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Abstract

This paper investigates how abstract processes
like suffixation can be learned from morpho-
logical inflection task data using an analogi-
cal memory-based framework. In this frame-
work, the inflection target form is specified
by providing an example inflection of another
word in the language. This model is capa-
ble of near-baseline performance on the Sig-
Morphon 2020 inflection challenge. Such a
model can make predictions for unseen lan-
guages, allowing one-shot inflection for natu-
ral languages and the investigation of morpho-
logical transfer with synthetic probes. Accu-
racy for one-shot transfer can be unexpectedly
high for some target languages (88% in Shona)
and language families (53% across Romance).
Probe experiments show that the model learns
partially generalizable representations of pre-
fixation, suffixation and reduplication, aiding
its ability to transfer. The paper argues that
the degree of generality of these process repre-
sentations also helps to explain transfer results
from previous research.

1 Introduction

Morphological transfer learning has proven to be
a powerful and effective technique for improving
the performance of inflection models on under-
resourced languages. The beneficial effects of
transfer between source and target languages are
known to be higher when the two are closely re-
lated (Anastasopoulos and Neubig, 2019) or typo-
logically similar (Lin et al., 2019), mediated by
the effect of script (Murikinati et al., 2020). But
these effects are not always consistent; a variety
of researchers report failure of transfer between
closely related languages, or surprising successes
with rather dissimilar ones (Sec 2). Pushing for-
ward our understanding of these cases requires a
more nuanced understanding of what is transferred
by morphological transfer learning— that is, what

abstract representational concepts do inflection net-
works acquire and how are these shared across lan-
guages?

This is a difficult question to address in the stan-
dard framework for inflection (Kann and Schütze,
2016), in which morphosyntactic properties are
closely tied to their specific exponents in a par-
ticular language as well as to the more abstract
processes by which these exponents are applied.
In such a network, it is difficult to test whether
a generic suffixation operation has been learned,
without reference to a particular form/feature map-
ping, for instance between the Maori passive fea-
ture PASS and the spelling of a particular passive
suffix -tia. Suffixing as a generic operation is much
more likely to be useful in another language than
the individual suffix. This work decouples these
representational pieces by performing inflection in
an analogical, memory-based framework.1 In this
framework, inflection instances do not have tags;
rather, they include an instance of the desired map-
ping with respect to a different lemma (Figure 1).
For example, to produce a passive Maori verb, the
system takes an example verb with its passive and
completes the four-part analogy: lemma : target ::
exemplar lemma : exemplar target. The advantage
of this redefinition of the task is that, in principle,
the system does not need to learn anything about
the individual affixes of a particular language, since
these can be copied from the exemplar. Thus, it is
possible to investigate how well such a system has
learned a particular morphological process such as
suffixation, which is expected to be present in a
variety of languages.2

1“Memory-based” has been used in the literature to refer
to models with dynamic read-write memory (Graves et al.,
2016), as well as KNN-like exemplar models which store a
large number of examples in a static memory (van den Bosch
and Daelemans, 1999). The current work is of the latter type.

2Code available at: https://github.com/
melsner/transformerbyexample.

https://github.com/melsner/transformerbyexample
https://github.com/melsner/transformerbyexample
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Section 5 shows that this analogical framework
for inflection can predict inflections across a va-
riety of languages, demonstrating reasonable per-
formance on the Sigmorphon 2020 multilingual
benchmark (Vylomova et al., 2020). Section 6 de-
scribes one-shot learning experiments, performing
language transfer without fine-tuning, and shows
that for languages with concatenative affixes, one-
shot transfer can be more effective than previously
thought. Section 7 studies the system’s ability to ap-
ply different types of morphological processes us-
ing constructed stimuli, showing that some config-
urations are capable of learning generic and trans-
ferable representations of processes including pre-
fixing, suffixing and reduplication.

2 Related work

The overall positive effect of transfer learning is
well established (McCarthy et al., 2019). Previ-
ous research has also evaluated how the choice
of source language affects the performance in the
target. While there is a robust trend for related
languages to perform better, there are also many re-
ports of exceptions. Kann (2020) finds that Hungar-
ian is a better source for English than German and
a better source for Spanish than Italian. She con-
cludes that matching the target language’s default
affix placement (prefixing/suffixing) is important,
and that agglutinative languages might be benefi-
cial to transfer learning in general, but that genetic
relatedness is not always a necessary or sufficient
for effective transfer. Lin et al. (2019) also find that
Hungarian and Turkish are good source languages
for a surprising variety of unrelated targets. Rather
than attribute this to agglutination, they propose
that these languages lead to good transfer because
of their large datasets and difficulty as tasks. Fur-
ther puzzling results come from Anastasopoulos
and Neubig (2019), who find that Italian data does
not improve performance in closely related Ladin
or Neapolitan3 once monolingual hallucinated data
is available, and that Latvian is as good a source
for Scots Gaelic as its relative Irish.

