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Message from the Program Chairs

Welcome to the Second Workshop on Scholarly Document Processing (SDP) at NAACL 2021.

Next to keeping up with the growing literature in their own and related fields, scholars increasingly
also need to rebut pseudo-science and disinformation. To address this challenge, computational work
on enhancing search, summarization, and analysis of scholarly documents has flourished. However, the
various strands of research on scholarly document processing remain fragmented. To reach to the broader
NLP and AI/ML community, pool distributed efforts and enable shared access to published research,
we held the 2nd Workshop on Scholarly Document Processing at NAACL 2021. The SDP workshop
consisted of a research track and three Shared Tasks, geared towards easier access to scientific methods
and results. https://sdproc.org/2021/
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Determining the Credibility of Science Communication

Isabelle Augenstein
Dpt. of Computer Science
University of Copenhagen
augenstein@di.ku.dk

Abstract

Most work on scholarly document processing
assumes that the information processed is trust-
worthy and factually correct. However, this
is not always the case. There are two core
challenges, which should be addressed: 1) en-
suring that scientific publications are credible
– e.g. that claims are not made without sup-
porting evidence, and that all relevant support-
ing evidence is provided; and 2) that scientific
findings are not misrepresented, distorted or
outright misreported when communicated by
journalists or the general public. I will present
some first steps towards addressing these prob-
lems and outline remaining challenges.

1 The Life Cycle of Scientific Research

Scientific research is highly diverse not just when it
comes to the topic of study, but also how studies are
conducted, how the resulting research is described
and when and where it is published. However, what
different fields still have in common is a certain life
cycle, starting with planning a study and ending
with promoting the research post-publication, in the
hopes of the article finding readership and having
an impact.

Scholary document processing aims to support
researchers throughout this life cycle of scientific
research, by offering various tools to automate oth-
erwise manual processes. Most research within
scholarly document processing has focused on sup-
porting information discovery for finding related
work. Most prominently, research has focused on
methods to condense scientific documents, using
entity extraction and linking, keyphrase or relation
extraction (Augenstein et al., 2017; Augenstein and
Søgaard, 2017; Wright et al., 2019; Gábor et al.,
2018; Ammar et al., 2018) or automatic summari-
sation (Collins et al., 2017; Yasunaga et al., 2019).

Once papers are written and submitted for peer
review, it is pertinent to evaluate them fairly and
objectively. This process is far from straight-

forward, as, among others, reviewers have cer-
tain biases, including against truly novel research
(Rogers and Augenstein, 2020; Bhattacharya and
Packalen, 2020). Research has thus focused on
automatically generating peer reviews from paper
content (Wang et al., 2020), as well as on studying
how well review scores can be predicted from re-
view texts (Kang et al., 2018; Plank and van Dalen,
2019).

Finally, post-publication, the impact of scientific
work can be tracked, using citations and citation
counts as a proxy for this. It is again worth noting
that there are significant biases in this – e.g. author
information is among the, if not the most salient
feature for predicting citation counts (Yan et al.,
2011; Holm et al., 2020). Looking further into what
papers are cited and why, Mohammad (2020b,a)
find that there are significant topical as well as
gender biases when it comes to who is cited and by
whom.

2 Credibility and Veracity of Science
Communication

While all of the work referenced above is important
in supporting researchers, it neglects one crucial
aspect, namely that it assumes the resulting scien-
tific documents and broader communication about
them are credible and supported by the underlying
evidence. Though it is the task of peer reviewers
to spot issues regarding credibility, and the task of
journalists to check their sources when they report
on scientific studies, distortions, exaggerations and
outright misrepresentations can still happen.

The ongoing COVID-19 pandemic has high-
lighted the disastrous and direct consequences mis-
reporting of scientific findings can have on our
everyday lives, yet, there is still relatively little
work on detecting issues in the credibility of sci-
entific writing. This especially holds for detecting
smaller nuances of untrustworthy scientific writing,
whereas there is comparatively more work on de-
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Biology
Wood Frogs (Rana sylvatica) are a charismatic species of frog common in much of North America. They
breed in explosive choruses over a few nights in late winter to early spring. The incidence in Wood Frogs
was associated with a die-off of frogs during the breeding chorus in the Sylamore District of the Ozark
National Forest in Arkansas (Trauth et al., 2000).

Computer Science
Land use or cover change is a direct reflection of human activity, such as land use, urban expansion, and
architectural planning, on the earth’s surface caused by urbanization [1]. Remote sensing images are
important data sources that can efficiently detect land changes. Meanwhile, remote sensing image-based
change detection is the change identification of surficial objects or geographic phenomena through the
remote observation of two or more different phases [2].

Table 1: Excerpts from training samples in CITEWORTH (Wright and Augenstein, 2021) from the Biology and
Computer Science fields. Green sentences are cite-worthy sentences, from which citation markers are removed
during dataset construction.

tecting outright scientific misinformation (Vijjali
et al., 2020; Lima et al., 2021).

Here, we highlight two important and so far
understudied tasks to address issues with such
smaller nuances of untrustworthy scientific writ-
ing, which can come into play at different stages
of the life cycle of scientific research. The first
one is cite-worthiness detection, which is about de-
tecting whether or not a sentence ought to contain
a citation to prior work. This task could help to
ensure that claims are not made without supporting
evidence, i.e. support researchers in writing more
trustworthy scientific publications.

The second task is exaggeration detection, which
is to determine whether a statement describing the
findings of a scientific study exaggerates them, e.g.
by claiming that two variables are strongly cor-
related when in reality they only co-occur. We
argue that this task could be useful to verify if
popular science reporting faithfully describes sci-
entific research, or also to determine whether cita-
tion sentences (sentences which contain a citation;
also called citances) faithfully describe the research
documented in the cited papers.

2.1 Cite-Worthiness Detection

The CITEWORTH Dataset To study cite-
worthiness detection, we first introduce a new rig-
orously curated dataset, CITEWORTH (Wright and
Augenstein, 2021), for cite-worthiness detection
from scientific articles. It is created from S2ORC,
the Semantic Scholar Open Research Corpus (Lo
et al., 2020). CITEWORTH consists of 1.2M sen-
tences, balanced across 10 diverse scientific fields.
While others have studied this task for few and/or
narrow domains (Sugiyama et al., 2010; Färber

et al., 2018), and have also studied very related
tasks, such as claim check-worthiness detection
(Wright and Augenstein, 2020a) or citation recom-
mendation (Jürgens et al., 2018), this is the largest
and most diverse dataset for this task to date.

An excerpt of our introduced dataset, CITE-
WORTH can be found in Table 1. The dataset
curation process involves: 1) data filtering, to iden-
tify credible papers with relevant metadata such
as venue information; 2) citation span identifica-
tion and masking, of which we only keep papers
with citation spans at the end of sentences to avoid
rendering sentences ungrammatical; 3) discarding
paragraphs without citations, or where not all sen-
tences have citation spans in accordance with our
heuristics; 4) evenly sampling paragraphs, such
that the resulting dataset is equally balanced for
the domains of Biology, Medicine, Engineering,
Chemistry, Psychology, Computer Science, Materi-
als Science, Economics, Mathematics, and Physics.

Given this dataset, we then study: how cite-
worthy sentences can be detected automatically; to
what degree there are domain shifts between how
different fields use citations; and if cite-worthiness
data can be used to perform transfer learning to
downstream scientific text tasks.

Methods for Cite-Worthiness Detection We
find that the best performance can be achieved by a
Longformer-based model (Beltagy et al., 2020),
which encodes entire paragraphs in papers and
jointly predicts cite-worthiness labels for each of
the sentences contained in the paragraph. Addi-
tional gains in recall can be achieved by using
positive unlabelled learning, as documented in
Wright and Augenstein (2020a) for the related task
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Exaggerated Claims
Press Release: Players of the game rock paper scissors subconsciously copy each other’s hand shapes,
significantly increasing the chance of the game ending in a draw, according to new research.

Abstract: Specifically, the execution of either a rock or scissors gesture by the blind player was predictive
of an imitative response by the sighted player.

Exaggerated Advice
Press Release: Parents should dilute fruit juice with water or opt for unsweetened juices, and only allow
these drinks during meals.

Abstract: Manufacturers must stop adding unnecessary sugars and calories to their FJJDS.

Table 2: Examples of exaggerated claims and exaggerated advice given in press releases about scientific papers.

of claim check-worthiness detection. Our best-
performing model outperforms baselines such as a
carefully fine-tuned SciBERT (Beltagy et al., 2019)
by over 5 points in F1.

Domain Differences To study domain effects,
we perform a cross-evaluation, where we hold out
one domain for testing and evaluate model per-
formance on that, and compare this against an in-
domain evaluation setting, where all domains ob-
served at test time are also observed at training
time. We find that there is a high variance in the
maximum performance for each field (σ = 3.32),
and between different fields on the same test data,
despite large pretrained Transformer models being
relatively invariant across domains (Wright and Au-
genstein, 2020b). This suggests stark differences
in how different fields employ citations.

Downstream Applicability We evaluate our
models on downstream scientific document pro-
cessing tasks from Beltagy et al. (2019), which can
be grouped into: named entity recognition tasks;
relation extraction tasks; and text classification
tasks. Specifically, we use our best-performing
model, pre-trained for cite-worthiness detection
and masked language modelling, and fine-tune
them for 10 different downstream tasks. We find
that improvements over the state of the art can be
achieved for two citation intent classification tasks.

2.2 Exaggeration Detection
We frame exaggeration detection in the context of
popular science communication. Specifically, we
ask the question: how can one automatically de-
tect if popular science articles overstate the claims
made in scientific articles?

