
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 131–140

131

Linguistic Knowledge in Multilingual Grapheme-to-Phoneme Conversion

Roger Yu-Hsiang Lo

Department of Linguistics

The University of British Columbia

roger.lo@ubc.ca

Garrett Nicolai

Department of Linguistics

The University of British Columbia

garrett.nicolai@ubc.ca

Abstract

This paper documents the UBC Linguistics

team’s approach to the SIGMORPHON 2021

Grapheme-to-Phoneme Shared Task, concen-

trating on the low-resource setting. Our sys-

tems expand the baseline model with simple

modifications informed by syllable structure

and error analysis. In-depth investigation of

test-set predictions shows that our best model

rectifies a significant number of mistakes com-

pared to the baseline prediction, besting all

other submissions. Our results validate the

view that careful error analysis in conjunction

with linguistic knowledge can lead to more ef-

fective computational modeling.

1 Introduction

With speech technologies becoming ever more

prevalent, grapheme-to-phoneme (G2P) conversion

is an important part of the pipeline. G2P conver-

sion refers to mapping a sequence of orthographic

representations in some language to a sequence of

phonetic symbols, often transcribed in the Interna-

tional Phonetic Alphabet (IPA). This is often an

early step in tasks such as text-to-speech, where

the pronunciation must be determined before any

speech is produced. An example of such a G2P

conversion, in Amharic, is illustrated below:

€≈r{ 7→ [amar1ï:a] ‘Amharic’

For the second year, one of SIGMORPHON

shared tasks concentrates on G2P. This year, the

task is further broken into three subtasks of varying

data levels: high-resource (33K training instances),

medium-resource (8K training instances), and low-

resource (800 training instances). Our focus is on

the low-resource subtask. The language data and

associated constraints in the low-resource setting

will be summarized in Section 3.1; the reader inter-

ested in the other two subtasks is referred to Ashby

et al. (this volume) for an overview.

In this paper, we describe our methodology and

approaches to the low-resource setting, including

insights that informed our methods. We conclude

with an extensive error analysis of the effectiveness

of our approach.

This paper is structured as follows: Section 2

overviews previous work on G2P conversion. Sec-

tion 3 gives a description of the data in the low-

resource subtask, evaluation metric, and baseline

results, along with the baseline model architecture.

Section 4 introduces our approaches as well as the

motivation behind them. We present our results in

Section 5 and associated error analyses in Section 6.

Finally, Section 7 concludes our paper.

2 Previous Work on G2P conversion

The techniques for performing G2P conversion

have long been coupled with contemporary ma-

chine learning advances. Early paradigms utilize

joint sequence models that rely on the alignment

between grapheme and phoneme, usually with

variants of the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977). The result-

ing sequences of graphones (i.e., joint grapheme-

phoneme tokens) are then modeled with n-gram

models or Hidden Markov Models (e.g., Jiampoja-

marn et al., 2007; Bisani and Ney, 2008; Jiampo-

jamarn and Kondrak, 2010). A variant of this

paradigm includes weighted finite-state transducers

trained on such graphone sequences (Novak et al.,

2012, 2015).

With the rise of various neural network tech-

niques, neural-based methods have dominated the

scene ever since. For example, bidirectional long

short-term memory-based (LSTM) networks using

a connectionist temporal classification layer pro-

duce comparable results to earlier n-gram models

(Rao et al., 2015). By incorporating alignment in-

formation into the model, the ceiling set by n-gram

132

models has since been broken (Yao and Zweig,

2015). Attention further improved the performance,

as attentional encoder-decoders (Toshniwal and

Livescu, 2016) learned to focus on specific input se-

quences. As attention became “all that was needed”

(Vaswani et al., 2017), transformer-based architec-

tures have begun looming large (e.g., Yolchuyeva

et al., 2019).

Recent years have also seen works that capital-

ize on multilingual data to train a single model

with grapheme-phoneme pairs from multiple lan-

guages. For example, various systems from last

year’s shared task submissions learned from a mul-

tilingual signal (e.g., ElSaadany and Suter, 2020;

Peters and Martins, 2020; Vesik et al., 2020).

3 The Low-resource Subtask

This section provides relevant information concern-

ing the low-resource subtask.

3.1 Task Data

The provided data in the low-resource subtask

come from ten languages1: Adyghe (ady; in the

Cyrillic script), Modern Greek (gre; in the Greek

alphabet), Icelandic (ice), Italian (ita), Khmer

(khm; in the Khmer script, which is an alphasyl-

labary system), Latvian (lat), Maltese transliter-

ated into the Latin script (mlt_latn), Romanian

(rum), Slovene (slv), and the South Wales dialect

of Welsh (wel_sw). The data are extracted from

Wikitionary2 using WikiPron (Lee et al., 2020), and

filtered and downsampled with proprietary tech-

niques, resulting in each language having 1,000

labeled grapheme-phoneme pairs, split into a train-

ing set of 800 pairs, a development set of 100 pairs,

and a blind test set of 100 pairs.

