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Abstract
We describe three baseline beating sys-
tems for the high-resource English-only
sub-task of the SIGMORPHON 2021
Shared Task 1: a small ensemble that
Dialpad’s1 speech recognition team uses
internally, a well-known off-the-shelf
model, and a larger ensemble model
comprising these and others. We addition-
ally discuss the challenges related to the
provided data, along with the processing
steps we took.

1 Introduction
The transduction of sequences of graphemes
to phones or phonemes,2 that is from charac-
ters used in orthographic representations to
characters used to represent minimal units of
speech, is a core component of many tasks in
speech science & technology. This grapheme-
to-phoneme conversion (or g2p) may be used,
e.g., to automate or scale the creation of
digital lexicons or pronunciation dictionaries,
which are crucial to FST-based approaches to
automatic speech recognition (ASR) and syn-
thesis (Mohri et al., 2002).
The SIGMORPHON 2021 Workshop in-

cluded a Shared Task on g2p conversion, com-
prising 3 sub-tasks.3 The low- and medium-
resource tasks were multilingual, while the
high-resource task was English-only. This
paper provides an overview of the three
baseline-beating systems submitted by the Di-
alpad team for the high-resource sub-task,

∗Corresponding author. Contributing authors are
listed alphabetically.

1https://www.dialpad.com/
2We use these terms interchangeably here to refer

to graphical representations of minimal speech sounds,
remaining agnostic as to their theoretical or ontological
status.

3https://github.com/sigmorphon/2021-task1

along with discussion of the challenges posed
by the data that was provided.

2 Sub-task 1: high-resource,
English-only

The organizers provided 41,680 lines of data
in total; 33,344 for training, and 4,168 each
for development and test. The data consists
of word/pronunciation pairs (word-pron pairs,
henceforth), where words are sequences of
graphemes and pronunciations are sequences
of characters from the International Phonetic
Alphabet (International Phonetic Association,
1999). The data was derived from the English
portion of the WikiPron database (Lee et al.,
2020), a massively multilingual resource of
word-pron pairs extracted from Wiktionary4
and subject to some manual QA and post-
processing.5
The baseline model provided was the 2nd

place finisher from the 2020 g2p shared task
(Gorman et al., 2020). It is an ensembled neu-
ral transition model that operates over edit
actions and is trained via imitation learning
(Makarov and Clematide, 2020).

Evaluation scripts were provided to com-
pute word error rate (WER), the percentage of
words for which the output sequence does not
match the gold label.
Notwithstanding the baseline’s strong prior

performance and the amount of data avail-
able, the task proved to be challenging; the
baseline system achieved development and
test set WERs of 45.13 and 41.94, respec-
tively. We discuss possible reasons for this
below.

4https://en.wiktionary.org/
5See https://github.com/sigmorphon/2021-task1

for fuller details on data formatting and processing.



2.1 Data-related challenges
Wiktionary is an open, collaborative, public
effort to create a free dictionary in multiple
languages. Anyone can create an account and
add or amend words, pronunciations, etymo-
logical information, etc. As with most user-
generated content, this is a noisy method of
data creation and annotation.
Even setting aside the theory-laden ques-

tion of when or whether a given word should
be counted as English,6 the open nature of
Wiktionary means that speakers of different
variants or dialects of English may submit
varying or conflicting pronunciations for sets
of words. For example, some transcriptions
indicate that the users who input them had
the cot/caught merger while others do not; in
the training data “cot” is transcribed /k ɑ t/
and “caught” is transcribed /k ɔ t/, indicat-
ing a split, but “aughts” is transcribed as /ɑ t
s/, indicating merger. There is also variation
in the narrowness of transcription. For exam-
ple, some transcriptions include aspiration on
stressed-syllable-initial stops while others do
not c.f. “kill” /kʰ ɪ l/ and “killer” /k ɪ l ɚ/.
Typically the set of English phonemes is taken
to be somewhere between 38-45 depending
on variant/dialect (McMahon, 2002). In ex-
ploring the training data, we found a total of
124 symbols in the training set transcriptions,
many of which only appeared in a small set
(1–5) of transcriptions. To reduce the effect
of this long tail of infrequent symbols, we nor-
malized the training set.
The main source of symbols in the long