Prior work has shown that exaggeration of find-
ings of scientific articles is highly prevalent (Sum-

ner et al., 2014; Bratton et al., 2019; Woloshin
et al., 2009; Woloshin and Schwartz, 2002). Exag-
geration can mean a sensationalised take-away of
the applicability of the work in terms, i.e. giving
advice for which there is no scientific basis. More-
over, the strength of the main causal claims and
conclusions of a paper can be exaggerated. Table 2
shows examples of those two types of claims from
the datasets curated by Sumner et al. (2014) and
Bratton et al. (2019), which we use in our work.

Prior work (Yu et al., 2019, 2020; Li et al., 2017)
uses datasets based on PubMed abstracts and paired
press releases from EurekAlert.1 Their core limi-
tations of is that they are limited to only observa-
tional studies from PubMed, which have structured
abstracts, which strongly simplifies the task of iden-
tifying the main claims of a paper. This also holds
for the test settings they consider, meaning that the
proposed models have a limited applicability.

By contrast, we study how to best identify exag-
gerated claims in popular science communication
in the wild, without highly curated data with anno-
tations about core claims. This represents a more
realistic experimental setup, which is more suited
to supporting downstream use cases such as flag-
ging exaggerated popular news articles as well as
exaggerated summaries of scientific papers as ref-
erenced in other scientific papers.

Our method is a semi-supervised approach,
which first identifies sentences containing claims in
both scientific articles and popular science commu-
nication within the medical domain, then identifies
the main conclusion of both articles, and lastly
predicts to what degree popular science articles
exaggerate those findings. We further analyse to
what degree exaggeration of findings is correlated

1https://www.eurekalert.org/
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with the perceived media bias of popular science
communication outlets.

3 Conclusion

This paper discusses research avenues for automat-
ically determining the credibility of science com-
munication, both in terms of scientific papers and
popular science communication. These avenues
are put in the context of scholarly data processing
more broadly, and how different tasks can be used
to assist the life cycle of scientific research. While
existing research has focused on developing mod-
els for assisting with information discovery, peer
review and citation tracking, comparatively little
work has been done on identifying non-credible
claims and assisting authors in making sure their
research is backed up by sufficient evidence where
needed. The suggestion is therefore to focus on
two tasks: cite-worthiness detection, to identify
sentences requiring citations; and exaggeration de-
tection, to identify cases in which scientific find-
ings have been overstated. A core problem for both
tasks is the lack of appropriate training data, which
we address by introducing a new dataset, and a
semi-supervised learning method, respectively. We
hope our research will inspire future work on de-
veloping tools to assist authors and journalists in
ensuring that research is described in a credible and
evidence-based way.
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Abstract

One of the challenges in information re-
trieval (IR) is the vocabulary mismatch prob-
lem, which happens when the terms between
queries and documents are lexically differ-
ent but semantically similar. While recent
work has proposed to expand the queries or
documents by enriching their representations
with additional relevant terms to address this
challenge, they usually require a large vol-
ume of query-document pairs to train an ex-
pansion model. In this paper, we propose
an Unsupervised Document Expansion with
Generation (UDEG) framework with a pre-
trained language model, which generates di-
verse supplementary sentences for the origi-
nal document without using labels on query-
document pairs for training. For generating
sentences, we further stochastically perturb
their embeddings to generate more diverse sen-
tences for document expansion. We validate
our framework on two standard IR benchmark
datasets. The results show that our framework
significantly outperforms relevant expansion
baselines for IR.

1 Introduction

Information retrieval (IR) is the task of retriev-
ing the most relevant documents, including sci-
entific ones (Boudin et al., 2020; Noh and Kavu-
luru, 2020), for a given query. IR systems have
received considerable attention as they are not
only required to search documents for informa-
tion, but are also used as a core component in vari-
ous downstream language understanding tasks such
as open-domain question answering (Seo et al.,
2019; Qu et al., 2020), fact verification (Thorne
et al., 2018; Li et al., 2020) and information extrac-
tion (Narasimhan et al., 2016; Das et al., 2020).

As the simplest approach to IR tasks, classical
term-based ranking models, such as BM25 (Robert-
son et al., 1994) and Query Likelihood (QL) mod-

∗ Corresponding author

els (Zhai and Lafferty, 2017), have been widely
used. These term-based ranking models measure
the lexical overlaps between query and document
pairs using a sparse representation of words, to
match the relevant documents for the given query.
Notwithstanding their simplicity, they achieve de-
cent performances, even compared to the recent
dense representation models (Lin, 2019; Xiong
et al., 2020), which require a large number of paired
query-document samples. However, these term-
based sparse models are intrinsically vulnerable
to the vocabulary mismatch problem, which hap-
pens when a query and its relevant document are
lexically divergent.

Thus, we should address the limitations of both
sparse and dense models, about the vocabulary mis-
match problem and the need for a large amount of
training data, respectively. Along this line, there
are methods that expand queries and documents
with their relevant terms. They include document
expansion methods (Nogueira et al., 2019; Boudin
et al., 2020) that introduce additional context-
related terms to given documents and query ex-
pansion methods (Mao et al., 2020; Claveau, 2020)
that augment given queries with additional terms.
By doing so, we can explicitly generate lexically
richer documents or queries.

Compared with query expansion, document ex-
pansion has two strengths. First, a document expan-
sion model can generate much more relevant terms
for the given document, since documents are gen-
erally much longer than queries. Also, documents
can be expanded during indexing time so that the
responding process for the user’s query is not de-
layed, in contrast to queries that must be expanded
during retrieval time. Thus, document expansion is
more appropriate for a real-time system, together
with making available more context-related words
from the given information (Nogueira et al., 2019).

In this work, we focus on document expansion,
and propose to abstractly generate the key infor-
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Q:	Why	do	some	people	
take	life	so	seriously?

UDEG

Original	Document
Generated	Text

User’s	Query

+

Not	Retrieved Retrieved

Indexing Indexing

IR	System IR	System

Many	people	 think	 they	have	to	work	
hard	to	get	to	where	they	want	to	be	in	
order	to	enjoy	life.

Because	they	think	there	is	
some	big	goal	they	have	to	get	
to	before	 they	can	relax	
(retirement,	millionaire	 ,	etc...)	
and	they	forget	about	enjoying	
life	...

Many	of	us	think	 that	life	is	too	short...

In	our	 series	of	letters	from	you,	we	
look	at	some	of	the	things	you	do	to	
make	your	life	better.

Figure 1: The overall framework of our Unsupervised Document Expansion with Generation (UDEG), where
the example is generated from our framework. Given an original document (green box), our UDEG framework
stochastically generates several sentences (orange box) relevant to the given document, and augments the generated
sentences to the input document to improve its expressiveness. After every document in the corpus is expanded,
documents are indexed in the IR system, and searched in response to the given query.

mation corresponding to the given document in
an unsupervised manner, henceforth referred to as
Unsupervised Document Expansion with Genera-
tion (UDEG). We first generate document-related
sentences using a pre-trained language model, and
then stack up the newly generated sentences on the
original documents to enrich the expressiveness of
document representation. Specifically, in order to
generate sentences containing particular informa-
tion for the documents, we use a language model
that is already trained for summarizing sentences
from a sufficient amount of texts. However, such a
scheme generates only one static sentence at a time,
so we further propose to stochastically generate
multiple relevant sentences for the given document.
This helps the proposed UDEG framework to mini-
mize the vocabulary mismatch cases by generating
many relevant words, which reflect diverse points
of view for the given document. The overall UDEG
framework is illustrated in Figure 1.

We experimentally validate the proposed UDEG
framework on standard benchmark datasets for IR
tasks, ANTIQUE (Hashemi et al., 2020) and MS
MARCO (Nguyen et al., 2016), with five different
evaluation metrics. The experimental results show
that our framework outperforms all baselines on
all evaluation metrics by a large margin. Also, a
detailed analysis of UDEG shows that its stochas-
tic generation significantly improves the IR perfor-
mances, and that our UDEG framework does not
depend on specific language models for generation.

Our contributions in this work are threefold:

• To mitigate the vocabulary mismatch prob-
lem, we present a novel document expansion
framework that augments the document with
abstractly generated sentences without using
paired query-document data for training.

• Under an unsupervised document expansion
framework, we generate document-related
sentences with a pre-trained language model,
and further stochastically perturb the embed-
dings for more diverse sentences.

• We show that our framework achieves out-
standing performances on benchmark datasets
for IR tasks with various evaluation metrics.

2 Related work

Information Retrieval A two-stage pipeline is
the most prominent approach for IR. This pipeline
first retrieves query-relevant documents with their
sparse representations, and then re-ranks them by
using neural networks (Mitra and Craswell, 2018;
Nogueira et al., 2019, 2020). In this two-stage
pipeline, the overall performance is critically de-
pendent on the first retrieval stage, since the failure
of the retrieval stage would highly affect the sec-
ond re-ranking stage. Therefore, this bottleneck on
the first stage has to be addressed for performance
enhancement (Karpukhin et al., 2020). BM25 and
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query likelihood (QL) are the most popular ad-
hoc retrieval models for the first stage (Nogueira
et al., 2019; Boudin et al., 2020; Tang and Arnold,
2020). More recently, instead of using sparse mod-
els, methods of using dense representations have
been proposed (Karpukhin et al., 2020; Xiong et al.,
2020; Qu et al., 2020), which can help alleviate
the vocabulary mismatch problem through a dense
representation space. However, recent work has
revealed the limitations on their performance and
efficiency (Lin, 2019; Xiong et al., 2020; Luan
et al., 2020). Furthermore, these dense represen-
tation methods are based on supervised learning,
where pairs of query and related-document are usu-
ally required to ensure reasonable performance.

