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Abstract

Lexical complexity plays an important role
in reading comprehension. lexical complex-
ity prediction (LCP) can not only be used as
a part of Lexical Simplification systems, but
also as a stand-alone application to help peo-
ple better reading. This paper presents the win-
ning system we submitted to the LCP Shared
Task of SemEval 2021 that capable of deal-
ing with both two subtasks. We first per-
form fine-tuning on numbers of pre-trained
language models (PLMs) with various hyper-
parameters and different training strategies
such as pseudo-labelling and data augmenta-
tion. Then an effective stacking mechanism is
applied on top of the fine-tuned PLMs to ob-
tain the final prediction. Experimental results
on the Complex dataset show the validity of
our method and we rank first and second for
subtask 2 and 1.

1 Introduction

Lexical complexity is one of the main reasons lead-
ing to overall text complexity and thus result in
poor reading comprehension for readers (DuBay,
2004). Different from the Complex Word Identifi-
cation (CWI) (Shardlow, 2014) task, which aims
to predict whether a given word is complex or not,
the goal of lexical complexity prediction (LCP)
is to predict the complexity value of the given parts
from contexts as shown in Figure 1. The under-
lined parts of the sentence are the words that need
to be predicted and the same words in different con-
texts may have different complexity scores. LCP
plays an important role in the usual Lexical Sim-
plification (LS) (Bott et al., 2012) pipeline since
it can help simplifiers find the challenging words
and replace them with appropriate alternatives that
easy to understand. Either LCP or CWI can not
only be used as a component of LS systems but
also as a stand-alone application within intelligent

Multi-words

Context1:

SEM confirmed many of the 

observations made by confocal 

microscopy.

Complexity score: 0.64473

Context2:

SJ and SVJ carried out confocal 

microscopy on whole-mounts 

of stria vascularis.

Complexity score: 0.7750

Single word

Context1:

They shall be to you for a refuge 

from the avenger of blood.

Complexity score: 0.3475

Context2:

There will be a pavilion for a 

shade in the daytime from the 

heat, and for a refuge and for a 

shelter from storm and from rain.

Complexity score: 0.075

Figure 1: Examples of LCP including single words and
multi-words. The complexity score is the score for the
underlined words.

tutoring systems for second language learners or in
reading devices for people with low literacy skills
(Gooding and Kochmar, 2018).

In this paper, we introduce our system for the
lexical complexity prediction task of the SemEval-
2021 (Matthew et al., 2021). We fulfill this task by
leveraging multiple pre-trained language models
(PLM) with different training strategies. There
are two main steps for our system: (i) fine-tuning
numbers of heterogeneous PLMs, including BERT
(Devlin et al., 2019), ALBERT (Lan et al., 2019),
RoBERTa (Liu et al., 2019) and ERNIE (Zhang
et al., 2019), with various hyperparameters and
training strategies, obtaining diverse models; (ii)
applying an effective stacking mechanism on top of
these PLMs to predict the final complexity scores.

Our experiments, merging PLMs in total, indi-
cate that our method successfully utilizes weaker
PLMs as well as high-performing PLMs. As a re-
sult, our system ranks second and first for Subtask
1 and 2 of LCP 2021, SemEval-2021.

2 Related Work

2.1 Lexical Complexity Prediction

There has been some work for the creation and
evaluation of automatically graded vocabulary lists



579

Bible River There came up out of river seven ...[CLS] [SEP]
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Figure 2: The overall architecture for predicting complexity scores.

for analyzing lexical complexity. François et al.
(2014) present the first graded lexicon for French
as a foreign language that reports word frequen-
cies by difficulty level and Gala et al. (2014) train
two SVM classifiers with 49 features, one for L1
learners and one for learners of French as a foreign
language. Alfter and Volodina (2018) map the use
of previously created word lists to a single CEFR
scale (Common European Framework of Reference
for Languages) (De l’Europe, 2003), then they add
topics as additional features to predict the com-
plexity level for learners of Swedish as a second
language. Shardlow et al. (2020) point out the lim-
itation of treating lexical complexity as a binary
classification task. Therefore, they present the first
English dataset for continuous lexical complexity
prediction and develop a linear regression-based
method with various features.

2.2 Complex Word Identification

A related area of LCP is CWI. Early studies on
CWI either attempt to simplify all words (Thomas
and Anderson, 2012) or set a frequency-based
threshold (Biran et al., 2011). Shardlow (2013)
indicates that a classification-based method to CWI
is the most promising one. Most of the teams partic-
ipating in two CWI shared tasks also use classifica-
tion approaches with extensive feature engineering.
In CWI 2016 (Paetzold and Specia, 2016a), com-
plexity was defined as whether or not a word is dif-
ficult to understand for non-native English speakers
and the words in the dataset are tagged as complex
or non-complex by 400 non-native English speak-
ers. The results highlight the effectiveness of Deci-
sion Trees (Quijada and Medero, 2016; Mukherjee
et al., 2016) and Ensemble methods (Paetzold and
Specia, 2016b; Malmasi et al., 2016) for the task.

