub-strings. This paper is
organized as follows: Section 2 provides a defi-
nition of FSBMs with examples. Then, to better
understand the copying mechanism, complete-path
FSBMs, which recognize exactly the same set of
languages as general FSBMs, are highlighted. Sec-
tion 3 examines the computational and mathemat-
ical properties of the set of languages recognized
complete-path FSBMs. Section 4 concludes with
discussion and directions for future research.

2 Finite State Buffered Machine

2.1 Definitions

FSBMs are two-taped automata with finite-state
core control. One tape stores the input, as in normal
FSAs; the other serves as an unbounded memory
buffer, storing reduplicants temporarily for future
identity checking. Intuitively, FSBMs is an ex-
tension to FSRAs but equipped with unbounded
memory. In theory, FSBMs with a bounded buffer
would be as expressive as an FSRA and therefore
can be converted to an FSA.

The buffer interacts with the input in restricted
ways: 1) the buffer is queue-like; 2) the buffer
needs to work on the same alphabet as the input,
unlike the stack in a pushdown automata (PDA),
for example; 3) once one symbol is removed from
the buffer, everything else must also be wiped off
before the buffer is available for other symbol ad-
dition. These restrictions together ensure the ma-
chine does not generate string reversals or other
non-reduplicative non-regular patterns.

There are three possible modes for an FSBM M
when processing an input: 1) in normal (N) mode,
M reads symbols and transits between states, func-
tioning as a normal FSA; 2) in buffering (B) mode,
besides consuming symbols from the input and tak-
ing transitions among states, it adds a copy of just-
read symbols to the queue-like buffer, until it exits
buffering (B) mode; 3) after exiting buffering (B)
mode, M enters emptying (E) mode, in which M
matches the stored symbols in the buffer against in-
put symbols. When all buffered symbols have been
matched, M switches back to normal (N) mode for
another round of computation. Under the current
augmentation, FSBMs can only capture local redu-
plication with two adjacent, completely identical
copies. It cannot handle non-local reduplication,
nor multiple reduplication.

180

Definition 1. A Finite-State Buffered Machine
(FSBM) is a 7-tuple 〈Σ, Q, I, F,G,H, δ〉 where

• Q: a finite set of states

• I ⊆ Q: initial states

• F ⊆ Q: final states

• G ⊆ Q: states where the machine must enter
buffering (B) mode

• H ⊆ Q: states visited while the machine is
emptying the buffer

• G ∩H = ∅

• δ: Q × (Σ ∪ {ε}) × Q: the state transitions
according to a specific symbol

Specifying G and H states allows an FSBM to
control what portions of a string are copied. To
avoid complications, G and H are defined to be
disjoint. In addition, states in H identify certain
special transitions. Transitions between two H
states check input-memory identity and consume
symbols in both the input and the buffer. By con-
trast, transitions with at least one state not inH can
be viewed as normal FSA transitions. In all, there
are effectively two types of transitions in δ.

Definition 2. A configuration of an FSBM D =
(u, q, v, t) ∈ Σ∗ ×Q×Σ∗ × {N, B, E}, where u is
the input string; v is the string in the buffer; q is the
current state and t is the current mode the machine
is in.

Definition 3. Given an FSBM M and x ∈ (Σ ∪
{ε}), u,w, v ∈ Σ∗, we define that a configuration
D1 yields a configuration D2 in M (D1 `M D2)
as the smallest relation such that: 4

• For every transition (q1, x, q2) with at least
one state of q1, q2 /∈ H
(xu, q1, ε, N) `M (u, q2, ε, N) with q1 /∈ G
(xu, q1, v, B) `M (u, q2, vx, B) with q2 /∈ G

• For every transition (q1, x, q2) and q1, q2 ∈ H
(xu, q1, xv, E) `M (u, q2, v, E)

• For every q ∈ G
(u, q, ε, N) `M (u, q, ε, B)

• For every q ∈ H
(u, q, v, B) `M (u, q, v, E)
(u, q, ε, E) `M (u, q, ε, N)

4Note that a machine cannot do both symbol consumption
and mode changing at the same time.