Query / Document Expansion Query and doc-
ument expansions have been widely used in IR
systems. In terms of query expansion, Jaleel et al.
(2004) proposed pseudo relevance feedback (RM3),
which is revisited in more recent work (Dibia,
2020; Mao et al., 2020) for its strength. There
are also methods that expand queries using gener-
ation schemes (Mao et al., 2020; Claveau, 2020).
However, query expansion suffers from its intrin-
sic drawbacks, as queries need to be manipulated
during the retrieval phase and have relatively less
information than documents (Nogueira et al., 2019).
Thus, we take the alternative route: expanding
documents. Nogueira et al. (2019) and Tang and
Arnold (2020) proposed to expand documents with
generated text using a supervised model trained
on query-document pairs. In contrast, our frame-
work generates document-related sentences regard-
less of the existence of the corresponding query.
Boudin et al. (2020) proposed to expand docu-
ments with sequence-to-sequence models which
output keyphrases; however, their models have to
be trained from scratch on a specific domain.

Document-relevant Text Generation In order
to enrich the given document efficiently with the
document-relevant text, such text should contain
the document’s key context which can appear in the
summarized sentence. Earlier, Erkan and Radev
(2004) and Mihalcea and Tarau (2004) proposed
unsupervised models of extracting key sentences,
which are adopted in various recent work for their
robustness (Nikolov and Hahnloser, 2020a; Zhang
et al., 2020b; Kazemi et al., 2020). In contrast, an
abstractive approach aims at generating summa-
rized sentences containing novel terms that might

not exist in the given document (Zhang et al.,
2020a; Yang et al., 2020). Nikolov and Hahnloser
(2020b) proposed to first extract the key sentences
and then paraphrase them with back-translation.
Recent work has reported that the improved per-
formance of text summarization approaches is at-
tributed to the pre-trained language models (Zhang
et al., 2020a; Lewis et al., 2020; Xu et al., 2020).
In this work, we aim at abstractly generating a
document-related sentence with a pre-trained lan-
guage model and further propose to diversely gen-
erate sentences with stochastic perturbation, not
just using a single summarized sentence.

3 Method

Our goal is to expand the document for IR tasks by
generating document-related text, which contains
novel but semantically similar terms for the given
document without using query-document pairs. In
this section, we describe formal description of the
IR task.

3.1 Preliminaries

We begin with a formal description of the IR task,
and then introduce a document expansion scheme.

Information Retrieval The objective of an IR
task is to retrieve the most relevant document
d ∈ D for the given query q ∈ Q, where Q
and D indicate query and document set, respec-
tively. Note that the query and document pair can
be represented as either sparse (Robertson et al.,
1994; Zhai and Lafferty, 2017) or dense (Lin, 2019;
Xiong et al., 2020), which gives rise to different
implementation details.

Suppose that we are given a query-document
pair (q,d) in the correct query-document set τ :
(q,d) ∈ τ , where τ ⊂ Q × D. Then, the system
should retrieve the most relevant document d for
the given query q in the correct query-document
set τ , denoted as follows:

max
∑

(q,d)∈τ
f(q,d), (1)

where f : Q×D → R is a score function that mea-
sures the similarity of the correct query-document
pairs, to retrieve the most relevant document for
the given but unseen query at test time.

Document Expansion While an IR system can
work alone as in Equation 1 by using either sparse
or dense representations for queries and documents,
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Document (Input): Because they think there is some big
goal they have to get to before they can relax (retirement,
millionaire, etc...) and they forget about enjoying life ...

Ext (Output): relax (retirement, millionaire , etc...)
Abs (Output): Many people think they have to work
hard to get to where they want to be in order to enjoy life.
Abs + S (Output): 1) Many people think they have to
work hard to get to where they want to be in order to
enjoy life.
2) Many of us think that life is too short...
3) In our series of letters from you, we look at some of
the things you do to make your life better.

Table 1: Examples of the generated text from differ-
ent text-generation schemes. Generated terms are ap-
pended to the input document before indexing them for
the IR system. Ext and Abs denote the extractive and
abstractive generation, respectively. Also, + S symbol
denotes the stochastic generation.

we need to deal with the vocabulary mismatch
problem, which happens when the terms between
queries and documents are lexically different but se-
mantically related. To address this problem, we fo-
cus on the document expansion scheme, which aug-
ments the document with relevant terms to make a
richer document.

Formally, the goal of document expansion is to
generate semantically relevant terms t = [ti]

K
i=1

for the given document d ∈ D, denoted as follows:

[ti]
K
i=1 = g(d;θ), (2)

where K is the number of terms associated with
each document d and g is the document expan-
sion model parameterized by θ. After generat-
ing relevant terms t = [ti]

K
i=1 for the document,

we concatenate them with the original document
d to construct the more meaningful document-
representation d̄, denoted as follows:

d̄ = [t⊕ d] , (3)

where ⊕ is the concatenation operation.
By expanding relevant terms to the given doc-

ument with the generation model g, the similar-
ity between the query q and expanded document
d̄ becomes stronger than the similarity between
query q and original document d, as follows:
f(q,d) ≤ f(q, d̄). In order to maximize the simi-
larity score between q and d̄, we need the model
g that generates document-related terms without
using labels of query-document pairs τ for training,
which we describe in the next subsection.

3.2 Unsupervised Text Generation for
Document Expansion

We now describe our Unsupervised Document
Expansion with Generation (UDEG) framework,
which generates relevant terms for the given doc-
ument d without using labels on query-document
pairs (q,d) ∈ τ . We first introduce the extractive
and abstractive text generation schemes, which are
two representative methods for unsupervised text
generation, and then propose a stochastic genera-
tion scheme for a richer vocabulary.

Extractive Text Generation Extractive text gen-
eration is to select the representative words or sen-
tences on the given document. Formally, an extrac-
tive text generation scheme is defined as follows:

text = [(text)i]
K
i=1 = gext(d;θext),

[(text)i]
K
i=1 ⊂ d,

(4)

where gext is an extractive text generation model
parameterized by θext. After extracting terms
text = [(text)i], they are used to expand the docu-
ment as in Equation 3 (i.e., d̄ = [text ⊕ d]), which
can enrich the representation of the given document
by counting important terms multiple times (See
Table 1 for examples of extractive generation).

Abstractive Text Generation While the previ-
ously described extractive text generation model
aims at enriching the given document with key
terms extracted from it, the expressiveness of this
extractive scheme is highly restricted since novel
but semantically similar terms cannot be generated
as in Equation 4: [(text)i]

K
i=1 ⊂ d. To overcome

this limitation, one should further consider gener-
ating related-terms that are not contained in the
original document. To this end, we propose an
abstractive text generation model to obtain the rele-
vant but novel terms for the given document d.

Formally, novel terms for the original docu-
ment are denoted as [(t′abs)l]

N
l=1 6⊂ d, whereas

existing terms on the document are denoted as
[(tabs)j ]

K−N
j=1 ⊂ d. N is the number of newly

generated document-related terms. Then, an ab-
stractive generation model is defined as follows:

tabs =
[[
(t′abs)l

]N
l=1
⊕ [(tabs)j ]

K−N
j=1

]

= gabs(d;θabs),
(5)

where gabs is the abstractive generation model pa-
rameterized by θabs. We provide concrete exam-
ples of abstractive generation in Table 1.
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Specific details of unsupervised text genera-
tion models, which do not use labels for query-
document pairs, are described in § 4.3.

Stochastic Generation While a naïve abstrac-
tive generation scheme can generate novel terms
that are not included in the original document, a
major drawback of this scheme is that they can-
not generate a high volume of different terms for
the given document. In other words, this scheme
is suboptimal since it only generates a single se-
quence, though the terms within the document
can have many synonymous expressions. To over-
come this limitation, we stochastically generate
terms for the given document by perturbing its em-
beddings for text generation via applying Monte
Carlo (MC) dropout (Gal and Ghahramani, 2016).
Compared to the abstractive generation scheme
in Equation 5, which only produces one typi-
cal sequence of terms tabs, we obtain S differ-
ent sequences T abs from the stochastic generation
scheme, as follows:

T abs =
[
tiabs
]S
i=1

tiabs = g′abs(d;θabs),
(6)

where g′abs randomly masks weights on the model
even at test time. We provide examples of stochas-
tic generation with S = 3 in Table 1. As shown
in Table 1, examples of stochastic generation are
more relevant to the document and more diverse.

4 Experimental Setups

Here, we describe datasets, models, evaluation met-
rics, and implementation details for experiments.

4.1 Datasts
We use two benchmark datasets for IR to evaluate
our UDEG framework as follows:
ANTIQUE: This is a dataset with 403,666 doc-
uments from Yahoo! Answer, including open-
domain non-factoid questions (Hashemi et al.,
2020). The test set consists of 200 queries and
6,589 query-document pairs.
MS MARCO: This is a collection of 8,841,823
passages from Bing search engine (Nguyen et al.,
2016). Since the test set is not publicly avail-
able, we use the development set containing 6,980
queries and 59,273 query-document pairs. We ran-
domly sample 1,000,000 passages, while using
the same development set for queries and query-
document pairs, due to the limitation of computa-
tional resources on expanding 8,841,823 passages.

4.2 Retrieval Models

In this subsection, we describe two retrieval models
that are widely used for IR systems.
BM25: This is one of the standard ad-hoc re-
trieval models based on Term Frequency-Inverse
Document Frequency (TF-IDF), which measures
overlapping terms between query and docu-
ment (Robertson et al., 1994).
QL: This is also one of the standard ad-hoc re-
trieval models. Specifically, QL returns a ranked
list of documents sorted by the probability of
P (d|q), where q is a query and d is a docu-
ment (Zhai and Lafferty, 2017).