tail was the variation in the broadness of
transcription—vowels were sometimes but
not always transcribed with nasalization be-
fore a nasal consonant, aspiration on word-
initial voiceless stops was inconsistently indi-
cated, phonetic length was occasionally indi-
cated, etc. There were also some cases of er-
roneous transcription that we uncovered by
looking at the lowest frequency phones and
the word-pronunciation pairs where they ap-
peared. For instance, the IPA /j/ was tran-
scribed as /y/ twice, the voiced alveolar ap-
proximant /ɹ/ was mistranscribed as the trill
/r/ over 200 times, and we found a handful

6E.g., the training data included the arguably French
word-pronunciation pair: embonpoint /ɑ̃ b ɔ̃ p w ɛ/̃

of issues where a phone was transcribed with
a Unicode symbol not used in the IPA at all.
Most of these were cases where the rare

variant was at least two orders of magnitude
less frequent than the common variant of the
symbol. There was, however, one class of
sounds where the variation was less dramat-
ically skewed; the consonants /m/, /n/, and
/l/ appeared in unstressed syllables follow-
ing schwa (/əm/, /ən/, /əl/) roughly one or-
der of magnitude more frequently than their
syllabic counterparts (/m̩/, /n̩/, /l/̩), and we
opted not to normalize these. If we had nor-
malized the syllabic variants, it would have
resulted in more consistent g2p output but it
would likely also have penalized our perfor-
mance on the uncleaned test set.7 In the end,
our training data contained 47 phones (plus
end-of-sequence and UNK symbols for some
models).

3 Models
We trained and evaluated several models for
this task, both publicly available, in-house,
and custom developed, along with various en-
sembling permutations. In the end, we sub-
mitted three sets of baseline beating results.
The organizers assigned sequential identifiers
to multiple submissions (e.g. Dialpad-N); we
include these in the discussion of our entries
below, for ease of subsequent reference.

3.1 The Dialpad model (Dialpad-2)
Dialpad uses a g2p system internally for scal-
able generation of novel lexicon additions.
We were motivated to enter this shared task
as a means of assessing potential areas of im-
provement for our system; in order to do so
we needed to assess our own performance as
a baseline.
This model is a simple majority-vote ensem-

ble of 3 existing publicly available g2p sys-
tems: Phonetisaurus (Novak et al., 2012), a
WFST-based model, Sequitur (Bisani and Ney,
2008), a joint-sequence model trained via EM,
and a neural sequence-to-sequence model de-
veloped at CMU as part of the CMUSphinx8

7Although the possibility also exists that one or more
of our models would have found and exploited contex-
tual cues that weren’t obvious to us by inspection.

8https://cmusphinx.github.io



toolkit (see subsection 3.2). As Dialpad uses
a proprietary lexicon and phoneset internally,
we retrained all three models on the cleaned
version of the shared task training data, re-
taining default hyperparameters and architec-
tures.
In the end, this ensemble achieved a test set

WER of 41.72, narrowly beating the baseline
(results are discussed in more depth in Section
4).
3.2 A strong standalone model:

CMUSphinx g2p-seq2seq (Dialpad-3)
CMUSphinx is a set of open systems and
tools for speech science developed at Carnegie
Mellon University, including a g2p system.9
It is a neural sequence-to-sequence model
(Sutskever et al., 2014) that is Transformer-
based (Vaswani et al., 2017), written in Ten-
sorflow (Abadi et al., 2015). A pre-trained 3-
layer model is available for download, but it is
trained on a dictionary that uses ARPABET, a
substantially different phoneset from the IPA
used in this challenge. For this reason we re-
trained a model from scratch on the cleaned
version of the training data.
This model achieved a test set WER of