q1Start q2 q4 Acceptε

a

b

ε

a

b

Figure 3: An FSBM M1 with G = {q1} (diamond) and
H = {q3} (square); dashed arcs are used only for the
emptying process. L(M1) = {ww|w ∈ {a, b}∗}

q1Start q2 q3 q4 Accepta

a

b

b

ε

a, b

Figure 4: An FSBM M2 with G = {q1} and H = {q4}.
L(M2) = {aibjaibj|i, j ≥ 1}

Definition 4. A run of FSBM M on w is a se-
quence of configurations D0, D1, D2 . . . Dm such
that 1): ∃ q0 ∈ I , D0 = (w, q0, ε, N); 2): ∃ qf ∈ F ,
Dm = (ε, qf , ε, N); 3): ∀ 0 ≤ i < m, Di `M Di+1.
The language recognized by an FSBM M is de-
noted by L(M). w ∈ L(M) iff there’s a run of M
on w.

2.2 Examples

In all illustrations, G states are drawn with dia-
monds and H states are drawn with squares. The
special transitions between H states are dashed.

Example 1. Total reduplication Figure 3 offers
an FSBM M1 for Lww, with any arbitrary strings
made out of an alphabet Σ = {a, b} as candidates
of bases.
Lww is the simplest representation of unbounded

copying, but this language is somewhat structurally
dull. For the rest of the illustration, we focus on
the FSBM M2 in Figure 4. M2 recognizes the non-
context free {aibjaibj|i, j ≥ 1}. This language
can be viewed as total reduplication added to the
regular language {aibj|i, j ≥ 1} (recognized by
the FSA M0 in Figure 5).

State q1 is an initial state and more importantly a
G state, forcing M2 to enter B mode before it takes
any arcs and transits to other states. Then, M2 in
B mode always keeps a copy of consumed input

q1Start q2 q3 Accepta

a

b

b

Figure 5: An FSA M0 with L(M0)= {aibj|i, j ≥ 1}

181

symbols until it proceeds to q4, an H state. State
q4 requires M2 to stop buffering and switch to E

mode in order to check for string identity. Using the
special transitions between H states (in this case,
a and b loops on State q4), M2 checks whether the
stored symbols in the buffer matches the remaining
input. If so, after emitting out all symbols in the
buffer, M2 with a blank buffer can switch to N

mode. It eventually ends at State q4, a legal final
state. Figure 6 gives a complete run of M2 on the
string “abbabb”. Figure 7 shows M2 rejects the
non-total reduplicated string “ababb” since a final
configuration cannot be reached.

Example 3. Partial reduplication Assume Σ =
{b, t, k, ng, l, i, a}, the FSBM M3 in Figure 8
serves as a model of two Agta CVC reduplicated
plurals in Table 1.

Given the initial state q1 is in G, M3 has to enter
B mode before it takes any transitions. In B mode,
M3 transits to a plain state q2, consuming an input
consonant and keeping it in the buffer. Similarly,
M3 transits to a plain state q3 and then to q4. When
M3 first reaches q4, the buffer would contain a
CVC sequence. q4, an H state, urges M3 to stop
buffering and enter E mode. Using the special
transitions between H states (in this case, loops
on q4), M3 matches the CVC in the buffer with the
remaining input. Then, M3 with a blank buffer can
switch to N mode at q4. M3 in N mode loses the
access to loops on q4, as they are available only
in E mode. It transits to q5 to process the rest of
the input by the normal transitions between q5. A
successful run should end at q5, the only final state.
Figure 9 gives a complete run of M3 on the string
“taktakki”.

2.3 Complete-path FSBMs

As shown in the definitions and the examples above,
an FSBM is supposed to end in N mode to process
an input. There are two possible scenarios for a run
to meet this requirement: either never entering B

mode or undergoing full cycles of N, B, E, N mode
changes. The corresponding languages reflect ei-
ther no copying (functioning as plain FSAs) or full
copying, respectively.

In any specific run, it is the states that inform an
FSBM M of its modality. The first time M reaches
aG state, it has to enter B mode and keeps buffering
when it transits between plain states. The first time
when it reaches an H state, M is supposed to enter
E mode and transit only between H states in E

mode. Hence, to go through full cycles of mode
changes, once M reaches a G state and switches
to B mode, it has to encounter some H states later
to be put in E mode. To allow us to only reason
about only the “useful” arrangements of G and H
states, we impose an ordering requirement on G
and H states along a path in a machine and define
a complete path.