4.3 Expansion Models

We compare our UDEG framework against the fol-
lowing baselines:
No Expansion (No Expan.): This is a naïve model
of retrieving the original documents without query
or document expansion.
RM3: This is a query expansion model that uses a
pseudo-relevance feedback scheme (RM3) (Jaleel
et al., 2004). Note that this can be simultaneously
used with document expansion models.
MP-rank: This is an extractive document expan-
sion model, which extracts keyphrases based on a
multipartite graph, where the nodes are keyphrase
candidates and an edge connects nodes having dif-
ferent topics (Boudin, 2018).
LexRank: This is an extractive document expan-
sion model that extracts the key sentence with
PageRank algorithm (Page et al., 1998), which con-
structs vertices as sentences and edges as TF-IDF
weights (Erkan and Radev, 2004).
PEGASUSext: This is an extractive document ex-
pansion model (Zhang et al., 2020a), which extracts
sentences using pre-trained knowledge for gener-
ating masked sentences on the CNN/DailyMail
dataset (Nallapati et al., 2016).
LexRank + paraphrase (Lex. + Para.): This is
an abstractive document expansion model, which
first extracts key sentences with LexRank, and then
paraphrases them with an unsupervised model (Liu
et al., 2020) based on simulated annealing.
UDEG: Our framework of expanding documents
with abstractly generated sentences from a pre-
trained language model. Diverse sentences are gen-
erated with stochastic perturbation by MC dropout.

11



No Expan. MP-rank LexRank Lex.+Para. PEGASUSext UDEG (Ours)

MRR

BM25 0.595 0.584 0.571 0.561 0.585 0.645
BM25+RM3 0.558 0.579 0.542 0.567 0.555 0.616
QL 0.499 0.534 0.567 0.518 0.562 0.650
QL+RM3 0.396 0.447 0.456 0.432 0.504 0.583

R@10

BM25 0.218 0.220 0.208 0.209 0.207 0.237
BM25+RM3 0.217 0.221 0.208 0.204 0.213 0.226
QL 0.189 0.199 0.203 0.196 0.205 0.232
QL+RM3 0.159 0.179 0.182 0.162 0.191 0.211

P@3

BM25 0.378 0.381 0.346 0.351 0.356 0.431
BM25+RM3 0.361 0.355 0.360 0.373 0.366 0.433
QL 0.301 0.333 0.340 0.315 0.358 0.418
QL+RM3 0.240 0.281 0.275 0.271 0.301 0.386

MAP

BM25 0.211 0.212 0.199 0.202 0.201 0.238
BM25+RM3 0.212 0.213 0.203 0.203 0.207 0.234
QL 0.172 0.191 0.192 0.181 0.199 0.230
QL+RM3 0.150 0.168 0.170 0.158 0.180 0.212

NDCG@3

BM25 0.437 0.442 0.417 0.425 0.419 0.478
BM25+RM3 0.424 0.434 0.423 0.433 0.426 0.470
QL 0.356 0.389 0.400 0.375 0.413 0.471
QL+RM3 0.277 0.324 0.319 0.306 0.350 0.424

Table 2: Retrieval results on the ANTIQUE dataset. We use five evaluation metrics: MRR, R@10, P@3, MAP,
and NDCG@3. Also, the best performance is marked in bold.

4.4 Metrics

We evaluate the models with five metrics, ranging
from precision- to recall-oriented, as follows:
Mean Reciprocal Rank (MRR): MRR measures
the location of the first relevant document for the
given query in a binary sense.
Recall (R@K): R@K measures the recall up to K
recommended documents.
Precision (P@K): P@K measures the precision
up to K recommended documents.
Mean Average Precision (MAP): Similar to
P@K, MAP evaluates all related documents with
an ordered list of them.
Normalized Discounted Cumulative Gain
(NDCG@K): Compared to the MAP that uses
binary relevance metrics, this further manipulates
the recommended list by using the fact that some
documents are more relevant than others.

4.5 Implementation Details

All of the retrieval models are implemented us-
ing Anserini open-source IR toolkit (Yang et al.,
2018) with the default hyperparameter values. The
PEGASUS-large model, already fine-tuned on the
XSUM dataset (Narayan et al., 2018), is used as a
pre-trained language model in UDEG for abstrac-
tive text generation. For the decoding algorithm,
we use a beam search algorithm and set the beam

No Expan. LexRank UDEG (Ours)

MRR

BM25 0.427 0.441 0.463
BM25+RM3 0.366 0.385 0.415
QL 0.402 0.420 0.454
QL+RM3 0.319 0.337 0.382

R@10

BM25 0.636 0.646 0.679
BM25+RM3 0.600 0.617 0.651
QL 0.611 0.633 0.671
QL+RM3 0.552 0.579 0.629

P@1

BM25 0.311 0.324 0.344
BM25+RM3 0.248 0.265 0.291
QL 0.289 0.302 0.334
QL+RM3 0.202 0.215 0.255

MAP

BM25 0.422 0.435 0.457
BM25+RM3 0.361 0.380 0.409
QL 0.398 0.414 0.448
QL+RM3 0.315 0.333 0.377

Table 3: Retrieval results on MS MARCO dataset. We
use following evaluation metrics: MRR, R@10, P@1
and MAP. The best performance is marked in bold.

size as 8. Also, we set the number S of stochastic
generation for document expansion as 4.

5 Results and Discussion

In this section, we show the overall performance of
our UDEG, and then analyze the results in detail.

5.1 Overall Results
Results on the ANTIQUE dataset and sampled MS
MARCO dataset are shown in Table 2 and Table 3,
respectively. Our UDEG framework significantly
outperforms all baselines in all evaluation metrics.
Interestingly, the retrieval performance of QL is
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Figure 2: Comparison of BART and PEGASUS lan-
guage models. The numbers of generated sentences for
expansion are both set to one.

impressively enhanced when using our framework.
Note that the retrieval performance of QL with-
out expansion is much lower than BM25; however,
QL shows comparable and even outstanding per-
formance with our expansion framework.

Effectiveness of Abstractive Generation Com-
pared to the extractive and the paraphrasing base-
lines, our proposed abstractive framework outper-
forms them in all metrics. Notably, even though
PEGASUSext is pre-trained on the same PEGA-
SUS pipeline with the UDEG framework, the
expansion model with the extractive generation
scheme is ineffective, since it cannot solve the vo-
cabulary mismatch problem. However, the pro-
posed UDEG framework can solve it by generating
novel words, which demonstrates the effectiveness
of the abstractive generation scheme.

Effectiveness of Query Expansion When RM3
is applied, the performance is negatively affected in
most cases. As Nogueira et al. (2019) reported, we
can also interpret the obtained results as evidence
that document expansion is more effective than
query expansion since a document often contains
more signals than a query with its longer length.

5.2 Ablation and Discussion

Which attributes contribute how much to the per-
formance improvement? To see this, we further
perform an ablation study, as follows.

Robustness on Different Language Models To
validate the robustness of our framework on dif-
ferent language models, we compare the perfor-
mances of PEGASUS and BART (Lewis et al.,
2020), both of which are trained on the XSUM
dataset. As shown in Figure 2, the UDEG frame-
work with PEGASUS shows performance similar
to the one with BART, both of which consistently
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Figure 3: MAP scores of two different stochastic gener-
ation strategies (MC dropout vs. top-k sampling) with a
varying number of generated sentences. When the num-
ber of generated sentences is 0, it refers to the naïve
model without expansion.
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Figure 4: Lexical diversity of two different stochastic
generation strategies (MC dropout vs. top-k sampling)
with a varying number of expanded sentences.

outperform the naïve baseline, which neither ex-
pands the query nor the document. Thus, the re-
sults show that the UDEG framework does not
depend on a specific language model, but robustly
improves the overall retrieval performance.

Comparison of Stochastic Generation Strategy
We compare two stochastic generation strategies,
MC dropout and top-k sampling. The top-k sam-
pling is designed to generate diverse outputs by
sampling the next word from the k most likely
candidates, instead of deterministically selecting
the next word (Fan et al., 2018). As shown in
Figure 3, even though both strategies aim at gen-
erating diverse sentences stochastically, the MC
dropout strategy outperforms the top-k sampling
strategy. Where does this performance difference
come from? The hypothesis is that MC dropout
makes more diverse terms across sentences than
top-k sampling. Specifically, we often obtain the
same starting words from top-k sampling, which
leads to generate a number of sentences that might
share same starting words. On the other hand, MC
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Query How is the chemistry is a basic of science?
Relevant

Document
Chemistry is a basic because all matter can be broken down into elements (i.e., hydrogen, oxygen,
nitrogen, etc.); without matter, nothing could be studied.

Generated
Sentences

1) Chemistry is the study of atoms and molecules. 2) Chemistry is the study of matter and how it
is made. 3) Chemistry is the study of matter. 4) Chemistry is a basic science.

Original Document Rank: 104 Expanded Document Rank: 5
Query How is the library consider as a heart of university?

Relevant
Document

Whatever you are studying has to be found somewhere for you to learn it. That’s where the library
comes into focus.

Generated
Sentences

1) If you’re studying at university, you’ll need a library. 2) A library is a place where you can find
out more about the subject you are studying. 3) If you’re studying, you’ll be studying. 4) There are
many different ways you can study.

Original Document Rank: 636 Expanded Document Rank: 32
Query What do doctors do when a patient has a Do Not Resuscitate Order?

Relevant
Document

All healthcare professionals involved in the care of that patient will not do anything to prolong
the patient’s life if in case patient deteriorates/dies. DNR orders may be modified, some may choose
mechanical ventilation, or drugs. Usually when a pt is DNR, comfort measures is provided only.

Generated
Sentences

1) DNR is not life-support. 2) When a patient is in a "do not resuscitated" (DNR) state, that patient’s
life will not be saved. 3) A DNR is a decision made by the patient’s family or health care provider to
prolong the life of the patient. 4) A "do not resuscitate"(DNR) order does not mean that a patient
should be put on life support.