3.2 The Evaluation Metric

This year, the evaluation metric is the word er-

ror rate (WER), which is simply the percentage

of words for which the predicted transcription se-

quence differs from the ground-truth transcription.

Different systems are ranked based on the macro-

average over all languages, with lower scores indi-

cating better systems. We also adopted this metric

when evaluating our models on the development

sets.

1All output is represented in IPA; unless specified other-
wise, the input is written in the Latin alphabet.

2https://www.wiktionary.org/

3.3 Baselines

The official baselines for individual languages are

based on an ensembled neural transducer trained

with the imitation learning (IL) paradigm (Makarov

and Clematide, 2018a). The baseline WERs are tab-

ulated in Table 3. In what follows, we overview this

baseline neural-transducer system, as our models

are built on top of this system. The detailed formal

description of the baseline system can be found in

Makarov and Clematide (2018a,b,c, 2020).

The neural transducer in question defines a con-

ditional distribution over edit actions, such as copy,

deletion, insertion, and substitution:

pθ(y,a|x) =

|a|∏

j=1

pθ(aj |a<j ,x),

where x denotes an input sequence of graphemes,

and a = a1 . . . a|a| stands for a sequence of edit

actions. Note that the ouput sequence y is missing

from the conditional probability on the right-hand

side as it can be deterministically computed from x

and a. The model is implemented with an LSTM

decoder, coupled with a bidirectional LSTM en-

coder.

The model is trained with IL and therefore de-

mands an expert policy, which contains demon-

strations of how the task can be optimally solved

given any configuration. Cast as IL, the mapping

from graphemes to phonemes can be understood

as following an optimal path dictated by the expert

policy that gradually turns input orthographic sym-

bols to output IPA characters. To acquire the expert

policy, a Stochastic Edit Distance (Ristad and Yian-

ilos, 1998) model trained with the EM algorithm

is employed to find an edit sequence consisting of

four types of edits: copy, deletion, insertion, and

substitution. During training time, the expert policy

is queried to identify the next optimal edit that min-

imizes the following objective expressed in terms

of Levenshtein distance and edit sequence cost:

βED(ŷ,y) + ED(x, ŷ), β ≥ 1,

where the first term is the Levenshtein distance

between the target sequence y and the predicted

sequence ŷ, and the second term measures the cost

of editing x to ŷ.

The baseline is run with default hyperparameter

values, which include ten different initial seeds and

a beam of size 4 during inference. The predictions

of these individual models are ensembled using a

https://www.wiktionary.org/

133

voting majority. Early efforts to modify the ensem-

ble to incorporate system confidence showed that a

majority ensemble was sufficient.

This model has proved to be competitive, judg-

ing from its performance on the previous year’s

G2P shared task. We therefore decided to use it as

the foundation to construct our systems.

4 Our Approaches

This section lays out our attempted approaches.

We investigate two alternatives, both linguistic in

nature. The first is inspired by a universal linguistic

structure—the syllable—and the other by the error

patterns discerned from the baseline predictions on

the development data.

4.1 System 1: Augmenting Data with

Unsupervised Syllable Boundaries

Our first approach originates from the observation

that, in natural languages, a sequence of sounds

does not just assume a flat structure. Neighboring

sounds group to form units, such as the onset, nu-

cleus, and coda. In turn, these units can further

project to a syllable (see Figure 1 for an example

of such projection). Syllables are useful structural

units in describing various linguistic phenomena

and indeed in predicting the pronunciation of a

word in some languages (e.g., Treiman, 1994). For

instance, in Dutch, the vowel quality of the nu-

cleus can be reliably inferred from the spelling

after proper syllabification: .dag. [dAx] ‘day’ but

.da.gen. [da:G@n] ‘days’, where . marks syllable

boundaries. Note that a in a closed syllable is pro-

nounced as the short vowel [A], but as the long

vowel [a:] in an open syllable. In applying syllabi-

fication to G2P conversion, van Esch et al. (2016)

find that training RNNs to jointly predict phoneme

sequences, syllabification, and stress leads to fur-

ther performance gains in some languages, com-

pared to models trained without syllabification and

stress information.

Syllable

Rhyme

Coda

Tfł

Nucleus

E

Onset

wt

Figure 1: The syllable structure of twelfth [twEłfT]

To identify syllable boundaries in the input se-

quence, we adopted a simple heuristic, the specific

steps of which are listed below:3

1. Find vowels in the output: We first identify

the vowels in the phoneme sequence by com-

paring each segment with the vowel symbols

from the IPA chart. For instance, the symbols

[ø] and [y] in [thrøyst] for Icelandic traust are

vowels because they match the vowel symbols

[ø] and [y] on the IPA chart.