Previous analyses of transfer learning have at-
tempted to differentiate the contributions of various
parts of the model through factored vocabularies or
ciphering (Kann et al., 2017b; Jin and Kann, 2017).
These methods give disjoint representations to char-
acters and tags in the source and target languages,

3Regional Romance languages spoken in Northern and
Southern Italy respectively.

or disrupt the mapping between them. Low-level
correspondence between character sets is the most
important factor for successful transfer in very low-
resource settings, but models with disjoint charac-
ter representations still succeed at transfer once at
least 200 target examples are available, indicating
that higher-level information is also transferred and
contributes to performance.

Kann et al. (2017b) also represents a prior one-
shot morphological learning experiment. Their set-
ting is not quite the same as the one here; they
assume access to a single inflected form in half the
paradigm cells in their target language (Spanish)
which are used to fine-tune a pretrained system.
Because their system uses the conventional tag-
based framework, they are capable of filling cells
for which no example is available (zero-shot learn-
ing), while the memory-based system presented
here is not. On the other hand, the current work
does not use fine-tuning or require target-language
data at training time. They evaluate inflection on
both seen and unseen cells as a function of five
source languages, four of which are in the Romance
family. The best one-shot transfer within Romance
scores 44% exact match, the worst 13%. Transfer
from unrelated Arabic scores 0%. One-shot learn-
ing experiments in this work use a much larger set
of languages, and although performance in the typ-
ical case is similar, the best results are substantially
better.

The memory-based design of the current work is
rooted in cognitive theories of morphological pro-
cessing. The widely accepted dual route model of
morphological processing postulates that the mind
retrieves familiar inflected forms from memory as
well as synthesizing forms from scratch (Milin
et al., 2017; Alegre and Gordon, 1998; Butterworth,
1983). It has often been claimed that memorized
forms of specific words are central to the structure
of inflection classes (Bybee and Moder, 1983; By-
bee, 2006; Jackendoff and Audring, 2020). In such
a theory, production of a form of a rare lemma is
guided by the memory of the appropriate forms of
common ones. Additional evidence for this view
comes from historical changes in which one word’s
paradigm is analogically remodeled on another’s
(Krott et al., 2001; Hock and Joseph, 1996, ch.5).
Liu and Hulden (2020) evaluate a model very simi-
lar to this one (a transformer in which target forms
of other words, which they term “cross-table” ex-
amples, are provided as part of the input). They
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Lemma Target specification → Target
Standard inflection generation waiata V;PASS waiatatia

Memory-based
waiata karanga : karangatia waiatatia
waiata kaukau : kaukauria waiatatia

Figure 1: Differing inputs for inflection models, eliciting the passive of the Maori verb waiata “sing”. The memory-
based system relies on an exemplar verb as the target specifier; shown here are karanga “call”, which takes a
matching suffix, and kaukau “swim”, which mismatches.

find that such examples are complementary to data
hallucination and yield improved results in data-
sparse settings. Some earlier non-neural models
also rely on stored word forms (Skousen, 1989;
Albright and Hayes, 2002).

3 Exemplar selection

The system uses instances generated as described in
Figure 1, separating the lemma, exemplar lemma
and exemplar form with punctuation characters.
Each instance also contains two features indicating
the language and language family of the example
(e.g. LANG MAO, FAM AUSTRONESIAN).

The selection of the exemplar is critical to the
model’s performance. Ideally, the lemma and the
exemplar inflect in the same way, reducing the in-
flection task to copying. But this is not always the
case. For example, Maori verbs fall into inflection
classes, as shown in Figure 1; when the exemplar
comes from a different class than the lemma, copy-
ing will yield an invalid output, so the model has
to guess which class the input belongs to.4

This paper presents experiments using two set-
tings: In random selection, the exemplar lemma
is chosen arbitrarily from the set of training
lemma/form pairs for the appropriate language and
cell. This makes the task difficult, but allows the
model to learn to cope with the distribution of in-
puts it will face at test time. In similarity-based
selection, each source lemma is paired with an
exemplar for which the transductions are highly
similar. This makes the task easy, but since it relies
on access to the true target form, it can be used only
for model training, not for testing.5 All models are

4In cases of class-dependent syncretism, the model must
also guess which cell is being specified. For instance, German
feminine nouns do not inflect for case, but some masculine
nouns do, so the combination of a masculine lemma and a
feminine exemplar can yield an unsolvable prediction prob-
lem.