Original Document Rank: 40 Expanded Document Rank: 1

Table 4: Examples of generated sentences by the UDEG framework on the ANTIQUE dataset. Note that the first
example contains scientific information. The generated terms are highlighted in red if the terms are novel but
relevant to the document, and further highlighted in bold if the novel terms appear in the query.

dropout randomly perturbs the embeddings at the
beginning of generating each sentence, which leads
to a diversity of terms even at the starting point.
To verify this hypothesis, we compare the lexical
diversity of MC dropout and top-k sampling strate-
gies with a varying number of generated sentences.
The lexical diversity is calculated by averaging the
proportion of the unique unigrams in generated
sentences for each document. As Figure 4 shows,
the lexical diversities of the generated sentences
by top-k sampling are consistently lower and drop
more rapidly than that by MC-dropout.

Varying the Number of Expanded Sentences
To understand how stochastically generated sen-
tences with MC dropout improves the retrieval per-
formance, we experiment our UDEG with a vary-
ing number of generated sentences on two retrieval
models, BM25 and QL. Figure 3 shows that the
performances of both models tend to improve with
increasing numbers of expanded sentences. Inter-
estingly, QL is largely improved as stochastically
generated sentences are stacked up to the original
document. Meanwhile, the performance is slightly
dropped when expanding five sentences for BM25.
These results indicate that setting an appropriate
number of generated sentences is important for
optimal results, since too much information may
degrade the context of the original document.

5.3 Case Study
For a qualitative analysis, we conduct a case study
to explore the strengths of the UDEG framework.
Table 4 shows examples of successfully retrieved
expanded-documents with the UDEG framework
compared to the original documents without expan-
sion. Note that the original documents are retrieved
with lower ranks, but get higher ranks after ap-
plying the UDEG framework. We note that the
generated sentences contain novel words, while
they sometimes contain copied terms. This ten-
dency of copying increases the importance of the
keyphrases which contributes to the effective term
re-weighting. At the same time, newly generated
terms are found to resolve the vocabulary mismatch
problem by introducing synonyms or semantically
related terms. These findings advocate for the im-
portance of using abstractly generated sentences for
document expansion in ad-hoc retrieval systems,
which can help term re-weighting and alleviate the
vocabulary mismatch problem at the same time.

6 Conclusion

We presented a novel framework, which we re-
fer to as Unsupervised Document Expansion with
Generation (UDEG), that generates diverse terms
with stochastic perturbation over pre-trained lan-
guage models, and efficiently enriches the docu-
ment representation, without using any query infor-
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mation for training. Remarkably, UDEG employed
in a retrieval system shows significant performance
improvements on two standard benchmark datasets.
Also, a detailed analysis shows that an abstractive
generation framework with stochastic perturbation
positively contributes to the retrieval performance.
Not only synonymy, but also other problems of the
IR system such as polysemy could be addressed
using our UDEG framework, to be left for the fu-
ture work. We believe that the benefits of using
diversely generated document-relevant sentences
would allow further improvements on any IR sys-
tem, targeting at scholarly and scientific informa-
tion.
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Abstract

With the increase in the number of published
academic papers, growing expectations have
been placed on research related to supporting
the writing process of scientific papers. Re-
cently, research has been conducted on vari-
ous tasks such as citation worthiness (judging
whether a sentence requires citation), citation
recommendation, and citation-text generation.
However, since each task has been studied and
evaluated using data that has been indepen-
dently developed, it is currently impossible
to verify whether such tasks can be success-
fully pipelined to effective use in scientific-
document writing. In this paper, we first define
a series of tasks related to scientific-document
writing that can be pipelined. Then, we cre-
ate a dataset of academic papers that can be
used for the evaluation of each task as well
as a series of these tasks. Finally, using the
dataset, we evaluate the tasks of citation wor-
thiness and citation recommendation as well
as both of these tasks integrated. The results
of our evaluations show that the proposed ap-
proach is promising.

1 Introduction

When writing a scientific paper, it is important
to search for relevant papers and cite them ap-
propriately. However, despite the importance of
this requirement, the recent sharp increase in pub-
lished scientific papers is making it difficult for
researchers to comprehensively carry out this pro-
cess. Consequently, much work has been devoted
to developing systems that support the writing of
scientific papers.

For example, some studies have attempted to
summarize papers on a particular subject (Teufel
and Moens, 2002; Qazvinian and Radev, 2008;
Bai et al., 2019). The creation of knowledge
graphs of scientific papers has also been pro-

posed (Dessì et al., 2020), and Gábor et al. (2018)
proposed an automatic content-analysis method by
extracting the semantic relations of entities in ab-
stracts.

Other studies have focused on citation recom-
mendation (Huang et al., 2014; He et al., 2010)
and generation of citation text (Xing et al., 2020;
Luu et al., 2020). Using the database of PubMed1

papers, Bhagavatula et al. (2018) proposed rec-
ommending citations on the basis of keywords as
well as the contents of a paper. Mohammad et al.
(2009) proposed the generation of citation text,
and Färber et al. (2018) proposed a classification
model for the task of judging whether a sentence
requires citation (citation worthiness).

Although many reports have been presented and
an abundance of effort has been expended on data
creation (Färber and Jatowt, 2020; Kardas et al.,
2020; Saier and Färber, 2020), each previous study
has focused on a particular problem in scientific-
writing support and has been performed indepen-
dently using its own specific dataset. Therefore,
we do not yet know whether these investigations
can be successfully pipelined nor how to ascertain
the overall performance of a system that can com-
prehensively recommend citations. Consequently,
it is currently impossible to verify that the tech-
nologies centered around scientific-paper writing
are actually helpful in comprehensively support-
ing real-world scientific-paper writing.

In this paper, we first define a series of tasks
related to scientific-paper writing that can be
pipelined. Then, we create a dataset 2 of academic
papers that can be used for the evaluation of each
task in scientific-paper writing as well as a series
of these tasks. Finally, using the dataset, we evalu-

1https://pubmed.ncbi.nlm.nih.gov/
2Our dataset is available at https://github.com/

citation-minami-lab/citation-dataset.
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ate the individual tasks of citation worthiness and
citation recommendation as well as the integrated
task composed of these two individual tasks. Ex-
perimental results show that our task setting and
the dataset can be successfully used for scientific-
paper writing support.

2 Handling “Related Work” Section

In a scientific paper, the section generally called
“Related Work” is important for situating one’s
research in the field and clarifying the new con-
tribution of the proposed work. However, the
task of writing the Related Work section is time-
consuming because one needs to read through
many papers in related areas and carefully cite
them. Due to this cost, much work has been di-
rected to improving the efficiency of this process.

At the beginning stages of this line of research,
we saw many studies aimed at helping authors
understand the gist of a paper, that is, prepar-
ing a summary of the paper highlighting impor-
tant points such as objective, problem, and meth-
ods (Teufel and Moens, 2002). There have also
been studies that consider how a paper is cited
in summarizing the paper in question (Qazvinian
and Radev, 2008). The summarization of scien-
tific papers continues to be an important research
focus (Yasunaga et al., 2019). However, capturing
the summarization of a particular paper in isola-
tion would obviously not produce a universal so-
lution when facing the abundance of papers that
are available to readers.

Recent years have seen an increase in work re-
lated to citation recommendation, and this work
has been greatly aided by the availability of large-
scale article data in electronic form. Such studies
have mainly focused on the papers that one should
cite due to their authority and relevance based on
keywords (Ren et al., 2014). Recently, some stud-
ies have focused on recommending papers that
might be overlooked by limiting the scope to au-
thority and relevance. Such methods utilize a ci-
tation network and more fine-grained content sim-
ilarity, making it possible to identify specific pa-
pers that should be cited (Chakraborty et al., 2015;
Bhagavatula et al., 2018). Moreover, Ali et al.
(2020) proposed a method for citation recommen-
dation by categorizing relevant papers on the ba-
sis of their data, methods, and problems. In our
approach, we list tasks related to scientific-paper
writing and include the task of citation recom-

(i) Beginning of research  

---------
---------
---------
---------

---------
---------
---------
---------

---------
---------
---------
---------

---------
---------
---------
---------

Paper draft

User

(1) Suggest related articles

(2) Detect missing reference

---------------------------------------------------------------

(3) Detect inappropriate citation

(5) Write related work section

Paper draft
---------
---------
---------
---------

(ii) Mid-point stage of paper writing

Abstract

(4) Recommend suitable
citations for sentence

User

(iii) Finishing paper writing

User

--------[2]-------------------

---------------------------------------------------------------

------------------------------

---------------------------------------
---------------------------------------
--------------------------

---------------------------------------------------------------

---------------------------------------------------------------

---------------------------------------------------------------

Figure 1: Scientific-paper writing support for each
phase of research

mendation. We show how this task can be com-
bined with other tasks as well as how individual
problems in citation recommendation can be com-
bined.

In order to facilitate paper writing and peer re-
view, the task of citation worthiness, that is, de-
tecting whether a sentence requires citation, has
been carried out (Färber et al., 2018). Färber et al.
also released a dataset of scientific papers for this
particular task. Other studies have generated cita-
tion texts given a portion of a Related Work sec-
tion. Mohammad et al. (2009) used a rule-based
technique to generate citation texts using, as tem-
plates, the sentences of the same author and the
generic sentences that can be used for citation.

We believe today’s high research activity re-
lated to handling citation has the potential to create
technologies that can actually be useful for human
support; however, we also believe that these stud-
ies need to be combined appropriately for them to
be useful. This has motivated us to list up tasks re-
lated to citation and to create a dataset that enables
us to evaluate combined tasks as well as individual
ones.

3 Listing of tasks

We listed tasks related to citation that can cover the
main phases in scientific-paper writing: (i) when
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we conceive an idea, (ii) when we obtain research
results and are ready to situate the work, and (iii)
when we finalize the Related Work section.