2. Find vowels in the input: Next we align

the grapheme sequence with the phoneme se-

quence using an unsupervised many-to-many

aligner (Jiampojamarn et al., 2007; Jiampo-

jamarn and Kondrak, 2010). By identifying

graphemes that are aligned to phonemic vow-

els, we can identify vowels in the input. Using

the Icelandic example again, the aligner pro-

duces a one-to-one mapping: t 7→ th, r 7→ r, a

7→ ø, u 7→ y, s 7→ s, and t 7→ t. We therefore

assume that the input characters a and u rep-

resent two vowels. Note that this step is often

redundant for input sequences based on the

Latin script but is useful in identifying vowel

symbols in other scripts.

3. Find valid onsets and codas: A key step in

syllabification is to identify which sequences

of consonants can form an onset or a coda.

Without resorting to linguistic knowledge, one

way to identify valid onsets and codas is to

look at the two ends of a word—consonant

sequences appearing word-initially before the

first vowel are valid onsets, and consonant

sequences after the final vowel are valid codas.

Looping through each input sequence in the

training data gives us a list of valid onsets and

codas. In the Icelandic example traust, the

initial tr sequence must be a valid onset, and

the final st sequence a valid coda.

4. Break word-medial consonant sequences

into an onset and a coda: Unfortunately

identifying onsets and codas among word-

medial consonant sequences is not as straight-

forward. For example, how do we know the

3We are aware that different languages permit distinct
syllable constituents (e.g., some languages allow syllabic con-
sonants while others do not), but given the restriction that we
are not allowed to use external resources in the low-resource
subtask, we simply assume that all syllables must contain a
vowel.

134

sequence in the input VngstrV (V for a vowel

character) should be parsed as Vng.strV, as

Vn.gstrV, or even as V.ngstrV? To tackle this

problem, we use the valid onset and coda lists

gathered from the previous step: we split the

consonant sequence into two parts, and we

choose the split where the first part is a valid

coda and the second part a valid onset. For

instance, suppose we have an onset list {str,

tr} and a coda list {ng, st}. This implies that

we only have a single valid split—Vng.strV—

so ng is treated as the coda for the previous

syllable and str as the onset for the follow-

ing syllable. In the case where more than one

split is acceptable, we favor the split that pro-

duces a more complex onset, based on the

linguistic heuristic that natural languages tend

to tolerate more complex onsets than codas.

For example, Vng.strV > Vngs.trV. In the

situation where none of the splits produces a

concatenation of a valid coda and onset, we

adopt the following heuristic:

• If there is only one medial consonant

(such as in the case where the consonant

can only occur word-internally but not

in the onset or coda position), this con-

sonant is classified as the onset for the

following syllable.

• If there is more than one consonant, the

first consonant is classified as the coda

and attached to the previous syllable

while the rest as the onset of the follow-

ing syllable.

Of course, this procedure is not free of errors

(e.g., some languages have onsets that are only

allowed word-medially, so word-initial onsets

will naturally not include them), but overall it

gives reasonable results.

5. Form syllables: The last step is to put to-

gether consonant and vowel characters to form

syllables. The simplest approach is to allow

each vowel character to be projected as a nu-

cleus and distribute onsets and codas around

these nuclei to build syllables. If there are

four vowels in the input, there are likewise

four syllables. There is one important caveat,

however. When there are two or more consec-

utive vowel characters, some languages prefer

to merge them into a single vowel/nucleus in

their pronunciation (e.g., Greek και 7→ [ce])

while other languages simply default to vowel

hiatuses/two side-by-side nuclei (e.g., Italian

badia 7→ [badia])—indeed, both are common

cross-linguistically. We again rely on the

alignment results in the second step to select

the vowel segmentation strategy for individual

languages.

After we have identified the syllables that com-

pose each word, we augmented the input se-

quences with syllable boundaries. We identify

four labels to distinguish different types of sylla-

ble boundaries: <cc>, <cv>. <vc>, and <vv>,

depending on the classes of sound the segments

straddling the syllable boundary belong to. For

instance, the input sequence b í l a v e r

k s t æ ð i in Icelandic will be augmented

to be b í <vc> l a <vc> v e r k <cc>

s t æ <vc> ð i. We applied the same syl-

labification algorithm to all languages to generate

new input sequences, with the exception of Khmer,

as the Khmer script does not permit a straightfor-

ward linear mapping between input and output se-

quences, which is crucial for the vowel identifi-

cation step. We then used these syllabified input

sequences, along with their target transcriptions, as

the training data for the baseline model.4

4.2 System 2: Penalizing Vowel and Diacritic

Errors

Our second approach focuses on the training ob-

jective of the baseline model, and is driven by

the errors we observed in the baseline predictions.