In CWI 2018 (Yimam et al., 2018), a multilingual
dataset was provided containing English, German,
Spanish and French and there were two subtasks:
binary classification and probabilistic classifica-
tion. The submitted systems mainly use traditional
machine learning classifiers(e.g. SVM, Random
Forests) with features (Butnaru and Ionescu, 2018;
Kajiwara and Komachi, 2018), deep learning meth-
ods (Hartmann and Dos Santos, 2018; De Hertog
and Tack, 2018) and ensemble methods (Gooding
and Kochmar, 2018; Aroyehun et al., 2018). More
recently, (Gooding and Kochmar, 2019) propose a
new perspective by treating CWI as a sequence la-
beling task that can detect both complex words and
phrases. All these methods are different from ours
which utilizes heterogeneous PLMs with various
training strategies.

3 Background

Task Definition There are two subtasks in the
LCP task. For subtask 1, the goal is to predict the
complexity score for a single word from the given
context. As an example shown in Figure 1, the
‘refuge’ is the word that needs to be predicted and
since the meaning of it is harder to get in the first
context, its complexity score in the first context is
much higher. For subtask 2, the goal is to predict
the complexity score for a multi-word expression
from the given context. An example is also shown
in the right part of Figure 1.

Dataset Shardlow et al. (2020) introduce a new
English corpus, Complex, as the dataset for the
LCP task of SemEval-2021. Instead of assign-
ing binary scores for lexical complexity, they use
crowdsourcing to annotate 8979 instances covering
three genres with lexical complexity scores using
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Parameters BERTLARGE ALBERTXXLARGE RoBERTLARGE ERNIELARGE

batch size 16 16 16 16
learning rate 5e-6 5e-6 5e-6 5e-6
hidden layer 3 3 1, 3, 5 3, 5
dropout 0.2, 0.3 0.2, 0.3 0.2, 0.1; 0.2, 0.5;0.2, 0.3 0.2, 0.3; 0.2, 0.5
loss function MSE MSE RMSE, MSE, MAE MSE, MAE

Table 1: Parameter settings for different base models

a 5-point Likert scale: one for very easy, two for
easy, three for neutral, four for difficult, and five
for very difficult. The numerical labels were trans-
formed to a 0-1 range as shown in Figure 1. To
add further variation to the data, three corpora were
selected including Bible, Europarl (Koehn, 2005)
and Biomedical (Bada et al., 2012). Each corpus
has its own unique language features and styles. In
addition to single words, multi-word expressions
were also selected for annotating. In the end, there
were 9476 annotated contexts with 5166 unique
words.

4 System

4.1 PLMs-based Method

PLMs such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) use the encoder
structure of the Transformer (Vaswani et al., 2017)
for deep self-supervised learning, which requires
task-specific fine-tuning. In this paper, the down-
stream task is to predict the complexity scores, a
real-value in the range of [0,1], of given words.
Our method is capable of dealing with both subtask
1 and 2. Figure 2 shows the main architecture of
our BERT-based model for predicting complexity
scores.

Since PLMs can process multiple input sen-
tences, we add a query sentence before the context
to emphasize the words (e.g. river) that need to be
predicted and the corpus (e.g. Bible) they come
from. We add special tokens [CLS] and [SEP]
to separate the query and the context as shown in
Figure 2. BERT first tokenizes the input contents
and then generates contextualized vector represen-
tations for each token in multiple hidden layers.
We focus on the output of only the first position
that we passed the special [CLS] token to. The
last k hidden layers are selected to get the final
representation of token [CLS] through a weighted
calculation function as below,

x[CLS] =

k∑
i=1

Wix[CLS]i

where Wi is the learning weight for each hidden
layer. The calculated representation is then fed into
a dense layer, and the technique of multi-sample
dropout (Inoue, 2019) is utilized to accelerate train-
ing and finally obtain the predicted complexity
scores. The loss function can be chosen among sev-
eral options including Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Ab-
solute Error (MAE).

4.2 Training strategies

In order to further improve the diversity of trained
models, we incorporate two training strategies as
depicted below.

Pseudo-Labelling Pseudo-labelling is the pro-
cess of using a labeled data model to predict la-
bels for unlabeled data. We predict the unlabeled
test dataset and mix these pseudo labels with the
training set together to train the new model.

Data augmentation Data augmentation is the
technique used to increase the amount of data by
adding slightly modified copies of already existing
data or newly created synthetic data from existing
data. It acts as a regularizer and helps reduce over-
fitting when training a machine learning model. In
this paper, data augmentation consists of two parts.
We first add the dataset released by CWI 2018 into
the training set. Besides, for subtask 2, since its
training dataset is small which only contains one
thousand samples, we add the dataset of subtask
1 to train the model for subtask 2. Then, for a
given sentence in the training set, we perform the
operations containing synonym replacement, ran-
dom insertion, random swap, and random deletion
introduced by Wei and Zou (2019).