Definition 5. A path s from an initial state to a
final state in a machine is said to be complete if

1. for one H state in s, there is always a preced-
ing G state;

2. once one G state is in s, s must contain must
contain at least one H following that G state

3. in between G and the first H are only plain
states.

Schematically, with P representing those non-G,
non-H plain states and I, F representing initial,
final states respectively, the regular expression de-
noting the state information in a path s should be
of the form: I(P ∗GP ∗HH∗P ∗ |P ∗)∗F .

Definition 6. A complete-path finite state
buffered machine is an FSBM in which all possible
paths are complete.

Example FSBMs we provide so far (Figure 3,
Figure 4 and in Figure 8) are complete-path FSBMs.
For the rest of this section, we describe several
cases of an incomplete path in a machine M .

No H states When a G state does not have any
reachableH state following it, there is no complete
run, since M always stays in B mode.

NoH states in between twoG states When aG
state q0 has to transit to another G state q′0 before
any H states, M cannot go to q′0, for M would
enter B mode at q0 while transiting to another G
state in B mode is ill-defined.

H states first When M has to follow a path con-
taining two consecutiveH states before anyG state,
it would clash in the end, because the transitions
among two H states can only be used in E mode.
However, it is impossible to enter E mode without
entering B mode enforced by some G states.

It should be emphasized that M in N mode can
pass through one (and only one) H state to another
plain state. For instance, the language of the FSBM

182

Used Arc State Info Configuration

1. N/A q1 ∈ I (abbabb, q1, ε, N)
2. N/A q1 ∈ G (abbabb, q1, ε, B) Buffering triggered by q1 and empty buffer
3. (q1, a, q2) q2 /∈ G (bbabb, q2, a, B)
4. (q2, b, q3) (babb, q3, ab, B)
5. (q3, b, q3) (abb, q3, abb, B)
6. (q3, ε, q4) (abb, q4, abb, B) Emptying triggered by q4

7. N/A (abb, q4, abb, E)
8. (q4, a, q4) (bb, q4, bb, E)
9. (q4, b, q4) (b, q4, b, E)
10. (q4, b, q4) q4 ∈ H (ε, q4, ε, E) Normal triggered by q4 and empty buffer
11. N/A q4 ∈ F (ε, q4, ε, N)

Figure 6: M2 in Figure 4 accepts abbabb

Used Arc State Info Configuration

1. N/A q1 ∈ I (ababb, q1, ε, N)
2. N/A q1 ∈ G (ababb, q1, ε, B) Buffering triggered by q1 and empty buffer
3. (q1, a, q2) q2 /∈ G (babb, q2, a, B)
4. (q2, b, q3) q3 ∈ H (abb, q3, ab, B)
6. (q3, ε, q4) (abb, q4, ab, B) Emptying triggered by q4

5. N/A (abb, q4, ab, E)
6. (q4, a, q4) (bb, q4, b, E)
7. (q4, b, q4) q4 ∈ H (b, q4, ε, E) Normal triggered by q4 and empty buffer
8. N/A (b, q4, ε, N)

Clash

Figure 7: M2 in Figure 4 rejects ababb

q1Start q2 q3 q4 q5 Acceptb, t, k, ng, l i, a b, t, k, ng, l ε

b, t, k, ng, l, i, a

b, t, k, ng, l

i, a

Figure 8: An FSBM M3 for Agta CVC-reduplicated plurals: G = {q1} and H = {q4}

Used Arc State Info Configuration

1. N/A q1 ∈ G (taktakki, q1, ε, N) Buffering triggered by q1 and empty buffer
2. N/A (taktakki, q1, ε, B)
3. (q1, t, q2) q2 /∈ G (aktakki, q2, t, B)
4. (q2, a, q3) (ktakki, q3, ta, B)
5. (q3, k, q4) q4 ∈ H (takki, q4, tak, B) Emptying triggered by q4

6. N/A (takki, q4, tak, E)
7. (q4, t, q4) (akki, q4, ak, E)
8. (q4, a, q4) (kki, q4, k, E)
9. (q4, k, q4) q4 ∈ H (ki, q4, ε, E) Normal triggered by q4 and empty buffer
10. N/A (ki, q4, ε, N)
11. (q4, ε, q5) (ki, q5, ε, N)
12. (q5, k, q5) (i, q5, ε, N)
13. (q5, i, q5) q5 ∈ F (ε, q5, ε, N)