5Within the training set, the same lemma/inflected form
pair can appear as both an exemplar and a target instance; a re-
viewer speculates that this might allow the model to memorize
lexically-specific outputs within the training set even when

evaluated using instances generated using random
selection.

To perform similarity-based selection, each
lemma is aligned with its target form in the training
data in order to extract an edit rule (Durrett and
DeNero, 2013; Nicolai et al., 2016). (For the first
memory-based example in Figure 1, both words
have the same edit rule -+tia.) The selected exem-
plar/form pair uses the same edit rule, if possible.
During training, a lemma is allowed to act as its
own exemplar, so that there is always at least one
candidate. However, words in the test set must be
given exemplars from the training set. If a cell in
the test set does not appear in the training set, no
prediction can be made; in this case, the system
outputs the lemma. Extending the model to cover
this case is discussed below as future work.6

4 Model design

The system uses the character-based transformer
(Wu et al., 2020) as its learning model; this is a
sequence-to-sequence transformer (Vaswani et al.,
2017) tuned for morphological tasks, and serves as
a strong official baseline for the Sigmorphon 2020
task. Moreover, transformers are known to perform
well in the few-shot setting (Brown et al., 2020).
All default hyperparameters7 match those of Wu
et al. (2020).

As discussed in prior work (Anastasopoulos
and Neubig, 2019; Kann and Schütze, 2017), it
is important to pretrain the model to predispose
it to copy strings. To ensure this, the system is
trained on a synthetic dataset. Each synthetic in-
stance is generated within a random character set.
The instance consists of a random pseudo-lemma
and pseudo-exemplar created by sampling word

using random selection. To avoid this issue, no training scores
are reported in this paper.

6In the SigMorphon 2020 datasets, this rarely occurs in
practice. ≥ 99% of target cells are covered in all languages ex-
cept Ingrian (98%), Evenki (96%), and notably Ludic (61%).

7Including 4 layers, batches of 64, and the learning rate
schedule.
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lengths from the training word length distribution
and then filling each one with random characters.
With probability 50% the example is given a pre-
fix; independently with probability 50% a suffix;
independently with probability 10% an infix at
a random character position. Prefixes and suf-
fixes are random strings between 2-5 characters
long and infixes are 1-2 characters long. (This
means that, in some cases, no affix is added and
the transformation is the identity, as occurs in cases
of morphological syncretism.) An example such
instance is mpieňjmel:rbeaikkea::zlürbeaikkeaüe
with output zlümpieňjmelüe. The language tags
for these examples indicate the kinds of affixa-
tion operations which were performed, for exam-
ple LANG PREFIX SUFFIX; the family tag identifies
them as SYNTHETIC. While this synthetic dataset is
inspired by hallucination techniques (Anastasopou-
los and Neubig, 2019; Silfverberg et al., 2017), note
that these synthetic instances are not presented to
the model as part of any natural language.

The Sigmorphon 2020 data is divided into “de-
velopment languages” (45 languages in 5 fami-
lies: Austronesian, Germanic, Niger-Congo, Oto-
Manguean and Uralic) and “surprise languages”
(45 more languages, including some members of
development families as well as unseen families).
Data from all the “development languages”, plus
the synthetic examples from the previous stage, is
used to train a multilingual model, which is fine-
tuned family. Finally the family models are fine-
tuned by language. During multilingual training
and per-family tuning, the dataset is balanced to
contain 20,000 instances per language; languages
with more training instances than this are subsam-
pled, while languages with fewer are upsampled by
sampling multiple exemplars (with replacement)
for each lemma/target pair. For the final language-
specific fine-tuning stage, all instances from the
specific language are used.

5 Fine-tuned results

This section shows the test results for fully fine-
tuned models on the development languages. Table
1 shows the average exact match and standard de-
viation by language family. Full results are given
in Appendix A. Tables also show the results of the
official competition baseline which is closest to the
current work, the character transformer (Wu et al.,
2020) fine-tuned by language, TRM-SINGLE.

Because the results of exemplar-based models

Family Random Similarity Base
Austronesian (4) 83 (13) 67 (21) 81 (18)
Germanic (10) 87 (10) 51 (16) 90 (9)
Niger-Congo (9) 98 (4) 94 (9) 97 (3)
Oto-Manguean (10) 82 (16) 39 (23) 86 (12)3
Uralic (11) 92 (6) 46 (14) 93 (0.05)
Overall 89 (12) 57 (26) 90 (11)

Table 1: Fine-tuned accuracy scores for models trained
with random and similarity-based selection, compared
to the baseline. Num languages in family and score
standard deviation across languages in parentheses.

can vary based on the choice of exemplar, the sys-
tem applies a simple post-process to compensate
for unlucky choices: it runs each lemma with five
randomly-selected exemplars and chooses the ma-
jority output.