4.3 Stacking Trained Models

Model stacking is an efficient ensemble method to
improve model accuracy. The main procedure of
stacking trained models in our method including
five steps. First, we use heterogeneous PLMs in-
cluding BERT, RoBERTa, ALBERT, and ERNIE
as base models. Second, we generate multiple
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Scheme Model R Rho MAE MSE R2
Baseline Complexity average - - 0.1049 0.0189 0.0007

Log Frequency and Length 0.5376 0.5251 0.0867 0.0135 0.2864
BERT ERNIELARGE 0.7838 0.7321 0.0647 0.0069 0.6120

ALBERTXXLARGE 0.7850 0.7332 0.0644 0.0069 0.6115
BERTLARGE 0.7862 0.7296 0.0672 0.0073 0.5849
RoBERTaLARGE+PL 0.7770 0.7279 0.0656 0.0070 0.6023
RoBERTaLARGE+DA 0.7870 0.7432 0.0670 0.0078 0.5598
RoBERTaLARGE 0.7903 0.7356 0.0648 0.0068 0.6170

Table 2: Comparison of different pre-trained language models with training strategies of subtask 1

Scheme Model R Rho MAE MSE R2
Baseline Complexity average - - 0.1164 0.0219 0.0000

Log Frequency and Length 0.6249 0.6162 0.0900 0.0136 0.3807
BERT RoBERTaLARGE 0.7900 0.8002 0.0753 0.0092 0.6178

ALBERTXXLARGE+sub1 0.7901 0.7952 0.0755 0.00929 0.6157
RoBERTaLARGE+sub1 0.8101 0.8236 0.0715 0.0085 0.6498

Ensemble mean 0.8252 0.8343 0.0690 0.0079 0.6739
LR 0.8330 0.8348 0.0678 0.0074 0.6892

Table 3: Comparison of different pre-trained language models of subtask 2

hyperparameter sets by setting different values of
dropout, selecting different numbers of last hidden
layers, and using different loss functions. Since
our purpose here is not only to find the best hyper-
parameter sets but also to collect diverse sets with
reasonable performances, we keep all the training
results from different sets. Third, we perform 7-
fold cross-validation during the whole training pro-
cess to avoid overfitting or selection bias. Fourth,
we adopt several training strategies including us-
ing pseudo-labelling (Iscen et al., 2019) and data
augmentation to further improve the diversity of
trained models.

Ultimately, we train a simple linear regression
model as the final estimator. Suppose that the com-
plexity score predicted by a based model with one
hyperparameter set is ŷj , then the final complexity
scores will be calculated as below,

ŷ =
N∑
j=1

Wj ŷj

where N is the total number of various fine-tuned
PLMs with different hyperparameters sets and Wj

is the weight for each predicted score from different
PLMs learned by a linear regression model.

5 Experiments

5.1 Evaluation Metrics
As mentioned in the official evaluation procedure
of LCP 2021, several evaluation metrics are chosen
including Pearson correlation (R), Spearman cor-
relation (Rho), Mean absolute error (MAE), Mean

squared error (MSE), and R-squared (R2). The
final results are ranked using Pearson correlation.

5.2 Parameter settings
All models are implemented based on the open-
source transformers library of hugging face (Wolf
et al., 2020), which provides thousands of pre-
trained models that can be quickly downloaded
and fine-tuned on specific tasks. Table 1 shows the
four employed PLMs and different parameters we
set for each PLM including different numbers of
hidden layers, different dropout pairs, and different
loss functions.

6 Results

6.1 Ablation Study
PLMs with Training Strategies For subtask 1,
we use different PLMs including ERNIELARGE, AL-
BERTXXLARGE, BERTLARGE, RoBERTaLARGE as shown
in Table 2. The results are the average scores of 7-
fold cross-validation on the training dataset. Since
RoBERTaLARGE performs best on this task, we fur-
ther incorporate the training strategies including
pseudo-labelling (PL) and data augmentation (DA)
with it. However, for the training dataset, we find
that by adding the training strategies, the results
decrease a little bit.

For subtask2, we use two types of PLMs which
are RoBERTaLARGE and ALBERTXXLARGE. The re-
sults shown in Table 3 are also obtained by av-
eraging the scores of 7-fold cross-validation on the
training dataset. Since we have added the dataset of
subtask 1 into subtask 2, we also show the results
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Figure 3: Comparison of Pearson Correlation values
for stacking different models of subtask 1.