Figure 1 shows how scientific-paper writing can
be supported in each phase. At (i), which hap-
pens at the beginning of research, one is appre-
hensive that the conceived idea may not be orig-
inal and thus feels the need to perform a survey
of related work. In this situation, it is desired that
the scientific-paper writing support system recom-
mends relevant papers (Fig. 1 (1)) using as input
the research problem and its approach, which are
typically written in the paper’s abstract. At (ii),
which is done in the mid-point stage of paper writ-
ing, there may be cases when citations are not ap-
propriate or missing. Therefore, it is necessary to
provide support for the detection of missing refer-
ences (Fig. 1 (2)), the detection of inappropriate
citations (Fig. 1 (3)), and the recommendation of
suitable citations (Fig. 1 (4)). At (iii), which is
when the author applies finishing touches to the
paper, support for tailoring the Related Work sec-
tion would be appropriate (Fig. 1 (5)), such as how
the references should be categorized and how they
should be presented.

Tasks (1)–(5) in the figure can be broken down
into more fine-grained tasks as follows:

(1)-1: Citation extraction Given an abstract, the
task of citation extraction retrieves relevant
papers from a large database of scientific doc-
uments.

(1)-2: Citation recommendation for draft paper
Given a draft paper comprising an abstract
plus some body text, this task presents the
list of relevant papers retrieved from a large
database of scientific documents.

(2): Citation worthiness Given a sentence in the
Related Work section of a draft, this task de-
tects whether the sentence needs citations.

(3)-1: Citation allocation Given sentences in the
Related Work section of a draft and the body
of relevant papers, this task allocates appro-
priate papers to the sentences.

(3)-2: Sentence-citation pair classification
Given a sentence and its possible citation,
this task classifies whether the allocation of
the citation is appropriate for that paper. This
is a sub-task of (3)-1.

(4): Citation recommendation for sentence In
(2) and (3), there may be sentences with
missing citations, that is, when the sentence
requires citation but the allocation of cita-
tions has failed. In such a case, a citation
needs to be retrieved from a large body of
scientific papers. This task performs citation
recommendation for a citation-missing
sentence. Note that this task focuses only on
the sentences suggested as citation-worthy
by the citation worthiness task because these
tasks form a pipeline.

(5)-1: Citation categorization Given sentences
with citations, this task categorizes them
based on their underlying themes so that
the citations can be more appropriately orga-
nized.

(5)-2: Citation sentence generation Given sen-
tences with citations, this task suggests al-
ternative citation text for the sentences to
achieve better clarity and fluency.

(5)-3: Citation text generation Given Related
Work text, which includes multiple sentences
with citations, this task suggests alternative
citation text for the content. This task is
different from (5)-2 in that the text of the
entire Related Work section is generated
instead of simply generating a sentence for a
citation.

As can be seen in the above listing, the tasks fol-
low the chronological order of how a paper is writ-
ten in its research phases. They can be pipelined.
These tasks have mostly been identified and tack-
led in previous studies, but they have been re-
searched separately. The list of tasks includes
(3)-2, which we newly conceived in this work; in
pipelining the paper-writing process, we consid-
ered this a useful sub-task for citation allocation.

4 Data Creation

After having defined the tasks, we created a
dataset for the evaluation of the individual tasks
and, moreover, the integrated (pipelined) tasks.
For this purpose, we use the same data as source.

4.1 Procedure
The process of data creation is depicted in Figure
2. We first extract key materials from a target pa-
per in an archive of published papers. The target
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Figure 2: Data-creation process

paper, which is an arbitrary paper in the archive,
is the starting point for creating the dataset. We
extract elements from the target paper or remove
certain elements from it so that we can simulate
the incomplete versions of the paper as they ap-
pear during the research phases. First, from the
target paper, we extract four key elements: ab-
stract, paper without Related Work, Related Work,
and references. These can be created directly by
extracting certain parts of the target paper. As for
the references, we refer to a large-scale reference
database to extract their paper IDs (e.g., arXiv pa-
per ID), abstracts, and full text (if retrievable) by
using the title and author names. On the basis of
these key materials, we create task data for the
tasks listed in the previous section. In the follow-
ing, we describe the detailed process for creating
the task data for tasks (1)–(5).

(1)-1: Citation extraction We use the abstract
and the list of references for the target paper.
Since this is the initial phase of research, we
remove from the abstract those sentences re-
lated to experiments and results with a rule-
based extractor, using the resulting text as the
input for this task. The references become the
gold data to be retrieved from a large-scale
paper database.

(1)-2: Citation recommendation for draft paper
We use the paper without the Related Work
section as input and use the references as
gold output.

(2): Citation worthiness We use the sentences in
the Related Work section as task data. We
create task data by coupling each sentence
with a label indicating whether that sentence
has a citation.

(3)-1: Citation allocation We use the text of re-
lated work and the references’ abstracts and
full text (if available) for this task data. We
extract sentences from the text of related
work and retain only those sentences with ci-
tations. Then, we couple these sentences with
their citations to create the task data. Al-
though it is not done in this paper, surround-
ing sentences can also be included in the
task data because such sentences may contain
helpful information and can serve as context.

(3)-2: Sentence-citation pair classification For
the sentences with citations, we create pairs
of a sentence with the gold citation and also
a pair containing a sentence with an incorrect
citation taken from the references of the
target paper.
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(4): Citation recommendation for sentence
We use the sentences of the Related Work
section and its references as task data. As
gold citations, we use those in the Related
Work section. The task is to accurately
retrieve the references from the large-scale
paper database.

(5)-1: Citation categorization We use the Re-
lated Work section and the references as task
data. We first extract paragraphs from the text
and identify the clusters of citations by ex-
tracting citations from each paragraph. The
task is to correctly allocate citations to each
paragraph.

(5)-2: Citation sentence generation We use the
references cited in the Related Work section
and the sentences in the Related Work sec-
tion. For each sentence with a citation, the
task is to generate a sentence from the cited
reference with its abstract/full text.

(5)-3: Citation text generation We use the refer-
ences with abstract/full text and the entire
text of Related Work. The task is to gener-
ate a complete Related Work section using
the reference information.

4.2 Created dataset
In this work, we created the task data for (2), (3)-1
and (3)-2. We created a dataset for these tasks be-
cause we wanted to verify our approach within a
minimal setting; these tasks can be tackled with
only the related work sections and the abstracts
of the papers cited in them, without requiring the
large-scale paper DB or the papers’ full texts. Us-
ing data covering multiple tasks, we can at least
verify whether it is possible to evaluate the perfor-
mance of individual tasks as well as the integrated
task. Although we created the data for the subset
of the listed tasks, as can be seen, the procedure for
creating task data is mostly straightforward. Once
we have verified our approach, as we do in this pa-
per, we will be able to construct data covering all
tasks.

To create the data, we first collected target pa-
pers from the AxCell dataset (Kardas et al., 2020),
which has been made public for the purpose of
leaderboard generation. AxCell contains approxi-
mately 100K papers.

Since we need papers having a Related Work
section, we extracted papers with section titles

such as “Related work” and “Related studies.” As
a result, we successfully obtained 34,416 papers.
The sentences included in the Related Work sec-
tions of these papers become the task data for (2)
Citation worthiness. Table 1 shows the statistics.
The numbers of total, positive, and negative ex-
amples of the task data for (2) are shown in the
first row. We first randomly split the papers into
three sets having 22,416, 6,000, and 6,000 target
papers. Then we made train/dev/test sets by ex-
tracting sentences from these sets. The test data
are used for testing throughout the following tasks
in order to guarantee a fair evaluation. The inclu-
sion relationship among datasets is shown in Fig-
ure 3.

Next, from the target papers used for the task
data of (2), we created the task data for (3)-2
Sentence-citation pair classification. Using the ci-
tations in the Related Work sections and match-
ing them with the references in the paper in the
bbl files, we obtained titles and authors. Then,
we used the titles and authors to retrieve their pa-
per IDs and abstracts through the arXiv API 3.
We also retrieved full text when available as tex
source or a PDF file. We obtained 7,946 target
papers that contain Related Work sections having
citations with retrieved abstracts. The number has
been reduced greatly due to the fact that many ab-
stracts could not be retrieved via the arXiv API.
These examples were split into three sets having
6,946, 500, and 500 target papers, maintaining the
inclusion relationship shown in Figure 3. Then
we made train/dev/test sets by extracting sentences
with citations as positive examples and creating
the same number of negative examples by ran-
domly assigning a different citation. For the total
number of examples in the task data of (3)-2, see
the third row in Table 1.

From the target papers in the test data of (3)-
2, we first extracted those that have Related Work
sections with three or more citations. We found
600 such sentences. Then, from these, we ex-
tracted sentences with only one citation in order
to create the task data for (3)-1 Citation alloca-
tion. We found 586 such sentences (see second
row in Table 1). These sentences are used as test
data for (3)-1. Note that, since citation allocation
is performed by using the trained model of (3)-2,
we have only test data for this task, although the
model for this task can also be trained by creating

3https://arxiv.org/help/api/
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Figure 3: Inclusion relationship among datasets

its individual train/dev data.

5 Experiment

Using the task data, we evaluated baseline perfor-
mance for these tasks. The aim of the experiment
is to show the feasibility of our approach, that is,
to test the performance of individual tasks and the
integrated task using the same dataset. If this were
successful, it would mean that our approach is ef-
fective for supporting various phases in scientific-
paper writing.

5.1 Citation worthiness

Using the dataset for (2), we trained a BERT-
based classifier (Devlin et al., 2019). We used
BertForSequenceClassification from
huggingface4. We used the bert-base-uncased
model. For training, we used the train/dev data
for this task as described in the previous sec-
tion. The input format used for the classifier was
“[CLS] sentence [SEP].” We used the Adam op-
timizer at a learning rate of 1.0e−5. We trained
for 50 epochs and chose the model that achieved
the highest accuracy for the development set. As
evaluation metrics, in addition to accuracy, we
used precision, recall, and F1 of positive labels
(i.e., needs citation). Table 2 shows the re-
sults. As can be seen, the accuracy as well as
F1 is quite high, much higher than previously re-
ported (Bonab et al., 2018; Färber et al., 2018),
which is probably due to the use of BERT.