Neither model achieves the same performance as
the baseline (90%), although the random-exemplar
model (89%) comes quite close. The similar-
exemplar model (57%) is clearly inferior due to
its severe mismatch between training and test set-
tings. Performance varies across language families.
All models perform well in Niger-Congo, although
the conference organizers state that data from these
languages may have been biased toward regular
forms in an unrepresentative way.8 The random-
exemplar model is at or near baseline performance
in Austronesian and Uralic, but falls further below
baseline in Germanic and Oto-Manguean. Both
of these families are characterized by complex in-
flection class structure in which randomly chosen
exemplars are less likely to resemble the target for
a given word.

The similar-exemplar model also performs
poorly in Uralic. While some Uralic languages
have inflection classes (Baerman, 2014), many
(like Finnish) do not, but have complex systems
of phonological alternations (Koskenniemi and
Church, 1988). While the random-exemplar model
can learn to compensate for these, the similar-
exemplar model does not.

6 One-shot results

This section shows the results of one-shot learning.
These experiments apply the multilingual and fam-
ily models from the development languages to the
surprise languages, without fine-tuning. For lan-
guages within development families, they use the
appropriate family model; otherwise they use the

8A Swahili speaker confirms that some forms in the data
appear artificially over-regularized (Martha Johnson p.c.).
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multilingual model. Thus, the model’s only access
to information about the target language is via the
provided exemplar.

Each experiment evaluates the results across five
random exemplars per test instance (with replace-
ment), but averages the results rather than applying
majority selection. This computes the expected
performance in the one-shot setting where only a
single exemplar is available.

Results are shown in Table 2. One-shot learning
is not competitive with the baseline fine-tuned sys-
tem in any language family, but has some capacity
to predict inflections in all families. Performance
is generally better in families for which related
languages were present in development.

The system trained with random exemplars
achieves its best results on Tajik (Iranian: tgk, score
89%), Shona (Niger-Congo: sna, score 75%)9, and
Norwegian Nynorsk (Germanic: nno, score 42%).
The system trained with similar exemplars achieves
its best results on Shona (88%), Zarma (Songhay:
dje, score 82%) and Tajik (79%). Notably, some
of these high scores are achieved on languages that
were difficult for the baseline systems; the score for
Tajik beats the transformer baseline (56%), perhaps
due to data sparsity, since baselines regularized us-
ing data hallucination perform better (93%).

Training with similar exemplars leads to clearly
better results than random exemplars, a reversal of
the trend observed with fine-tuning. This difference
is particularly marked in Romance (53% average
vs 5%). While the random-exemplar system is
better at guessing what to do when the exemplar
and target forms are divergent, this causes errors
with unfamiliar languages. The system attempts
to guess the correct inflection, rather than simply
copying.

As an example, Table 3 shows an analysis of
performance in Catalan (cat), selected because its
results are fairly typical of the Romance family;
the similar-exemplar system scores 53% while the
random-exemplar system scores 12%. The table
shows selected instances with different levels of
exemplar match and mismatch. The first two, ar-
rissar “curl” and disputar “discuss”, match their
exemplars well and are good cases for copying.
The random-exemplar model gets these both wrong,
segmenting incorrectly in the first and adding a spu-
rious character in the second. The next two, repetir

9As stated above, the Niger-Congo datasets are artificial-
ized and probably does not represent the real difficulty of the
inflection task.

Family Random Similarity Base
Germanic (3) 29 (13) 38 (22) 80 (13)
Niger-Congo (1) 75 (0) 88 (0) 100 (0)
Uralic (5) 21 (9) 28 (12) 76 (26)
Afro-Asiatic (3) 7 (3) 26 (18) 96 (3)
Algic (1) 2 (0) 14 (0) 68 (0)
Dravidian (2) 7 (7) 13 (3) 85 (9)
Indic (4) 4 (5) 4 (2) 98 (3)
Iranian (3) 35 (39) 34 (32) 82 (19)
Romance (8) 6 (4) 53 (19) 99 (1)
Sino-Tibetan (1) 21 (0) 9 (0) 84 (0)
Siouan (1) 13 (0) 13 (0) 96 (0)
Songhay (1) 21 (0) 82 (0) 88 (0)
Southern Daly 4 (0) 6 (0) 90 (0)
Tungusic (1) 28 (0) 27 (0) 57 (0)
Turkic (9) 7 (8) 19 (11) 96 (7)
Uto-Aztecan (1) 33 (0) 30 (0) 81 (0)
Overall 14 (18) 30 (25) 90 (15)

Table 2: One-shot accuracy scores for models trained
with random and similarity-based selection, compared
to the baseline. Num. languages in family and
score standard deviation across languages in parenthe-
ses. Families represented in development above the
line, surprise families below.