Specifically, we noticed that the majority of er-

rors for the languages with a high WER—Khmer,

Latvian, and Slovene—concerned vowels, some

examples of which are given in Table 1. Note the

nature of these mistakes: the mismatch can be in

the vowel quality (e.g., [O] for [o]), in the vowel

length (e.g., [á:] for [á]), in the pitch accent (e.g.,

[́ı:] for [̀ı:]), or a combination thereof.

Based on the above observation, we modified

the baseline model to explicitly address this vowel-

mismatching issue. We modified the objective such

that erroneous vowel or diacritic (e.g., the length-

ening marker [:]) predictions during training incur

4The hyperparameters used are the default values provided
in the baseline model code: character and action embedding =

100, encoder LSTM state dimension = decoder LSTM state
dimension = 200, encoder layer = decoder layer = 1, beam
width = 4, roll-in hyperparameter = 1, epochs = 60, patience
= 12, batch size = 5, EM iterations = 10, ensemble size =

10.

135

Language Target Baseline prediction

khm n u h n ŭ @ h

r O: j r ĕ @ j

s p ŏ @ n s p a n

lat t s e: l s t s Ê: l s

j u ō k s j ù o k s

v æ̂ l s v ǣ: l s

slv j ó: g u r t j O g ú: r t

k r ı̀: S k r ı́: S

z d á j z d á: j

Table 1: Typical errors in the development set that in-

volve vowels from Khmer (khm), Latvian (lat), and

Slovene (slv)

additional penalties. Each incorrectly-predicted

vowel incurs this penalty. The penalty acts as a

regularizer that forces the model to expend more

effort on learning vowels. This modification is in

the same spirit as the softmax-margin objective of

Gimpel and Smith (2010), which penalizes high-

cost outputs more heavily, but our approach is even

simpler—we merely supplement the loss with ad-

ditional penalties for vowels and diacritics. We

fine-tuned the vowel and diacritic penalties using a

grid search on the development data, incrementing

each by 0.1, from 0 to 0.5. In the cases of ties, we

skewed higher as the penalties generally worked

better at higher values. The final values used to

generate predictions for the test data are listed in

Table 2. We also note that the vowel penalty had

significantly more impact than the diacritic penalty.

Penalty

Language Vowel Diacritic

ady 0.5 0.3

gre 0.3 0.2

ice 0.3 0.3

ita 0.5 0.5

khm 0.2 0.4

lav 0.5 0.5

mlt_latn 0.2 0.2

rum 0.5 0.2

slv 0.4 0.4

wel_sw 0.4 0.5

Table 2: Vowel penalty and diacritic penalty values in

the final models

5 Results

The performances of our systems, measured in

WER, are juxtaposed with the official baseline re-

sults in Table 3. We first note that the baseline was

particularly strong—gains were difficult to achieve

for most languages. Our first system (Syl), which is

based on syllabic information, unfortunately does

not outperform the baseline. Our second system

(VP), which includes additional penalties for vow-

els and diacritics, however, does outperform the

baselines in several languages. Furthermore, the

macro WER average not only outperforms the base-

line, but all other submitted systems.

WER

Language Baseline Syl VP

ady 22 25 22

gre 21 22 22

ice 12 13 11

ita 19 20 22

khm 34 31 28

lav 55 58 49

mlt_latn 19 19 18

rum 10 14 10

slv 49 56 47

wel_sw 10 13 12

Average 25.1 27.1 24.1

Table 3: Comparison of test-set results based on the

word error rates (WERs)

It seems that extra syllable information does not

help with predictions in this particular setting. It

might be the case that additional syllable bound-

aries increase input variability without providing

much useful information with the current neural-

transducer architecture. Alternatively, information

about syllable boundary locations might be redun-

dant for this set of languages. Finally, it is possible

that the unsupervised nature of our syllable anno-

tation was too noisy to aid the model. We leave

these speculations as research questions for future

endeavors and restrict the subsequent error analy-

ses and discussion to the results from our vowel-

penalty system.5

5One reviewer raised a question of why only syllable
boundaries, as opposed to smaller constituents, such as onsets
or codas, are marked. Our hunch is that many phonological al-
ternations happen at syllable boundaries, and that vowel length
in some languages depends on whether the nucleus vowel is
in a closed or open syllable. Also, given that adding syllable

136

ady gre ice ita khm lav mlt_latn rum slv wel_sw

baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP baseSyl VP

0

20

40

60

80

Systems

C
o

u
n

t

Error types C-V, V-C C-C, C-ϵ, ϵ-C V-V, V-ϵ, ϵ-V

Figure 2: Distributions of error types in test-set predictions across languages. Error types are distinguished based

on whether an error involves only consonants, only vowels, or both. For example, C-V means that the error is

caused by a ground-truth consonant being replaced by a vowel in the prediction. C-ǫ means that it is a deletion

error where the ground-truth consonant is missing in the prediction while ǫ-C represents an insertion error where a

consonant is wrongly added.