Subtask 1 Subtask 2
System R System R
qusaibanyismail 0.7886 DeepBlueAI 0.8612
DeepBlueAI 0.7882 rg pa 0.8575
amsqr 0.7790 xiang wen tian 0.8571
armand.rotaru 0.7782 andi gpu 0.8543
abdelkader 0.7779 ren wo xing 0.8541

Table 4: Leaderboard

of doing this in Table 3 and we can find that it is
very effective by increasing 0.02 from base models.

Stacking trained models We use a linear regres-
sion (LR) model to stack different pre-trained mod-
els. We train the weights of each model in LR on
the training set and then use the learning weights
to predict the final scores of the test set.

Figure 3 shows the comparison of Pearson Cor-
relation values for stacking different models of sub-
task 1. The columns in blue are the values com-
puted by averaging predicted scores of different
models while the columns in orange are the values
through the LR function. We can clearly observe
that the LR-based ensemble method outperforms
those with the mean-based method, which verifies
the validity of using the LR mechanism. Besides,
although we find that adding training strategies
to the base models would decrease performance
according to Table 2, the performance will be im-
proved when stacking them all. This indicates the
positive effect of increasing model diversity.

6.2 Official Ranking

For both subtask 1 and subtask 2, among all the
pre-submission experiments, we find that the scores
obtained from stacking all the models performed
best. The official ranking is presented in Table 4
and it demonstrates that our system is ranked first
in subtask 2 and ranked second in subtask 1.

7 Conclusion

In this paper, we propose a top-performing model
for the task of lexical complexity prediction. We
fine-tune several pre-trained language models in-
cluding BERT, ALBERT, RoBERTa, and ERNIE
with different training strategies such as pseudo-
labelling and data augmentation and stack them
with a simple linear regression model. Experimen-
tal results show the effectiveness of this ensemble
method and we win first place and second place for
subtask 2 and 1.
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prédire la complexité lexicale et graduer les mots)[in
french]. In Proceedings of TALN 2014 (Volume 1:
Long Papers), pages 91–102.

Sian Gooding and Ekaterina Kochmar. 2018. Camb at
cwi shared task 2018: Complex word identification
with ensemble-based voting. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 184–194.

Sian Gooding and Ekaterina Kochmar. 2019. Complex
word identification as a sequence labelling task. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1148–
1153.

Nathan Hartmann and Leandro Borges Dos Santos.
2018. Nilc at cwi 2018: Exploring feature engi-
neering and feature learning. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 335–340.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and
Ondrej Chum. 2019. Label propagation for deep
semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5070–5079.

Tomoyuki Kajiwara and Mamoru Komachi. 2018.
Complex word identification based on frequency in
a learner corpus. In Proceedings of the thirteenth
workshop on innovative use of NLP for building ed-
ucational applications, pages 195–199.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised

learning of language representations. In Interna-
tional Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Shervin Malmasi, Mark Dras, and Marcos Zampieri.
2016. Ltg at semeval-2016 task 11: Complex word
identification with classifier ensembles. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 996–1000.

Shardlow Matthew, Evans Richard, Paetzold Gustavo,
and Zampieri Marcos. 2021. Semeval2021 task 1 :
Lexical complexity prediction.

Niloy Mukherjee, Braja Gopal Patra, Dipankar Das,
and Sivaji Bandyopadhyay. 2016. Ju nlp at semeval-
2016 task 11: Identifying complex words in a sen-
tence. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 986–990.

Gustavo Paetzold and Lucia Specia. 2016a. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569.

Gustavo Paetzold and Lucia Specia. 2016b. Sv000gg at
semeval-2016 task 11: Heavy gauge complex word
identification with system voting. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation (SemEval-2016), pages 969–974.

Maury Quijada and Julie Medero. 2016. Hmc at
semeval-2016 task 11: Identifying complex words
using depth-limited decision trees. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 1034–1037.

Matthew Shardlow. 2013. A comparison of techniques
to automatically identify complex words. In 51st
Annual Meeting of the Association for Computa-
tional Linguistics Proceedings of the Student Re-
search Workshop, pages 103–109.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1583–1590.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. Complex: A new corpus for lexical
complexity predicition from likert scale data. In 1st
Workshop on Tools and Resources to Empower Peo-
ple with REAding DIfficulties (READI) PROCEED-
INGS Edited by Nuria Gala and Rodrigo Wilkens,
page 57.

S Rebecca Thomas and Sven Anderson. 2012.
Wordnet-based lexical simplification of a document.
In KONVENS, pages 80–88.



584

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6383–6389.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo Paetzold, Lucia Specia, Anaı̈s Tack, and
Marcos Zampieri. 2018. A report on the complex
word identification shared task 2018. In Proceed-
ings of the 13th Workshop on Innovative Use of
NLP for Building Educational Applications (NAACL
2018 Workshops), pages 66–78. Association for
Computational Linguistics; Stroudsburg,.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451.