“repeat” and engolir “ingest”, are mismatched with
exemplars from a different inflection class; both
systems make incorrect predictions, but the similar-
exemplar system preserves the suffixes while the
random-exemplar system does not. Finally, in
the last example llevar-se “get up”, the similar-
exemplar model misinterprets the reflexive suffix
-se as part of the verb stem, while the random-
exemplar model fails to make any edit.

A more systematic analysis computes an
alignment-based edit rule for each system predic-
tion (King et al., 2020) and counts the unique rules
used to form one-shot predictions in the Catalan de-
velopment set. Over 37105 instances, the random-
exemplar model applies 626 unique edit rules, 20
of which appear in correct predictions. The similar-
exemplar model applies 3137 unique rules, 154 of
them correctly. The greater variety of both correct
and incorrect outputs from the similar-exemplar
model demonstrates its preference for faithfulness
to the exemplar rather than remodeling the output
to fit language-specific constraints.

7 Synthetic transfer experiments

When transfer learning fails, it can be difficult to
tell whether the system has failed to represent a
general morphological process, or whether it mis-
applies what it has learned due to mismatched lexi-
cal/phonological triggers. Experiments on artificial
data can probe what abstract processes the model
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Lemma Exemplar Rand. Sel. Sim. Sel Target
arrissar posar : posarien arrissaren arrissarien arrissarien
disputar descriure : descriuria disputarta disputaria disputaria
repetir cremar : cremo repetirer repetio repeteixo
engolir forjar : forjava engolire engoliva engolia
llevar-se terminar : termino llevar-se llevor-se llevo

Table 3: Development data from Catalan (Romance: cat) showing the outputs of two one-shot systems.

has learned to apply, the links between these pro-
cesses and language families, and the environments
in which they can operate.

A probing dataset is synthesized to model several
morphological operations (Figure 2), including pre-
fix/suffix affixation, reduplication and gemination.
Affixation is typologically widespread (Bickel and
Nichols, 2013) and appears in every development
language on which the model was trained. Suf-
fixation is more common in Germanic and Uralic;
Oto-Manguean tonal morphology is also often rep-
resented via word-final diacritics.10 Prefixing is
more common in the Niger-Congo family.

Reduplication appears in three of the four Aus-
tronesian development languages, Tagalog, Hili-
gaynon and Cebuano (WAL, 2013), but not in the
Maori dataset provided. The probe language has
partial reduplication of the first syllable, as found in
Tagalog and Hiligaynon. Previous work with artifi-
cial data demonstrates that sequence-to-sequence
learners can learn fully abstract representations of
reduplication (Prickett et al., 2018; Nelson et al.,
2020; Haley and Wilson, 2021), but it has not been
previously shown that networks trained on real
data do this in a transferable way. In one-shot
language transfer, reduplication instances are actu-
ally ambiguous. Given an instance modi : :: gobu
: gogobu, there are two plausible interpretations,
reduplicative momodi and affixal gomodi. Thus,
analysis of reduplicative instances can be infor-
mative about the model’s learned linkage between
language family and typology.

Gemination is a inflectional process whereby a
segment is lengthened to mark some morpholog-
ical feature (Samek-Lodovici, 1992). The probe
language geminates the last non-final consonant.
None of the development languages have morpho-
logical gemination.

The probe languages use two alphabets: the first
is a common subset of characters which appear in

10No Unicode normalization was performed; Oto-
Manguean tone diacritics are treated as characters (as are parts
of the complex characters of the Indic scripts). The placement
of these diacritics within the word varies from language to
language.

at least half the languages of every development
family.11 The second is a subset of Cyrillic char-
acters intended to test transfer to a less-familiar or-
thography; a few Uralic development languages are
written in Cyrillic. Each language has 90 random
lemmas, sampled with the frames CVCV, CVCVC,
CVCVCVC; affixal languages have 30 affixes of
types VCV, CV, CVCV, plus 7 single-letter affixes.
No probe lemma coincides with any real lemma,
and no probe affix has frequency > 5% as a string
prefix or suffix in any real language. Affixal lan-
guages contain an instance for every lemma/affix
pair. Reduplication and gemination languages have
one instance per lemma.