5.2 Sentence-citation pair classification

Before citation allocation, we first describe the
results of sentence-citation pair classification be-
cause it is a sub-task. This task determines

4https://huggingface.co/

whether a pair of a sentence and the abstract of
its citation form a valid pair. Using the dataset for
(3)-2, we trained a BERT-based classifier. In ad-
dition to a random baseline, we also prepared two
other classifiers: a Doc2Vec-based classifier and
an XLNet-based classifier. The methods used for
comparison in this experiment are summarized be-
low.

Random Randomly determines whether the cita-
tion is appropriate.

Doc2Vec This method utilizes Doc2Vec (Lau and
Baldwin, 2016) to vectorize sentences and
abstracts for similarity calculation. The
Doc2Vec model was trained with the train-
ing data of this task. For all sentences with
citations, we first concatenated a sentence
and the abstract of the cited paper, then a
Doc2Vec model was trained using the gen-
sim5 library. The trained model was used to
convert a sentence and an abstract into vec-
tors in order to calculate their cosine simi-
larity. When the similarity increases above a
predefined threshold (empirically set to 0.02
using the dev set), it is deemed appropriate.

BERT For training, each of the sentences and
each abstract text in the references are paired
to create training data while regarding the
correct pair as a positive example or other-
wise as a negative example. Then, the data
are used for training a BERT-based classi-
fier. Here, the input format is “[CLS] sen-
tence [SEP] abstract text [SEP].” In the test
phase, a pair consisting of a sentence and an
abstract is fed to the trained classifier. We use
the probability threshold of 0.5 to determine
whether the pair is valid.

XLNet Instead of the BERT model, this method
uses the XLNet (Yang et al., 2019) model
(XLNet-base-model) for classification. This
can be easily done using the huggingface li-
brary. The input format is the same as that for
BERT.

For BERT and XLNet, we used the train/dev
data for this task for fine-tuning. The training set-
ting was the same as that used for citation worthi-
ness.

5https://radimrehurek.com/gensim/
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Task # Examples # Positive examples # Negative examples
(2) Citation worthiness 1,137,168 461,882 675,286
(3)-1 Citation allocation 586 N/A N/A
(3)-2 Sentence-citation pair classification 41,582 20,791 20,791

Table 1: Statistics of task data

Accuracy P R F1
Random 0.499 0.408 0.500 0.449
BERT 0.911 0.925 0.852 0.887

Table 2: Accuracy for (2) Citation worthiness

Accuracy P R F1
Random 0.488 0.489 0.492 0.490
Doc2Vec 0.558 0.541 0.763 0.633

BERT 0.816 0.822 0.806 0.814
XLNet 0.844 0.846 0.841 0.843

Table 3: Accuracy for (3)-2 Sentence-citation pair clas-
sification

Table 3 shows the results for sentence-citation
pair classification. As can be seen, the random
baseline performs rather poorly, with an accuracy
below 0.5. This is surpassed by the Doc2Vec
method, which performed at an accuracy of 0.558.
However, the two other models based on BERT
and XLNet overwhelmed these with over 0.8 ac-
curacy and F1. In this experiment, we can see that
XLNet performs better than BERT.

5.3 Citation allocation
Using the dataset for (3)-1, we compared the four
methods used in (3)-2, as shown below.

Random This method randomly chooses a cita-
tion from a list of possible references.

Doc2Vec This method uses the results of co-
sine similarity for sentence-citation pairs and
chooses the highest-ranking one when it sur-
passes a predefined threshold of 0.02.

BERT This method uses the output of the BERT-
based classifier for sentence-citation pairs.
The highest-ranking pair is chosen as its ci-
tation when the output probability surpasses
0.5.

XLNet In place of the BERT model, this method
uses the XLNet model for sentence-citation

Accuracy
Random 0.280
Doc2Vec 0.349

BERT 0.747
XLNet 0.795

Table 4: Accuracy for (3)-1 Citation allocation

Accuracy
BERT 0.623

Table 5: Accuracy of integrated task composed of
(2) Citation worthiness and (3)-1 Citation allocation,
which includes (3)-2 Sentence-citation pair classifica-
tion.

pairs.

The evaluation was carried out using test data con-
taining 586 sentences.

Table 4 shows the results. The results clearly
follow those of (3)-2, but accuracy is visibly
lower. This is reasonable, since the results build
on the sub-task. Reflecting the results obtained
for sentence-citation pair classification, XLNet
achieved the best performance at 0.795.

5.4 Integration of citation worthiness and
citation allocation

We performed another experiment that spans two
tasks: (2) Citation worthiness and (3)-1 Citation
allocation. Note that task (3)-2 is included in (3)-
1. Here, the input is a sentence that is first checked
for citation worthiness. When it is determined that
a citation is needed, the sentence is coupled with
the abstracts of possible citations to check whether
the pair is appropriate according to the sentence-
citation pair classifier. Finally, the citation with the
highest probability is chosen when it surpasses a
predefined threshold. In this experiment, we used
BERT-based methods for all tasks.

Table 5 shows the result of 0.623 for accuracy,
indicating that cascading the tasks worsens per-
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formance in comparison with the individual tasks.
Although a reasonable accuracy can be achieved
for a single task, this result shows that when they
are combined, the performance may not be compa-
rably high. The results would likely be even lower
when more tasks are combined, which can give us
clues on to how to improve overall performance
and how to jointly train models. Using our de-
sign, it would thus be possible to evaluate the per-
formance of a method to support scientific-paper
writing at the various phases of research.

6 Summary and future work

In this paper, to achieve better support of
scientific-paper writing, we first defined a series
of tasks that can be pipelined. Then, focusing on
the tasks of citation worthiness, citation alloca-
tion, and sentence-citation pair classification, we
created a dataset of academic papers that could
be used for the evaluation of each task as well
as an integrated series of the tasks. We showed
experimental results for citation worthiness, cita-
tion allocation, and sentence-citation pair classi-
fication for individual tasks as well as the case
when these tasks are combined. Our series of ex-
perimental results shows the feasibility of our ap-
proach. We also showed the current performance
using the same dataset.

Future work includes creating data for other
tasks and performing experiments with them as
well as their combinations in pipelined tasks. We
will also consider the use of domain-specific pre-
trained language models, such as SciBERT (Belt-
agy et al., 2019), in order to improve performance.
Furthermore, we plan to perform a human-in-the-
loop evaluation in which a system supports re-
searchers in their various writing phases. Finally,
it would also be useful to improve the accuracy of
the tasks we tackled in this paper.
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Abstract

Understanding of nerve-organ interactions is
crucial to facilitate the development of effec-
tive bioelectronic treatments. Towards the end
of developing a systematized and computable
wiring diagram of the autonomic nervous sys-
tem (ANS), we introduce a curated ANS con-
nectivity corpus together with several neural
language representation model based connec-
tivity relation extraction systems. We also
show that active learning guided curation for
labeled corpus expansion significantly outper-
forms randomly selecting connectivity relation
candidates minimizing curation effort. Our fi-
nal relation extraction system achieves F1 =
72.8% on anatomical connectivity and F1 =
74.6% on functional connectivity relation ex-
traction.

1 Introduction

The NIH Common Fund’s Stimulating Peripheral
Activity to Relieve Conditions (SPARC) program
aims to transform our understanding of nerve-organ
interactions to help spur the development of ef-
fective bioelectronic treatments. Bioelectronic
medicine represents the convergence of molecu-
lar medicine, neuroscience, engineering and com-
puting to develop devices to diagnose and treat
diseases (Olofsson and Tracey, 2017). One of the
projects within this large consortium is to create
a systematized and computable wiring diagram of
the autonomic nervous system, a part of the “wiring
system” that travels throughout the body transmit-
ting messages between the peripheral organs and
the brain or spinal cord. While diagrams of nerves
are currently available in medical texts (Standring
and Gray, 2008), the SPARC program seeks to map
these connections at higher levels of detail and with
greater accuracy. Additionally, the diagrams in
these medical texts are not generally queryable, nor

are they sufficiently detailed to include the granu-
lar paths that these nerves travel. Such information
would be needed, for example, to understand where
reliable access points to a particular nerve might
be so that stimulation only affects the most rele-
vant nerve or to understand the mechanisms behind
stimulation applied at particular locations. Many
scientific studies contain information about individ-
ual nerves and at times the paths they traverse, but
to our knowledge, no systematic approach has been
attempted to bring these large quantities of infor-
mation together into a computationally accessible
format.