Figure 9: M3 in Figure 8 accepts taktakki

183

q1Start q2 q3 q4 q5 Accepta b b a

a b

Figure 10: An incomplete FSBM M4 with G = ∅ and
H = {q2, q4}; L(M4) = {abba}

q1Start q2 q3 q4 q5 Accepta b b a

Figure 11: An FSA (or an FSBM with G = ∅ and H =
∅) whose language is equivalent as M4 in Figure 10

M4 in Figure 10 is equivalent to the language rec-
ognized by the FSA in Figure 11. M4 remains to
be an incomplete FSBM because it doesn’t have
any G state preceding the H states q2 and q4.

The languages recognized by complete-path FS-
BMs are precisely the languages recognized by
general FSBMs. One key observation is the lan-
guage recognized by the new machine is the union
of the languages along all possible paths. Then, the
validity of such a statement builds on different in-
complete cases ofG andH states along a path: they
either recognize the empty-set language or show
equivalence to finite state machines. Therefore, the
language along an incomplete path of the machine
is still in the regular set. Only a complete path
containing at least one well-arranged G . . .HH∗

sequence uses the copying power and extends the
regular languages. Therefore, in the next section,
we focus on complete-path FSBMs.

3 Some closure properties of FSBMs

In this section, we show some closure properties of
complete-path FSBM-recognizable languages and
their linguistic relevance. Section 3.1 discusses its
closure under intersection with regular languages;
Section 3.2 shows it is closed under homomor-
phism; Section 3.3 briefly mentions union, con-
catenation, Kleene star. These operations are of
special interests because they are regular opera-
tions defining regular expressions (Sipser, 2013,
64). That complete-path FSBMs are closed under
regular operations leads to a conjecture that the
set of languages recognized by the new automata
is equivalent to the set of languages denoted by a
version of regular expression with copying added.

Noticeably, given FSBMs are FSAs with a copy-
ing mechanism, the proof ideas in this section
are similar to the corresponding proofs for FSAs,
which can be found in Hopcroft and Ullman (1979)
and Sipser (2013).

3.1 Intersection with FSAs

Theorem 1. If L1 is a complete-path FSBM-
recognizable language and L2 is a regular
language, then L1 ∩ L2 is a complete-path
FSBM-recognizable language.

In other words, if L1 is a language rec-
ognized by a complete-path FSBM M1 =
〈Q1,Σ, I1, F1, G1, H1, δ1〉, and L2 is a language
recognized by an FSA M2 = 〈Q2,Σ, I2, F2, δ2〉,
then L1 ∩ L2 is a language recognizable by an-
other complete-path FSBM. It is easy to con-
struct an intersection machine M where M =
〈Q,Σ, I, F,G,H, δ〉 with 1) Q = Q1 × Q2; 2)
I = I1 × I2; 3) F = F1 × F2; 4) G = G1 × Q2;
5) H = H1 ×Q2; 6) ((q1, q

′
1), x, (q2, q

′
2)) ∈ δ iff

(q1, x, q2) ∈ δ1 and (q′1, x, q
′
2) ∈ δ2. Paths in M

would inherit the completeness from M1 given the
current construction. Then, L(M) = L1 ∩ L2, as
M simulates L1 ∩ L2 by running M1 and M2 si-
multaneously. M accepts w if and only if both M1

and M2 accept w.

In nature, FSAs can be viewed as FSBMs with-
out copying: they can be converted to an FSBM
with an empty G set, an empty H set and trivially
no special transitions between H states.

That FSBM-recognizable languages are closed
under intersection with regular languages is of great
relevance to phonological theory: assume a natu-
ral language X imposes backness vowel harmony,
which can be modeled by an FSA MV H . In ad-
dition, this language also requires phonological
strings of certain forms to be reduplicated, which
can be modeled by an FSBM MRED. One hereby
can construct another FSBM MRED+V H to en-
force both backness vowel harmony and the total
identity of sub-strings in those forms. Not lim-
ited to harmony systems, phonotactics other than
identity of sub-strings are regular (Heinz, 2018),
indicating almost all phonological markedness con-
straints can be modeled by FSAs. When FSBMs in-
tersect with FSAs computing those phonotactic re-
strictions, the resulting formalism is still an FSBM
but not other grammar with higher computational
power. Thus, FSBMs can model natural language
phonotactics once including recognizing surface
sub-string identity.