41.58, again narrowly beating the baseline.
Interestingly, this outperformed the Dialpad
model which incorporates it, suggesting that
Phonetisaurus and Sequitur add more noise
than signal to predicted outputs, to say noth-
ing of increased computational resources and
training time. More generally, this points to
the CMUSphinx seq2seq model as a simple
and strong baseline against which future g2p
research should be assessed.
3.3 A large ensemble (Dialpad-1)
In the interest of seeing what results could be
achieved via further naive ensembling, our fi-
nal submission was a large ensemble, compris-
ing two variations on the baseline model, the
Dialpad-2 ensemble discussed above, and two
additional seq2seq models, one using LSTMs
and the other Transformer-based. The latter
additionally incorporated a sub-word extrac-
tion method designed to bias a model’s input-
output mapping toward “good” grapheme-
phoneme correspondences.

9https://github.com/cmusphinx/g2p-seq2seq

The method of ensembling for this model is
word level majority-vote ensembling. We se-
lect the most common prediction when there
is a majority prediction (i.e. one prediction
has more votes than all of the others). If there
is a tie, we pick the prediction that was gen-
erated by the best standalone model with re-
spect to each model’s performance on the de-
velopment set.
This collection of models achieved a test set

WER of 37.43, a 10.75% relative reduction in
WER over the baseline model. As shown in
Table 1, although a majority of the compo-
nent models did not outperform the baseline,
there was sufficient agreement across differ-
ent examples that a simple majority voting
scheme was able to leverage the models’ vary-
ing strengths effectively. We discuss the com-
ponents and their individual performance be-
low and in Section 4.

3.3.1 Baseline variations
The “foundation” of our ensemble was the de-
fault baseline model (Makarov and Clematide,
2018), which we trained using the raw data
and default settings in order to reflect the
baseline performance published by the orga-
nization. We included this in order to individ-
ually assess the effect of additional models on
overall performance.
In addition to this default base, we added

a larger version of the same model, for which
we increased the number of encoder and de-
coder layers from 1 to 3, and increased the
hidden dimensions 200 to 400.

3.3.2 biLSTM+attention seq2seq
We conducted experiments with a RNN
seq2seq model, comprising a biLSTM encoder,
LSTM decoder, and dot-product attention.10
We conducted several rounds of hyperparam-
eter optimization over layer sizes, optimizer,
and learning rate. Although none of these
models outperformed the baseline, a small
network (16-d embeddings, 128-d LSTM lay-
ers) proved to be efficiently trainable (2 CPU-
hours) and improved the ensemble results, so
it was included.

10We used the DyNet toolkit (Neubig et al., 2017) for
these experiments.



3.3.3 PAS2P: Pronunciation-assisted
sub-words to phonemes

Sub-word segmentation is widely used in ASR
and neural machine translation tasks, as it
reduces the cardinality of the search space
over word-based models, and mitigates the is-
sue of OOVs. Use of sub-words for g2p tasks
has been explore, e.g. Reddy and Goldsmith
(2010) develop an MDL-based approach to ex-
tracting sub-word units for the task of g2p.
Recently, a pronunciation-assisted sub-word
model (PASM) (Xu et al., 2019) was shown
to improve the performance of ASR models.
We experimented with pronunciation-assisted
sub-words to phonemes (PAS2P), leveraging
the training data and a reparameterization of
the IBM Model 2 aligner (Brown et al., 1993)
dubbed fast_align (Dyer et al., 2013).11
The alignment model is used to find an

alignment of sequences of graphemeres to
their corresponding phonemes. We follow a
similar process as Xu et al. (2019) to find
the consistent grapheme-phoneme pairs and
refinement of the pairs for the PASM model.
We also collect grapheme sequence statistics
and marginalize it by summing up the counts
of each type of grapheme sequence over all
possible types of phoneme sequences. These
counts are the weights of each sub-word se-
quence.
Given a word and the weights for each

sub-word, the segmentation process is a
search problem over all possible sub-word
segmentation of that word. We solve this
search problem by building weighted FSTs12
of a given word and the sub-word vocabu-
lary, and finding the best path through this
lattice. For example, the word “thought-
fulness” would be segmented by PASM as
“th_ough_t_f_u_l_n_e_ss”, and this would be
used as the input in the PAS2P model
rather than the full sequence of individual
graphemes.
Finally, the PAS2P transducer is a