The model is prompted to inflect the probes as
if they are members of each language family, and
as members of a comparatively well-resourced lan-
guage selected from those families, specifically
Tagalog (tgl), German (deu), Mezquital Otomi
(ote), Swahili (swa) and Finnish (fin), as well as
the synthetic suffixing language used in pretraining
(suff). In addition to checking whether the output
matches, the table shows whether reduplicated in-
stances have been correctly reduplicated (using a
regular expression).

Table 4 shows the results. A comparison be-
tween the random-exemplar and similar-exemplar
models confirms the hypothesis from above that
random-exemplar models have less generalizable
representations of morphological processes, es-
pecially prefixation and suffixation. While both
models are capable of attaching affixes in the syn-
thetic language, the random-exemplar model learns
very language- and suffix-specific rules for apply-
ing these operations, leading to very low accuracy
for copying generic affixes. Both models show
less language-specific remodeling of affixes in the
family-only setting than when the probes are la-
beled as part of a particular language; this effect is
again more pronounced for the random-exemplar
model.

Both models learn to reduplicate arbitrary CV
syllables, but this process is mostly restricted to

11Consonants mpbntdrlskgh, vowels aeiou.
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Lemma semet
Probe type Exemplar Target
Prefixing kigu : igokigu igosemet
Suffixing kigu : kiguigo semetigo
Reduplication modi : momodi sesemet
Gemination bogu : boggu semmet

Figure 2: Probe tasks illustrated for a single lemma.

Tagalog,12, with some generalization to Austrone-
sian. Most other languages interpret reduplication
instances as affixes.

Only the similar-exemplar model gets any gem-
ination instances correct, and these primarily in
Uralic.13 This is unsurprising, since the model was
never trained with morphological gemination. It
demonstrates that the model’s representations of
morphological processes represent the input typol-
ogy and are not simply artifacts of the transformer
architecture. While Uralic does not have gemi-
nation as an independent morphological process,
alternations involving geminates do occur in some
paradigms; the NOM.PL of tikka “dart” is tikat.14

The model seems to have learned a little about gem-
ination from this morphophonological process, but
not a fully generalized representation.

Affixation remains relatively successful when us-
ing Cyrillic characters (suffixes more than prefixes),
but for the most part, less so than with Latin char-
acters, although in the random-exemplar model,
Cyrillic suffixes are somewhat more accurate, prob-
ably due to less interference from language-specific
knowledge. This substantiates the general find-
ing (Murikinati et al., 2020) that transfer across
scripts is more difficult than within-script. Cyrillic
reduplication sees a much larger drop in accuracy.
The difference is probably that simple affixation is
phonologically uncomplicated, while reduplication
requires phonological information about vowels
and consonants.

8 Discussion

These experiments with real and synthetic trans-
fer suggest some useful insights into the problem-
atic findings of earlier transfer experiments. Why

12The random-exemplar model has low accuracy for redu-
plication in Tagalog because it appends spurious Tagalog pre-
fixes to the output, another example of a language-specific
rule. However, the regular expression check confirms that
reduplication is performed correctly.

13Because of this poor performance, Cyrillic gemination
was not tested.

14See Silfverberg et al. (2021) for a fuller investigation of
generalizable representations of gradation processes in Finnish
noun paradigms.

is Hungarian so successful as a source language
for unrelated targets? Kann (2020) suggests that
it is its agglutinative nature. The results shown
here offer some speculative support for this view—
perhaps the relative segmentability of prototypi-
cally agglutinative languages (Plank, 1999) acts
like the similar-exemplar setting in the memory-
based model, giving the source model a general
bias for concatenative affixation, unpolluted by too
many lexical and phonological alternations. As re-
ported here, such a model is a promising starting
point for inflection in many non-agglutinative sys-
tems, such as Romance verbs, which nevertheless
are strongly concatenative.

Where transfer between related languages fails,
it is conjecturally possible that the source model
representations of edit operations are too closely
linked to particular phonological and lexical prop-
erties of the source. This is clearly shown in the
synthetic transfer experiments, where generic suf-
fixation fails in Germanic and Uralic despite these
families being strongly suffixing, because the sys-
tem has learned to remodel its outputs to conform
too closely to source-language templates.

More broadly, the synthetic experiments show
a link between language typology and learning
of morphological processes, suggesting that lan-
guage structure, not only language relatedness, is
key to successful transfer— transfer of structural
principles can lead to improvements even without
cognate words or affixes. For instance, success-
ful reduplication appears only in Austronesian and
successful gemination only in Uralic. A promising
direction for future work would be to replace the
language family feature with a set of typological
feature indicators such as WALs properties (WAL,
2013), which might help the model to learn faster
in low-resource target languages.