6 Error Analyses

In this section, we provide detailed error analyses

on the test-set predictions from our best system.

The goals of these analyses are twofold: (i) to ex-

amine the aspects in which this model outperforms

the baseline and to what extent, and (ii) to get a

better understanding of the nature of errors made

by the system—we believe that insights and im-

provements can be derived from a good grasp of

error patterns.

We analyzed the mismatches between predicted

sequences and ground-truth sequences at the seg-

mental level. For this purpose, we again utilized

many-to-many alignment (Jiampojamarn et al.,

2007; Jiampojamarn and Kondrak, 2010), but this

time between a predicted sequence and the corre-

sponding ground-truth sequence.6 For each error

along the aligned sequence, we classified it into

one of the three kinds:

• Those involving erroneous vowel insertions

(e.g., ǫ → [@]), deletions (e.g., [@] → ǫ), or

substitutions (e.g., [@] → [a]).

• In the same vein, those involving erroneous

consonant insertions (e.g., ǫ → [P]), deletions

boundaries does not improve the results, it is unlikely that
marking constituent boundaries, which adds more variability
to the input, will result in better performance, though we did
not test this hypothesis.

6The parameters used are: allowing deletion of input
grapheme strings, maximum length of aligned grapheme and
phoneme substring being one, and a training threshold of
0.001.

(e.g., [P] → ǫ), and substitutions (e.g., [d] →
[t]).

• Those involving exchanges of a vowel and a

consonant (e.g., [w] → [u]) or vice versa.

The frequency of each error type made by the

baseline model and our systems for each individ-

ual language is plotted in Figure 2. Some patterns

are immediately clear. First, both systems have a

similar pattern in terms of the distribution of error

types across language, albeit that ours makes fewer

errors on average. Second, both systems err on

different elements, depending on the language. For

instance, while Adyghe (ady) and Khmer (khm)

have a more balanced distribution between conso-

nant and vowel errors, Slovene (slv) and Welsh

(wel_sw) are dominated by vowel errors. Third,

the improvements gained in our system seem to

come mostly from reduction in vowel errors, as is

evident in the case of Khmer, Latvian (lav), and,

to a lesser extent, Slovene.

The final observation is backed up if we zoom

in on the errors in these three languages, which

we visualize in Figure 3. Many incorrect vowels

generated by the baseline model are now correctly

predicted. We note that there are also cases, though

less common, where the baseline model gives the

right prediction, but ours does not. It should be

pointed out that, although our system shows im-

provement over the baseline, there is still plenty

of room for improvement in many languages, and

our system still produces incorrect vowels in many

137

aː

ɑ

ɑː

e

eː

ə

ɛː

i

ϵ

baseline ground-truth ours (VP)

Systems

V
o
w

e
ls

Khmer vowels

a
à
â
ā

âː
āː
æ
ɛ
ɛ̄
ɛ̀ː
ɛ̄ː
i
î
ī

îː
īː
j

o
ô
u
ù
ū
ϵ

baseline ground-truth ours (VP)

Systems
V

o
w

e
ls

Latvian vowels

áː

àː

éː

èː

ə

ɛ̀ː

o

óː

ɔ

ɔ́ː

baseline ground-truth ours (VP)

Systems

V
o
w

e
ls

Slovene vowels

Error types

base wrong

ours wrong

Figure 3: Comparison of vowels predicted by the baseline model and our best system (VP) with the ground-truth

vowels. Here we only visualize the cases where either the baseline model gives the right vowel but our system does

not, or vice versa. We do not include cases where both the baseline model and our system predict the correct vowel,

or both predict an incorrect vowel, to avoid cluttering the view. Each baseline—ground-truth—ours line represents

a set of aligned vowels in the same word; the horizontal line segment between a system and the ground-truth means

that the prediction from the system agrees with the ground-truth. Color hues are used to distinguish cases where

the prediction from the baseline is correct versus those where the prediction from our second system is correct.

Shaded areas on the plots enclose vowels of similar vowel quality.

instances.

Finally, we look at several languages which

still resulted in high WER on the test set—ady,

gre, ita, khm, lav, and slv. We analyze

the confusion matrix analysis to identify clusters

of commonly-confused phonemes. This analysis

again relies on the alignment between the ground-

truth sequence and the corresponding predicted

sequence to characterize error distributions. The

results from this analysis are shown in Figure 4,

and some interesting patterns are discussed below.