184

q1Start q2 q3 q4 q5 AcceptC V C ε

C, VV

C

Figure 12: An FSBM M5 on the alphabet {C, V } such
that L(M5) = h(L(M3)) with M3 in Figure 8

3.2 Homomorphism and inverse alphabetic
homomorphism

Definition 7. A (string) homomorphism is a func-
tion mapping one alphabet to strings of another
alphabet, written h : Σ → ∆∗. We can extend h
to operate on strings over Σ∗ such that 1) h(εΣ)
= ε∆; 2) ∀a ∈ Σ, h(a) ∈ ∆∗; 3) for w =
a1a2 . . . an ∈ Σ∗, h(w) = h(a1)h(a2) . . . h(an)
where each ai ∈ Σ. An alphabetic homomorphism
h0 is a special homomorphism with h0: Σ→ ∆.

Definition 8. Given a homomorphism h: Σ →
∆∗ and L1 ⊆ Σ∗, L2 ⊆ ∆∗, define h(L1)
= {h(w) |w ∈ L1} ⊆ ∆∗ and h−1(L2) =
{w |h(w) = v ∈ L2} ⊆ Σ∗.

Theorem 2. The set of complete-path FSBM-
recognizable languages is closed under homomor-
phisms.

Theorem 2. can be proved by constructing a
new machine Mh based on M . The informal in-
tuition goes as follows: relabel the odd arcs to
mapped strings and add states to split the arcs so
that there is only one symbol or ε on each arc inMh.
When there are multiple symbols on normal arcs,
the newly added states can only be plain non-G,
non-H states. For multiple symbols on the special
arcs between two H states, the newly added states
must be H states. Again, under this construction,
complete paths in M lead to newly constructed
complete paths in Mh.

The fact that complete-path FSBMs guarantee
the closure under homomoprhism allows theorists
to perform analyses at certain levels of abstraction
of certain symbol representations. Consider two al-
phabets Σ = {b, t, k, ng, l, i, a} and ∆ = {C, V }
with a homomorphism h mapping every consonant
(b, t, k, ng, l) to C and mapping every vowel (i, a)
to V . As illustrated by M3 on alphabet Σ (Fig-
ure 8) and M5 on alphabet ∆ (Figure 12), FSBM-
definable patterns on Σ would be another FSBM-
definable patterns on ∆.

We conjecture that the set of languages

recognized by complete-path FSBMs is not
closed under inverse alphabetic homomorphisms
and thus inverse homomorphism. Consider a
complete-path FSBM-recognizable language L =
{aibjaibj | i, j ≥ 1} (cf. Figure 4). Consider an
alphabetic homomorphism h : {0, 1, 2} → {a, b}∗
such that h(0) = a, h(1) = a and h(2) = b. Then,
h−1(L) = {(0|1)i2j(0|1)i2j | i, j ≥ 1} seems to
be challenging for FSBMs. Finite state machines
cannot handle the incurred crossing dependencies
while the augmented copying mechanism only con-
tributes to recognizing identical copies, but not
general cases of symbol correspondence. 5

3.3 Other closure properties
Union Assume there are complete-path FSBMs
M1 and M2 such that L(M1) = L1 and L(M2) =
L2, then L1 ∪ L2 is a complete-path FSBM-
recognizable language. One can construct a new
machine M that accepts an input w if either M1

or M2 accepts w. The construction of M keeps
M1 and M2 unchanged, but adds a new plain state
q0. Now, q0 becomes the only initial state, branch-
ing into those previous initial states in M1 and M2

with ε-arcs. In this way, the new machine would
guess on either M1 or M2 accepts the input. If one
accepts w, M will accept w, too.

Concatenation Assume there are complete-path
FSBMs M1 and M2 such that L(M1) = L1 and
L(M2) = L2, then there is a complete-path FSBM
M that can recognize L1 ◦ L2 by normal concate-
nation of two automata. The new machine adds
a new plain state q0 and makes q0 the only initial
state, branching into those previous initial states
in M1 with ε-arcs. All final states in M2 are the
only final states in M . Besides, the new machine
adds ε-arcs from any old final states in M1 to any
possible initial states in M2. A path in the resulting
machine is guaranteed to be complete because it
is essentially the concatenation of two complete
paths.