Two other extensions might bring the memory-
based model closer to the state of the art in super-
vised inflection prediction. First, although the Sig-
Morphon 2020 datasets are balanced by paradigm
cell, real datasets are Zipfian, with sparse cover-
age of cells (Blevins et al., 2017; Lignos and Yang,
2018). For languages with large paradigms, the
model thus requires the capacity to fill cells for
which no exemplar can be retrieved, perhaps using
a variant of adaptive source selection (Erdmann
et al., 2020; Kann et al., 2017a). Second, the
similar-exemplar model performs better in one-shot
transfer experiments, but is hampered in the su-
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Model Fam/Lg. Pref Pref (Cyrl) Suff Suff (Cyrl) Redup. Redup. (Cyrl) Gem.

Rand.

austro 62 36 26 38 0 (10) 0 0
austro/tgl 0 1 0 0 28 (90) 3 (7) 0
ger 1 0 25 36 0 (3) 0 0
ger/deu 0 0 8 10 0 (3) 0 0
n-congo 92 55 40 41 0 (3) 0 0
n-congo/swa 100 76 36 25 0 (3) 0 0
oto 20 15 21 33 0 (3) 0 0
oto/ote 35 30 1 9 0 (3) 0 0
uralic 3 0 23 34 0 (3) 0 0
uralic/fin 0 0 7 22 0 (3) 0 0
synth 84 62 97 91 0 (3) 0 0
synth/suff 28 1 100 97 0 (3) 0 0

Sim.

austro 86 75 94 85 30 (30) 0 0
austro/tgl 30 35 75 63 88 (88) 8 (8) 0
ger 85 55 99 96 3 (3) 0 8
ger/deu 86 55 99 98 0 0 5
n-congo 99 96 98 93 0 (3) 0 3
n-congo/swa 99 98 88 57 0 0 0
oto 88 76 95 87 18 (18) 0 0
oto/ote 96 84 59 17 5 (5) 0 0
uralic 59 10 97 95 0 0 17
uralic/fin 52 4 98 98 0 0 12
synth 94 84 99 95 8 (10) 0 2
synth/suff 86 42 100 99 0 0 2

Table 4: Accuracy of synthetic probe tasks presented as different language and language family. (Cyrl) indicates
Cyrillic alphabet. Parentheses in reduplication columns show frequency of correct CV reduplication.

pervised setting by train-test mismatch. Selecting
training exemplars using a classifier which could
also be used at inference time would reduce this
mismatch. These experiments are left for future
work.

Finally, since the memory-based architecture is
cognitively inspired, it might be adapted as a cog-
nitive model of language learning in contact sit-
uations. Work on this learning process suggests
that speakers find it much easier to learn new ex-
ponents than to learn new morphological processes
(Dorian, 1978; Mithun, 2020). Thus, the impact
of source-language transfer may indeed be most
significant in cases where the L1 and L2 (source
and target) languages differ in the abstract mecha-
nisms of inflection rather than the specifics. Histor-
ical contact-induced change provides evidence for
this viewpoint in the form of systems which have
changed to employ the same processes as a contact
language. For example, Cappadocian Greek has
become agglutinative through its extensive contact
with Turkish (Janse, 2004). For other examples,
see Green (1995); Thomason (2001).

9 Conclusion

The results of this paper demonstrate that the pro-
posed cognitive mechanism of memory-based anal-
ogy provides a relatively strong basis for inflection
prediction. Performance in a supervised setting is

strongest in languages without large numbers of
inflection classes, and requires training exemplars
to be selected in the same way as test exemplars.
Memory-based analogy also provides a foundation
for one-shot transfer; in this case, training exem-
plars should closely match the elicited inflections,
so that the model learns to copy rather than recon-
struct the output form. One-shot transfer using this
mechanism can achieve higher accuracy than pre-
viously thought, even when no genetically related
languages are available in training. Scores vary
widely, but can be over 80% for some languages.

Finally, this paper provides new evidence about
what kinds of abstract information (beyond char-
acter correspondences) is transferred between lan-
guages when learning to inflect. The model learns
general processes for prefixation and suffixation
which apply (to some extent) across character sets,
but its application of these can be disrupted by
language-specific morpho-phonological rules. It
also learns to reduplicate arbitrary CV sequences,
but applies this process only when targeting a lan-
guage with reduplication. Learning of morphologi-
cal processes in general appears to be driven by the
input typology. The discussion argues that the use-
fulness of general representations for prefixation
and suffixation accounts for the puzzling effective-
ness of agglutinative languages as transfer sources
reported in previous research.
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A Full results

For replicability, this appendix provides
full results for all languages, as 0-1 accu-
racy on the official test datasets. The re-
ported baseline is TRM-SINGLE, copied from
https://docs.google.com/spreadsheets/d/

1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-i9jRxZCK0kg.
Scores for supervised systems on the development
languages are shown in Table 5 and scores for
one-shot systems on surprise languages are shown
in Table 6. See Vylomova et al. (2020) for
language abbreviation definitions.