Figure 2 suggests that Khmer has an equal share of

consonant and vowel errors, and the heat maps in

Figure 4 reveal that these errors do not seem to fol-

low a certain pattern. However, a different picture

emerges with Latvian and Slovene. For both lan-

guages, Figure 2 indicates the dominance of errors

tied to vowels; consonant errors account for a rela-

tively small proportion of errors. This observation

is borne out in Figure 4, with the consonant heat

maps for the two languages displaying a clear diag-

onal stripe, and the vowel heat maps showing much

more off-diagonal signals. What is more interest-

ing is that the vowel errors in fact form clusters,

as highlighted by white squares on the heat maps.

The general pattern is that confusion only arises

within a cluster where vowels are of similar quality

but differ in terms of length or pitch accent. For

example, while [i:] might be incorrectly-predicted

as [i], our model does not confuse it with, say, [u].

The challenges these languages present to the mod-

els are therefore largely suprasegmental—vowel

length and pitch accent, both of which are lexical-

ized and not explicitly marked in the orthography.

For the other three languages, their errors also show

distinct patterns: for Adyghe, consonants differing

only in secondary features can get confused; in

Greek, many errors can be attributed to the mixing

of [r] and [R]; in Italian, front and back mid vowels

can trick our model.

We hope that our detailed error analyses show

not only that these errors “make linguistic sense”—

and therefore attest to the power of the model—

but also point out a pathway along which future

modeling can be improved.

7 Conclusion

This paper presented the approaches adopted by

the UBC Linguistics team to tackle the SIGMOR-

PHON 2021 Grapheme-to-Phoneme Conversion

challenge in the low-resource setting. Our submis-

sions build upon the baseline model with modifi-

cations inspired by syllable structure and vowel

error patterns. While the first modification does

not result in more accurate predictions, the second

modification does lead to sizable improvements

over the baseline results. Subsequent error analy-

ses reveal that the modified model indeed reduces

erroneous vowel predictions for languages whose

errors are dominated by vowel mismatches. Our

approaches also demonstrate that patterns uncov-

138

0.00 0.25 0.50 0.75 1.00
Proportion

ʔ

z

w

ʋ

tʰ

t

s

r

pʰ

p

ŋ

ɲ

n

m

l

kʰ

k

j

h

f

ɗ

cʰ

c

ɓ

ɓ c cʰ ɗ f h j k kʰ l m n ɲ ŋ p pʰ r s t tʰ ʋ w z ʔ
Ground-truth consonants

P
re

d
ic

te
d

 c
o

n
s
o

n
a

n
ts

Khmer consonants

ʒ

z

w

v

t

ʃ

s

ɾ

r

p

ŋ

ɲ

n

m

ʎ

l

k

ɟ

j

ɡ

f

d

c

b

b c d f ɡ j ɟ k l ʎ m n ɲ ŋ p r ɾ s ʃ t v w z ʒ
Ground-truth consonants

P
re

d
ic

te
d

 c
o

n
s
o

n
a

n
ts

Latvian consonants

ʒ

z

x

ʋ

t ͡ʃ

t ͡s

t

ʃ

s

r

p

n

m

l

k

j

ɡ

f

d

b

b d f ɡ j k l m n p r s ʃ t t ͡s t ͡ʃ ʋ x z ʒ
Ground-truth consonants

P
re

d
ic

te
d

 c
o

n
s
o

n
a

n
ts

Slovene consonants

uː

ŭ

u

ɔː

ɔ

oː

ŏ

o

ɨ

iː

i

ɛː

əː

ə

eː

ĕ

e

ɑː

ɑ

aː

a

a aː ɑ ɑː e ĕ eː ə əː ɛː i iː ɨ o ŏ oː ɔ ɔː u ŭ uː
Ground-truth vowels

P
re

d
ic

te
d

 v
o

w
e

ls

Khmer vowels

a

æ, e, ɛ

i

o

uūː
ûː
ùː
ū
û

ù

u

oː
ō
ô

o

īː
îː
ī
ì

i

ɛ̄ː
ɛ̂ː
ɛ̀ː
ɛ̄
ɛ̂
ɛ̀
ɛ
ē
e

ǣː
æ ̀ː
ǣ
æ

āː
âː
àː
aː
ā
â

à

a

a à â ā aː àː âː āː æ ǣæ ̀ːǣː e ē ɛ ɛ̀ ɛ̂ ɛ̄ ɛ̀ː ɛ̂ː ɛ̄ː i ì ī îː īː o ô ō oː u ù û ū ùː ûː ūː
Ground-truth vowels