Kleene Star Assume there is a complete-path
FSBM M1 such that L(M1) = L1, L∗1 is a
complete-path FSBM-recognizable language. A
new automaton M is similar to M1 with a new ini-
tial state q0. q0 is also a final state, branching into

5The statement on the inverse homomorphism closure is
left as a conjecture. We admit that a more formal and rigor-
ous mathematical proof proving h−1(L) is not complete-path
FSBM-recognizable should be conducted. To achieve this
goal, a more formal tool, such as a developed pumping lemma
for the corresponding set of languages, is important.

185

old initial states in M1. In this way, M accepts the
empty string ε. q0 is never a G state nor an H state.
Moreover, to make sure M can jump back to an
initial state after it hits a final state, ε-arcs from any
final state to any old initial states are added.

4 Discussion and conclusion

In summary, this paper provides a new computa-
tional device to compute unrestricted total redu-
plication on any regular languages, including the
simplest copying language Lww where w can be
any arbitrary string of an alphabet. As a result, it
introduces a new class of languages incomparable
to CFLs. This class of languages allows unbounded
copying without generating non-reduplicative non-
regular patterns: we hypothesize context-free string
reversals are excluded since the buffer is queue-like.
Meanwhile, the MCS Swiss-German cross-serial
dependencies, abstracted as {aibjcidj|i, j ≥ 1},
is also excluded, since the buffer works on the same
alphabet as the input tape and only matches identi-
cal sub-strings.

Following the sub-classes of 2-way FSTs in
Dolatian and Heinz (2018a,b, 2019, 2020), which
successfully capture unbounded copying as func-
tions while exclude the mirror image mapping,
complete-path FSBMs successfully capture the
total-reduplicated stringsets while exclude string
reversals. Comparison between the characterized
languages in this paper and the image of functions
in Dolatian and Heinz (2020) should be further car-
ried out to build the connection. Moreover, one
natural next step is to extend FSBMs as acceptors
to finite state buffered transducers (FSBT). Our
intuition is FSBTs would be helpful in handling
the morphological analysis question (ww → w),
a not-yet solved problem in the 2-way FSTs that
Dolatian and Heinz (2020) study. After reading the
first w in input and buffering this chunk of string
in the memory, the transducer can output ε for each
matched symbol when transiting among H states.

Another potential area of research is applying
this new machinery to Primitive Optimality Theory
(Eisner, 1997; Albro, 1998). Albro (2000, 2005)
used weighted finite state machine to model con-
straints while represented the set of candidates by
Multiple Context Free Grammars to enforce base-
reduplicant correspondence (McCarthy and Prince,
1995). Parallel to Albro’s way, given complete-
path FSBMs are intersectable with FSAs, it is pos-
sible to computationally implement the reduplica-

tive identity requirement by complete-path FSBMs
without using the full power of mildly context sen-
sitive formalisms. To achieve this goal, future work
should consider developing an efficient algorithm
that intersects complete-path FSBMs with weighted
FSAs.

The present paper is the first step to recognize
reduplicated forms in adequate yet more restric-
tive models and techniques compared to MCS
formalisms. There are some limitations of the
current approach on the whole typology of redu-
plication. Complete-path FSBMs can only cap-
ture local reduplication with two adjacent identical
copies. As for non-local reduplication, the modi-
fication should be straightforward: the machines
need to allow the filled buffer in N mode (or in
another newly-defined memory holding mode) and
match strings only when needed. As for multi-
ple reduplication, complete-path FSBMs can eas-
ily be modified to include multiple copies of the
same base form ({wn |w ∈ Σ∗, n ∈ N}) but
cannot be easily modified to recognize the non-
semilinear language containing copies of the copy
({w2n |w ∈ Σ∗, n ∈ N}). It remains to be an open
question on the computational nature of multiple
reduplication. Last but not the least, as a reviewer
points out, recognizing non-identical copies can
be achieved by either storing or emptying not ex-
actly the same input symbols, but mapped sym-
bols according to some function f . Under this
modification, the new automata would recognize
{anbn |n ∈ N} with f(a) = b but still exclude
string reversals. In all, detailed investigations on
how to modify complete-path FSBMs should be
the next step to complete the typology.