Transformer-based sequence-to-sequence
model trained using the ESPnet end-to-end
speech processing toolkit (Watanabe et al.,
2018), with pronunciation-assisted sub-
words as inputs and phones as outputs. The

11https://github.com/clab/fast_align
12We use Pynini (Gorman, 2016) for this.

model has 6 layers of encoder and decoder
with 2048 units, and 4 attention heads with
256 units. We use dropout with a probability
of 0.1 and label smoothing with a weight
of 0.1 to regularize the model. This model
achieved WERs of 44.84 and 43.40 on the
development and test sets, respectively.
4 Results
Our main results are shown in Table 1, where
we show both dev and test set WER for each
individual model in addition to the submit-
ted ensembles. In particular, we can see that
many of the ensemble components do not beat
the baselineWER, but nonetheless serve to im-
prove the ensembled models.

Model dev test
Dialpad-3 43.30 41.58
PAS2P 44.84 43.40
Baseline (large) 44.99 41.65
Baseline (organizer) 45.13 41.94
Phonetisaurus 45.44 43.88
Baseline (raw data) 45.92 41.70
Sequitur 46.69 43.86
biLSTM seq2seq 47.89 44.05
Dialpad-2 43.83 41.72
Dialpad-1 40.12 37.43

Table 1: Results for components of ensembles,
and submitted models/ensembles (bolded).

5 Additional experiments
We experimented with different ensembles
and found that incorporating models with dif-
ferent architectures generally improves over-
all performance. In the standalone results,
only the top three models beat the base-
line WER, but adding additional models with
higher WER than the baseline continues to re-
duce overall WER. Table 2 shows the effect
of this progressive ensembling, from our top-
3 models to our top-7 (i.e. the ensemble for
the Dialpad-1 model).
5.1 Edit distance-based voting
In addition to varying our ensemble sizes and
components, we investigated a different en-
semble voting scheme, in which ties are bro-
ken using edit distance when there is no 1-
best majority option. That is, in the event of



Model dev test
Ensemble-top3 41.10 39.71
Ensemble-top4 40.74 38.89
Ensemble-top5 40.50 38.12
Ensemble-top6 40.31 37.69
Ensemble-top7 (Dialpad-1) 40.12 37.43

Table 2: Progressive ensembling results, with top-
performing components

a tie, instead of selecting the prediction made
by the best standalone model (our usual tie-
breaking method), we select the prediction
that minimizes edit distance to all other pre-
dictions that have the same number of votes.
The idea of this method is to maximize sub-
word level agreement. Although this method
did not show clear improvements on the de-
velopment set, we found after submission that
it narrowly but consistently outperformed the
top-N ensembles on the test set (see Table 3).

Model dev test
ED-Dialpad-3 43.76 41.70
ED-top3 41.24 39.40
ED-top4 40.62 38.48
ED-top5 40.50 37.69
ED-top6 40.28 37.50
ED-top7 40.21 37.31

Table 3: Results for ensembling with edit-distance
tie-breaking

6 Error analysis
We conducted some basic analyses of the
Dialpad-1 submission’s patterns of errors, to
better understand its performance and iden-
tify potential areas of improvement.13

6.1 Oracle WER
We began by calculating the oracle WER, i.e.
the theoretical best WER that the ensemble
could have achieved if it had selected the cor-
rect/gold prediction every time it was present
in the pool of component model predictions
for a given input. The Dialpad-1 system’s ora-
cle WERs on the dev and test sets were 25.12
and 23.27, respectively (c.f. 40.12 and 37.43
actual).