P
re

d
ic

te
d

 v
o

w
e

ls

Latvian vowels

a

e, ə, ɛ

i

o, ɔ

uùː

úː

u

ɔ̀ː

ɔ́ː

ɔ́

ɔ

òː

óː

ìː

íː

i

ɛ̀ː

ɛ́ː

ɛ́

ɛ

ə́

ə

èː

éː

àː

áː

á

a

a á áː àː éː èː ə ə́ ɛ ɛ́ ɛ́ː ɛ̀ː i íː ìː óː òː ɔ ɔ́ ɔ́ː ɔ̀ː u úː ùː
Ground-truth vowels

P
re

d
ic

te
d

 v
o

w
e

ls

Slovene vowels

χʷ
χ
ʔʷ
ʔ
ʒʷ
ʒ
ʑ
ʐʷ
ʐ
z
x
w
tʼ
t ͡ʃʼ
t ͡ʃ

t ͡ʂ
t ͡sʼ
t ͡s
t
ʃʼ
ʃʷʼ
ʃʷ
ʃ

ʂʷ
ʂ
s
ʁʷ
ʁ
r

qʷ
q
pʼ

pʷʼ
p
n

m
ɮ
ɬʼ
ɬ
l

kʼ
kʷ
kʲʼ
kʲ
j
ħ
ɣ
ɡʷ
ɡʲ
f

d ͡ʒ
d ͡z
d
ɕ
b

b ɕ dd ͡zd ͡ʒ f ɡɡ̡ʷɣ ħ j kʲkʲk̓ k̫ʼ l ɬ ɬʼ ɮmn ppʷp̓ʼqqʷr ʁʁʷs ʂʂʷ ʃ ʃ ʃ̫ʷʼ ʃʼ t t ͡st ͡s t̓ ͡ʂ t ͡ʃ t ͡ʃʼ tʼw x z ʐʐʷʑ ʒʒʷʔʔʷχχʷ
Ground-truth consonants

P
re

d
ic

te
d

 c
o

n
s
o

n
a

n
ts

Adyghe consonants

r, ɾ

θ

z

x

v

t

s

ɾ

r

p

ŋ

ɲ

n

m

ʎ

l

k

ʝ

ɣ

ɡ

f

ð

d

ç

c

b

b c ç d ð f ɡ ɣ ʝ k l ʎ m n ɲ ŋ p r ɾ s t v x z θ
Ground-truth consonants

P
re

d
ic

te
d

 c
o

n
s
o

n
a

n
ts

Greek consonants

e, ɛ

o, ɔ

u

ɔ

o

i

ɛ

e

a

a e ɛ i o ɔ u

Ground-truth vowels

P
re

d
ic

te
d

 v
o

w
e

ls

Italian vowels

Figure 4: Confusion matrices of vowel and consonant predictions by our second system (VP) for languages with the

test WER > 20%. Each row represents a predicted segment, with colors across columns indicating the proportion

of times the predicted segment matches individual ground-truth segments. A gray row means the segment in

question is absent in any predicted phoneme sequences but is present in at least one ground-truth sequence. The

diagonal elements represent the number of times for which the predicted segment matches the target segment,

while off-diagonal elements are those that are mis-predicted by the system. White squares are added to highlight

segment groups where mismatches are common.

139

ered from careful error analyses can inform the

directions for potential improvements.

References

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50:434–451.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Soci-
ety. Series B (Methodological), 39(1):1–38.

Omnia ElSaadany and Benjamin Suter. 2020.
Grapheme-to-phoneme conversion with a mul-
tilingual transformer model. In Proceedings of
the Seventeenth SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 85–89.

Daan van Esch, Mason Chua, and Kanishka Rao. 2016.
Predicting pronunciations with syllabification and
stress with recurrent neural networks. In Proceed-
ings of Interspeech 2016, pages 2841–2845.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
margin CRFs: Training log-linear models with cost
functions. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the ACL, pages 733–736.

Sittichai Jiampojamarn and Grzegorz Kondrak. 2010.
Letter-phoneme alignment: An exploration. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 780–788.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and Hidden Markov Models to letter-to-phoneme
conversion. In Proceedings of NAACL HLT 2007,
pages 372–379.

Jackson L. Lee, Lucas F. E. Ashby, M. Elizabeth Garza,
Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
McCarthy, and Kyle Gorman. 2020. Massively mul-
tilingual pronunciation mining with WikiPron. In
Proceedings of the 12th Conference on Language Re-
sources and Evaluation (LREC 2020), pages 4223–
4228.

Peter Makarov and Simon Clematide. 2018a. Imita-
tion learning for neural morphological string trans-
duction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2877–2882.

Peter Makarov and Simon Clematide. 2018b. Neu-
ral transition-based string transduction for limited-
resource setting in morphology. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 83–93.

Peter Makarov and Simon Clematide. 2018c. UZH at
CoNLL-SIGMORPHON 2018 shared task on uni-
versal morphological reinflection. In Proceedings of
the CoNLL-SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection, pages 69–75.