Acknowledgments

The author would like to thank Tim Hunter, Bruce
Hayes, Dylan Bumford, Kie Zuraw, and the mem-
bers of the UCLA Phonology Seminar for their
feedback and suggestions. Special thanks to the
anonymous reviewers for their constructive com-
ments and discussions. All errors remain my own.

References
Daniel M Albro. 1998. Evaluation, implementation,

and extension of primitive optimality theory. Mas-
ter’s thesis, UCLA.

Daniel M. Albro. 2000. Taking primitive Optimality
Theory beyond the finite state. In Proceedings of the
Fifth Workshop of the ACL Special Interest Group

https://www.aclweb.org/anthology/W00-1806
https://www.aclweb.org/anthology/W00-1806

186

in Computational Phonology, pages 57–67, Centre
Universitaire, Luxembourg. International Commit-
tee on Computational Linguistics.

Daniel M Albro. 2005. Studies in computational op-
timality theory, with special reference to the phono-
logical system of Malagasy. Ph.D. thesis, University
of California, Los Angeles, Los Angeles.

Bruce Bagemihl. 1989. The crossing constraint and
‘backwards languages’. Natural language & linguis-
tic Theory, 7(4):481–549.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and
Gabriele Puppis. 2017. Untwisting two-way trans-
ducers in elementary time. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), pages 1–12.

Kenneth R. Beesley and Lauri Karttunen. 2000. Finite-
state non-concatenative morphotactics. In Proceed-
ings of the 38th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 191–198,
Hong Kong. Association for Computational Linguis-
tics.

Jane Chandlee. 2014. Strictly local phonological pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27:599–641.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Trans. Inf. Theory, 2:113–124.

Alexander Clark and Ryo Yoshinaka. 2014. Distri-
butional learning of parallel multiple context-free
grammars. Mach. Learn., 96(1–2):5–31.

Yael Cohen-Sygal and Shuly Wintner. 2006. Finite-
state registered automata for non-concatenative mor-
phology. Computational Linguistics, 32(1):49–82.

Christopher Culy. 1985. The complexity of the vo-
cabulary of bambara. Linguistics and philosophy,
8(3):345–351.

Robert M. W. Dixon. 1972. The Dyirbal Language of
North Queensland, volume 9 of Cambridge Studies
in Linguistics. Cambridge University Press, Cam-
bridge.

Hossep Dolatian and Jeffrey Heinz. 2018a. Learning
reduplication with 2-way finite-state transducers. In
Proceedings of the 14th International Conference
on Grammatical Inference, volume 93 of Proceed-
ings of Machine Learning Research, pages 67–80.
PMLR.

Hossep Dolatian and Jeffrey Heinz. 2018b. Modeling
reduplication with 2-way finite-state transducers. In
Proceedings of the Fifteenth Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 66–77, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Hossep Dolatian and Jeffrey Heinz. 2019. RedTyp: A
database of reduplication with computational mod-
els. In Proceedings of the Society for Computation
in Linguistics (SCiL) 2019, pages 8–18.

Hossep Dolatian and Jeffrey Heinz. 2020. Comput-
ing and classifying reduplication with 2-way finite-
state transducers. Journal of Language Modelling,
8(1):179–250.

Jason Eisner. 1997. Efficient generation in primitive
Optimality Theory. In 35th Annual Meeting of the
Association for Computational Linguistics and 8th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 313–320,
Madrid, Spain. Association for Computational Lin-
guistics.

Gerald Gazdar and Geoffrey K Pullum. 1985. Com-
putationally relevant properties of natural languages
and their grammars. New generation computing,
3(3):273–306.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34(2):385–405.

Phyllis M. Healey. 1960. An Agta Grammar. Bureau
of Printing, Manila.

Jeffrey Heinz. 2007. The Inductive Learning of Phono-
tactic Patterns. Ph.D. thesis, University of Califor-
nia, Los Angeles.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195. De
Gruyter Mouton.

Jeffrey Heinz, Chetan Rawal, and Herbert G Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human language technologies, pages 58–64.

John E Hopcroft and Jeffrey D Ullman. 1979. Introduc-
tion to automata theory, languages, and computation.
Addison-Welsey, NY.