13We are grateful to an anonymous reviewer for sug-
gesting that this would strengthen the paper.

These represent massive performance im-
provements (approx. 15% absolute, or 37%
relative, WER reduction), and suggest refine-
ment of our output selection/voting method
(perhaps via some kind of confidence weight-
ing) could lead to much-improved results.
6.2 Data-related errors
We also investigated outputs for which none
of our component models predicted the cor-
rect pronunciation, in hopes of finding some
patterns of interest.
Many of the training data-related issues

raised in section 2.1 appeared in the dev and
test labels as well. In some cases this led to
high cross-component agreement, even on in-
correct predictions. Our hope that subtle con-
textual cues might reveal patterns in the distri-
bution of syllabic versus schwa-following liq-
uids and nasals was not borne out, e.g. our en-
semble was led astray on words like “warble”,
which had a labelled pronunciation of /w ɔ ɹ
b l/̩, while all 7 of our models predicted /w ɔ
ɹ b ə l/, a functionally non-distinct pronuncia-
tion. In addition, the previously mentioned is-
sue of /ɹ/ being mistranscribed as /r/ affected
our performance, e.g. with the word “unilat-
eral”, whose labelled pronunciation was /j u
n ɪ l æ t ə r ə l/, instead of /j u n ɪ l æ t ə ɹ ə l/,
which was again the pronunciation predicted
by all 7 models. Finally, narrowness of tran-
scription was also an issue that affected our
performance on the dev and test sets, e.g., for
words like “cloudy” /k ɫ a ʊ d i/ and “cry” /k
ɹ a ɪ/̯, for which we predicted /k l a ʊ d i/ and
/k ɹ a ɪ/, respectively. In the end, it seems
that noisiness in the data was a major source
of errors for our submissions.14
Aside from issues arising due to label noise,

our systems also made some genuine errors
that are typical of g2p models, mostly related
to data distribution or sparsity. For example,
our component models overwhelmingly pre-
dicted that “irreparate” (/ɪ ɹ ɛ p ə ɹ ə t/) should
rhyme instead with “rate” (this “-ate-” /e ɪ t/
correspondence was overwhelmingly present
in the training data), that “backache” (/b æ
k e ɪ k/) must contain the affricate /t͡ʃ/, that

14We nonetheless acknowledge the magnitude and
challenge of the task of cleaning/normalizing a large
quantity of user-generated data, and thank the organiz-
ers for the work that they did in this area.



“acres” (e ɪ k ɚ z/) rhymes with “degrees”, and
that “beret” has a /t/ sound in it. In each of
these cases, there was either not enough sam-
ples in the training set to reliably learn the
relevant grapheme-phoneme correspondence,
or else a conflicting (but correct) correspon-
dence was over-represented in the training
data.
7 Conclusion
We presented and discussed three g2p sys-
tems submitted for the SIGMORPHON2021
English-only shared sub-task. In addition
to finding a strong off-the-shelf contender,
we show that naive ensembling remains a
strong strategy in supervised learning, of
which g2p is a sub-domain, and that sim-
ple majority-voting schemes in classification
can often leverage the respective strengths
of sub-optimal component models, especially
when diverse architectures are combined. Ad-
ditionally, we provided more evidence for
the usefulness of linguistically-informed sub-
word modeling as an input transformation on
speech-related tasks.
We also discussed additional experiments

whose results were not submitted, indicating
the benefit of exploring top-N model vs en-
semble trade-offs, and demonstrating the po-
tential benefit of an edit-distance based tie-
breaking method for ensemble voting.
Future work includes further search for

the optimal trade-off between ensemble size
and performance, as well as additional explo-
ration of the edit-distance voting scheme, and
more sophisticated ensembling/voting meth-
ods, e.g. majority voting at the phone level
on aligned outputs.
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