Peter Makarov and Simon Clematide. 2020. CLUZH
at SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. In Proceed-
ings of the Seventeenth SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology, pages 171–176.

Josef R. Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2012. WFST-based grapheme-to-phoneme
conversion: Open source tools for alignment, model-
building and decoding. In Proceedings of the 10th
International Workshop on Finite State Methods and
Natural Language Processing, pages 45–49.

Josef Robert Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2015. Phonetisaurus: Exploring garpheme-
to-phoneme conversion with joint n-gram models in
the WFST framework. Natural Language Engineer-
ing, 22(6):907–938.

Ben Peters and André F. T. Martins. 2020. DeepSPIN
at SIGMORPHON 2020: One-size-fits-all multilin-
gual models. In Proceedings of the Seventeenth SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
63–69.

Kanishka Rao, Fuchun Peng, Haşim Sak, and
Françoise Beaufays. 2015. Grapheme-to-phoneme
conversion using long short-term memory recurrent
neural networks. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4225–4229.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Shubham Toshniwal and Karen Livescu. 2016. Jointly
learning to align and convert graphemes to
phonemes with neural attention models. In
2016 IEEE Spoken Language Technology Workshop
(SLT), pages 76–82.

Rebecca Treiman. 1994. To what extent do ortho-
graphic units in print mirror phonological units in
speech? Journal of Psycholinguistic Research,
23(1):91–110.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukaaz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Conference
on Neural Information Processing Systems (NIPS
2017), pages 1–11.

Kaili Vesik, Muhammad Abdul-Mageed, and Miikka
Silfverberg. 2020. One model to pronounce them
all: Multilingual grapheme-to-phoneme conversion
with a Transformer ensemble. In Proceedings of the

https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.1016/j.specom.2008.01.002
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.18653/v1/2020.sigmorphon-1.7
https://doi.org/10.18653/v1/2020.sigmorphon-1.7
https://doi.org/10.21437/Interspeech.2016-1419
https://doi.org/10.21437/Interspeech.2016-1419
https://www.aclweb.org/anthology/N10-1112
https://www.aclweb.org/anthology/N10-1112
https://www.aclweb.org/anthology/N10-1112
https://www.aclweb.org/anthology/P10-1080
https://www.aclweb.org/anthology/N07-1047
https://www.aclweb.org/anthology/N07-1047
https://www.aclweb.org/anthology/N07-1047
https://www.aclweb.org/anthology/2020.lrec-1.521
https://www.aclweb.org/anthology/2020.lrec-1.521
https://doi.org/10.18653/v1/D18-1314
https://doi.org/10.18653/v1/D18-1314
https://doi.org/10.18653/v1/D18-1314
https://www.aclweb.org/anthology/C18-1008
https://www.aclweb.org/anthology/C18-1008
https://www.aclweb.org/anthology/C18-1008
https://doi.org/10.18653/v1/K18-3008
https://doi.org/10.18653/v1/K18-3008
https://doi.org/10.18653/v1/K18-3008
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://www.aclweb.org/anthology/W12-6208
https://www.aclweb.org/anthology/W12-6208
https://www.aclweb.org/anthology/W12-6208
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.18653/v1/2020.sigmorphon-1.4
https://doi.org/10.18653/v1/2020.sigmorphon-1.4
https://doi.org/10.18653/v1/2020.sigmorphon-1.4
https://doi.org/10.1109/ICASSP.2015.7178767
https://doi.org/10.1109/ICASSP.2015.7178767
https://doi.org/10.1109/ICASSP.2015.7178767
https://doi.org/10.1109/34.682181
https://doi.org/10.1109/34.682181
https://doi.org/10.1109/SLT.2016.7846248
https://doi.org/10.1109/SLT.2016.7846248
https://doi.org/10.1109/SLT.2016.7846248
https://doi.org/10.1007/BF02143178
https://doi.org/10.1007/BF02143178
https://doi.org/10.1007/BF02143178
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.sigmorphon-1.16
https://doi.org/10.18653/v1/2020.sigmorphon-1.16
https://doi.org/10.18653/v1/2020.sigmorphon-1.16

140

Seventeenth SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 146–152.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-to-
phoneme conversion. In Proceedings of Interspeech
2015, pages 3330–3334.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2019. Transformer based grapheme-to-
phoneme conversion. In Proceedings of Interspeech
2019, pages 2095–2099.

https://www.isca-speech.org/archive/interspeech_2015/i15_3330.html
https://www.isca-speech.org/archive/interspeech_2015/i15_3330.html
https://www.isca-speech.org/archive/interspeech_2015/i15_3330.html
https://doi.org/10.21437/Interspeech.2019-1954
https://doi.org/10.21437/Interspeech.2019-1954