Mans Hulden. 2009. Finite-state Machine Construc-
tion Methods and Algorithms for Phonology and
Morphology. Ph.D. thesis, University of Arizona,
Tucson, USA.

Sharon Inkelas and Cheryl Zoll. 2005. Reduplication:
Doubling in morphology, volume 106. Cambridge
University Press.

Gerhard Jäger and James Rogers. 2012. Formal
language theory: refining the chomsky hierarchy.
Philosophical Transactions of the Royal Society B:
Biological Sciences, 367(1598):1956–1970.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Monographs on linguistic anal-
ysis. Mouton, The Hague.

http://hdl.handle.net/11858/00-001M-0000-0012-904F-F
http://hdl.handle.net/11858/00-001M-0000-0012-904F-F
http://hdl.handle.net/11858/00-001M-0000-0012-904F-F
https://doi.org/10.1109/LICS.2017.8005138
https://doi.org/10.1109/LICS.2017.8005138
https://doi.org/10.3115/1075218.1075243
https://doi.org/10.3115/1075218.1075243
https://doi.org/10.1007/s10994-013-5403-2
https://doi.org/10.1007/s10994-013-5403-2
https://doi.org/10.1007/s10994-013-5403-2
https://doi.org/10.18653/v1/W18-5807
https://doi.org/10.18653/v1/W18-5807
https://doi.org/10.7275/ckx7-s770
https://doi.org/10.7275/ckx7-s770
https://doi.org/10.7275/ckx7-s770
https://doi.org/10.3115/976909.979657
https://doi.org/10.3115/976909.979657
https://doi.org/10.1017/S0952675717000197
https://doi.org/10.1017/S0952675717000197
http://hdl.handle.net/10150/196112
http://hdl.handle.net/10150/196112
http://hdl.handle.net/10150/196112

187

Aravind K. Joshi. 1985. Tree adjoining grammars:
How much context-sensitivity is required to provide
reasonable structural descriptions?, Studies in Natu-
ral Language Processing, page 206–250. Cambridge
University Press.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Comput. Lin-
guist., 20(3):331–378.

Alec Marantz. 1982. Re reduplication. Linguistic in-
quiry, 13(3):435–482.

John J. McCarthy and Alan S. Prince. 1995. Faithful-
ness and reduplicative identity. In Jill N. Beckman,
Laura Walsh Dickey, and Suzanne Urbanczyk, edi-
tors, Papers in Optimality Theory. GLSA (Graduate
Linguistic Student Association), Dept. of Linguis-
tics, University of Massachusetts, Amherst, MA.

Robert McNaughton and Seymour A Papert. 1971.
Counter-Free Automata (MIT research monograph
no. 65). The MIT Press.

Brian Roark and Richard Sproat. 2007. Computational
approaches to morphology and syntax, volume 4.
Oxford University Press.

Carl Rubino. 2013. Reduplication. In Matthew S.
Dryer and Martin Haspelmath, editors, The World
Atlas of Language Structures Online. Max Planck In-
stitute for Evolutionary Anthropology, Leipzig.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Stuart M Shieber. 1985. Evidence against the context-
freeness of natural language. In Philosophy, Lan-
guage, and Artificial Intelligence, pages 79–89.
Springer.

Imre Simon. 1975. Piecewise testable events. In Au-
tomata Theory and Formal Languages, pages 214–
222, Berlin, Heidelberg. Springer Berlin Heidelberg.

Michael Sipser. 2013. Introduction to the Theory of
Computation, third edition. Course Technology,
Boston, MA.

Edward Stabler. 1997. Derivational minimalism. In
Logical Aspects of Computational Linguistics, pages
68–95, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Markus Walther. 2000. Finite-state reduplication in
one-level prosodic morphology. In 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

Kie Zuraw. 2002. Aggressive reduplication. Phonol-
ogy, 19(3):395–439.

https://doi.org/10.1017/CBO9780511597855.007
https://doi.org/10.1017/CBO9780511597855.007
https://doi.org/10.1017/CBO9780511597855.007
https://wals.info/chapter/27
https://doi.org/https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/https://doi.org/10.1016/0304-3975(91)90374-B
https://www.aclweb.org/anthology/A00-2039
https://www.aclweb.org/anthology/A00-2039
https://doi.org/10.1017/S095267570300441X