Lang Fam Rand Sim Base
ang Indo-Eur: Germanic 72 19 78
azg Oto-Manguean 94 22 95
ceb Austronesian 79 69 84
cly Oto-Manguean 82 19 91
cpa Oto-Manguean 74 33 91
ctp Oto-Manguean 43 15 60
czn Oto-Manguean 83 32 80
dan Indo-Eur: Germanic 75 42 75
deu Indo-Eur: Germanic 93 62 98
eng Indo-Eur: Germanic 97 67 97
est Uralic 94 47 95
fin Uralic 100 39 100
frr Indo-Eur: Germanic 81 39 87
gaa Niger-Congo 100 100 98
gmh Indo-Eur: Germanic 94 75 91
hil Austronesian 97 74 98
isl Indo-Eur: Germanic 88 37 97
izh Uralic 85 33 87
kon Niger-Congo 99 99 98
krl Uralic 99 36 99
lin Niger-Congo 100 100 100
liv Uralic 93 54 96
lug Niger-Congo 90 74 91
mao Austronesian 71 57 52
mdf Uralic 92 67 94
mhr Uralic 91 67 93
mlg Austronesian 100 100 100
myv Uralic 93 61 94
nld Indo-Eur: Germanic 99 61 99
nob Indo-Eur: Germanic 75 47 76
nya Niger-Congo 100 100 100
ote Oto-Manguean 99 80 99
otm Oto-Manguean 98 46 98
pei Oto-Manguean 65 17 72
sme Uralic 99 31 100
sot Niger-Congo 100 100 98
swa Niger-Congo 100 100 100
swe Indo-Eur: Germanic 97 59 99
tgl Austronesian 69 35 72
vep Uralic 83 28 84
vot Uralic 81 41 86
xty Oto-Manguean 90 79 91
zpv Oto-Manguean 87 46 85
zul Niger-Congo 92 83 92
Overall 89 57 90
Stdev 12 26 11

Table 5: Zero-one test-set accuracy scores by language
for SigMorphon 2020 development languages (super-
vised).

https://docs.google.com/spreadsheets/d/1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-i9jRxZCK0kg
https://docs.google.com/spreadsheets/d/1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-i9jRxZCK0kg
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Lang Fam Rand Sim Base
ast Indo-Eur: Romance 2 64 100
aze Turkic 9 17 81
bak Turkic 15 14 100
ben Indo-Aryan 1 4 99
bod Sino-Tibetan 21 9 84
cat Indo-Eur: Romance 12 53 100
cre Algic 2 14 68
crh Turkic 24 45 99
dak Siouan 13 13 96
dje Nilo-Saharan 21 82 88
evn Tungusic 28 27 57
fas Indo-Eur: Iranian 2 13 100
frm Indo-Eur: Romance 7 73 100
fur Indo-Eur: Romance 11 19 100
glg Indo-Eur: Romance 9 59 100
gml Indo-Eur: Germanic 11 11 62
gsw Indo-Eur: Germanic 33 64 93
hin Indo-Aryan 0 1 100
kan Dravidian 13 16 76
kaz Turkic 0 7 98
kir Turkic 2 6 98
kjh Turkic 11 11 100
kpv Uralic 17 47 97
lld Indo-Eur: Romance 3 68 99
lud Uralic 22 14 32
mlt Afro-Asiatic 10 13 97
mwf Australian 4 6 90
nno Indo-Eur: Germanic 42 40 86
olo Uralic 37 33 94
ood Uto-Aztecan 33 30 81
orm Afro-Asiatic 2 52 99
pus Indo-Eur: Iranian 13 9 90
san Indo-Aryan 13 5 93
sna Niger-Congo 75 88 100
syc Afro-Asiatic 8 13 91
tel Dravidian 0 10 95
tgk Indo-Eur: Iranian 89 79 56
tuk Turkic 0 21 86
udm Uralic 11 30 98
uig Turkic 0 26 99
urd Indo-Aryan 2 7 99
uzb Turkic 0 21 100
vec Indo-Eur: Romance 2 62 100
vro Uralic 17 17 61
xno Indo-Eur: Romance 2 22 96
Overall 14 30 90
Stdev 18 25 15

Table 6: Zero-one test-set accuracy scores by language
for SigMorphon 2020 surprise languages (one-shot).