The SPARC project is building a cross-species
connectivity knowledge base that contains detailed
information about individual nerves, their path-
ways, cells of origin and synaptic targets. To date,
this knowledge base has been populated through
the development of detailed models of circuitry by
experts funded through the SPARC project using
the ApiNATOMY platform (Kokash and de Bono,
2021). ApiNATOMY provides a modeling lan-
guage for representing the complexity of functional
and anatomical circuitry in a standardized form.
The circuitry contained in these models represent
expert knowledge derived from the synthesis of
the expert’s own work and the synthesis of, in
some cases , hundreds of scientific publications.
However, to ensure that information in the SPARC
knowledge base is comprehensive and up to date,
i.e., it represents the current state of knowledge
about autonomic nervous system (ANS) connectiv-
ity, we sought to augment the expert-based model
approach with experimental information derived
from the primary scientific literature. As there are
thousands of papers and additional sources like text
books, we utilized natural language processing to
identify sentences that contained information on
neuronal connectivity in the ANS.
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The task was approached by first gathering the
relevant scientific literature by matching bodily
structures at a variety of anatomical levels (i.e.
gasserian ganglion, vagus nerve, brainstem, etc.)
from a constructed set of vocabulary at sentence
level. Then, annotators classified each structure to
structure relationship using only the information
provided within the sentence based on the con-
nectivity types defined in our annotation guideline.
This structured data were then used to train our con-
nectivity relations models. Data from two curators
was used to assess the inter-curator agreement to de-
termine if the annotation guidelines are sufficient to
“teach” the task to humans. We assessed connectiv-
ity statements into several types including, anatom-
ical connectivity, functional connectivity, structural
connectivity, topological connectivity and general
connectivity as well as no connectivity. The general
connectivity and no connectivity categories can be
thought of as statements that are too vague to be
of much direct use for our use case. The most im-
portant statements are anatomical connectivity, elu-
cidating which parts are connected physically and
functional connectivity, elucidating which parts are
connected functionally. A definition and an exam-
ple for each connectivity type used for annotation
is shown in Table 1. Of course with single sen-
tences, it is difficult to define a direct functional
relationship, which typically rests on the latency
with which a signal is detected between two ele-
ments (Bennett, 2001). However, statements about
latency are very rare in the subset of the peripheral
nervous system literature, whereas somewhat more
general statements about functional relationships
that, for example, describe damage to one area
and altered functioning in another, are more abun-
dant. We hypothesize that when such statements
are reasonably abundant, a detection classifier will
be easier to train.

In relation extraction, long-range relations are
usually handled using dependency parse tree infor-
mation. In traditional feature-based models, paths
in the dependency parse tree between entities are
used used as features (Kambhatla, 2004) which
suffered from the sparsity of the feature patterns.
More recently, neural models are increasingly em-
ployed for relation extraction instead of feature en-
gineering using vectorized word embeddings. The
dependency information is represented as computa-
tion graphs along the parse tree (Zhang et al., 2018).
Sequence models, on the other hand, work at the

surface level and represent long distance relation-
ships via either convolutional or recurrent neural
networks and an attention mechanism (Zhang et al.,
2017).

In biomedical domain, relation extraction work
is traditionally focused on protein-protein, gene-
disease or protein-chemical interactions. Sev-
eral labeled datasets, such as GAD (Bravo
et al., 2015) (a gene-disease relation dataset) and
CHEMPROT (Krallinger et al., 2017) (a protein-
chemical multi-relation dataset) are publicly avail-
able. Neural sequence models have also been
applied to protein-chemical relation extraction
task (Lim and Kang, 2018).

Recently, sentence level transformer based lan-
guage representation models such as BERT (De-
vlin et al., 2019) have shown superior down-
stream performance on many NLP tasks. A
biomedical domain adapted version of BERT called
BioBERT (Lee et al., 2019) has been shown state of
the art performance on several biomedical relation
extraction tasks.

While most of the transformer based language
representation models are pretrained on sentences
where a predefined percentage of the tokens are
masked and the model learns to predict the masked
tokens, a recently introduced language representa-
tion model, ELECTRA (Clark et al., 2020) learns
to discriminate if a token in the original input is
replaced by a language generator model or not. The
generator model is a BERT like generative model
that is co-trained with the discriminative model.

While there are efforts to extract brain con-
nectivity information from neuroscience litera-
ture (Richardet et al., 2015), their focus is in the
cognitive parts of the brain instead of ANS. In this
paper, we introduce a labeled ANS connectivity cor-
pus, together with four biomedical domain adapted
ELECTRA models, that we have used to develop
an anatomical and functional connectivity relation
extraction system that outperforms BioBERT.

2 Methods

2.1 Vocabulary

In order to better structure information from pa-
pers, anatomical structure labels were drawn from
a set of relevant ontologies, also approved for use
by the SPARC project. These ontology terms
include primarily FMA (RRID:SCR_003379),
UBERON (RRID:SCR_010668), and NIFSTD
(RRID:SCR_005414) terms, and they are listed
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Relation Definition Example
functional a relationship was determined to

exist between two structures using
physiological techniques

The HB reflex is a reflex initiated by lung infla-
tion, which excited the myelinated fibers of vagus
nerve, pulmonary stretch receptors [11,19].

anatomical a physical synaptic relationship was
observed between two structures us-
ing anatomical techniques such as
tract tracing

Only the most prominent nervous connections,
such as the penis nerve cord (pnc, Fig. 8a), con-
necting the ventral ganglion to the penis gan-
glion can be detected.

structural a relationship that reflected continu-
ity between segments of nerves

The term vocal fold paralysis (VFP) refers to the
reduced or absent function of the vagus nerve or
its distal branch, the recurrent laryngeal nerve
(RLN) [1-3].

topological a relationship that reflected the
course of a nerve

Oculomotor nerve (III) exited from the middle
tectum nearby ventro-medial midbrain and was
observed on 6-day-old fish.

general a statement that contained general
information about connectivity but
did not specify the technique used
or otherwise failed to elucidate the
exact type of connectivity discussed

Moreover, an interoceptive circuit connecting the
gut to the nucleus tractus solitarius (NTS) via
the vagus nerve has been demonstrated to convey
the state of the gut to the limbic system (Figure 9;
Maniscalco and Rinaman, 2018).

Table 1: Connectivity relation types

on the SPARC anatomy working group web pages,
which include term lists. In order to provide a more
targeted set of sentences for training, we selected
a set of terms that was specifically associated with
the ANS. These terms included sympathetic and
parasympathetic nerves and ganglia from the FMA
and UBERON. Terms were selected by the SPARC
Anatomical Working Group, a group of anatomi-
cal experts who provide expertise to the SPARC
knowledge engineers.

2.2 Corpus Generation

The sentences of interest for connectivity relation
extraction were detected by longest phrase match
from the target vocabulary of anatomical terms.
We have used four million full-length PMC open
access papers downloaded on November 2020 to
search for sentences of interest. All the sentences
mentioning at least two distinct anatomical struc-
tures from our vocabulary are selected. To focus
our curation effort to a manageable portion of the
vocabulary, a smaller vocabulary consisting of only
ANS nerve and ganglion terms were selected to
further filter the candidate sentence set where only
sentences having at least one structure from the
focused vocabulary set is selected. Since the result-
ing candidate set was still too large for curation,
up to three examples from each unique focused

vocabulary term encountered is randomly sampled
to create our base corpus of 808 sentences to be
curated.

2.2.1 Annotation of the Corpus and
Inter-annotator Agreement

Three curators/domain experts were involved in the
connectivity corpus labeling process. Our main
curator (J.M.) is a full-time curator with several
years of experience with biomedical named entity
recognition, relation extraction and text classifica-
tion curation tasks. Dr. A.B. is a neurophysiologist
by training with expertise in microcircuitry. Dr.
M.M. is a trained anatomist with expertise in mi-
crocircuitry and a professor of neuroscience. All
curators annotated training sets using the relation
annotator tool developed in-house. The tool allows
the curators both to edit entities (if automatically
detected anatomical structure boundaries are not
correct) and to label automatically generated bi-
nary relation combinations arising from the two or
more anatomical structures detected in the curated
sentence.

To start, A.B. and J.M. completed 30 sentences
together to gauge the difficulty of the task and
train J.M. on the differences between anatomical
and functional connectivity. Then, M.M. and J.M.
independently annotated 102 relation labels. In
this first iteration, connectivity between structures
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could only be classified as anatomical connectivity,
functional connectivity, or no relation. The ini-
tial inter-annotator agreement was 66.7%; Cohen’s
kappa was 0.25. Even when simply comparing bi-
nary connectivity vs. no relation, there was only an
inter-annotator agreement of 72%; Cohen’s kappa
was 0.34. After discussing disagreements, addi-
tional connectivity types were added to the relation
annotator tool. After expansion, connectivity could
be classified as structural, topological, or general
in addition to the previous versions labels: anatom-
ical, functional, and no relation. This was done
to make each connectivity type more explicit with
less potential overlap, especially between our main
connectivity types of interest (anatomical vs. func-
tional).

In our second iteration, M.M. and J.M. indepen-
dently annotated another 170 relation labels across
100 sentences. This time, the inter-annotator agree-
ment was 73.5%; Cohen’s kappa was 0.25. Anno-
tation differences though were primarily found to
be between our general connectivity and no rela-
tion tags. If we consider general connectivity to be
the same as no relation (collapsing them together),
then our inter-annotator agreement jumps to 91.2%;
likewise, Cohen’s kappa also increases to 0.55. Be-
cause our primary disagreements were between two
tags of less interest (general connectivity vs. no-
relation), we believe our inter-annotator agreement
is acceptable for this high difficulty task.

2.3 Models

2.3.1 ELECTRA based language
representation models for Biomedical
Domain

Domain specific language representation models re-
sult in performance improvements on downstream
NLP tasks as demonstrated by BioBERT (Lee et al.,
2019). Similarly, we have pretrained four ELEC-
TRA (Clark et al., 2020) based models on biomedi-
cal corpus.

For pretraining corpus we have used both
PubMed abstracts and PubMed Central (PMC)
open access full-length papers. 21.2 million
PubMed abstracts from the January 2021 baseline
distribution are used to build our main pretraining
corpus. Sentences extracted from the paper title
and abstract text resulted in a corpus of 3.6 billion
words. For the PMC open access papers, sentences
extracted from all sections except the references
section of the full-length papers are used to build a

12.3 billion words corpus. A domain specific word
piece vocabulary is generated using SentencePiece
byte-pair-encoding (BPE) model (Sennrich et al.,
2016) from PubMed abstract texts. The models
are pretrained for one million steps on the PubMed
abstracts corpus followed by 200,000 steps training
on the PMC open access papers corpus.

During training, ELECTRA uses a small trans-
formers based encoder model using masked lan-
guage objective like in BERT to generate possible
replacements for the larger discriminative model
which is also based on transformers architecture.
Both models are trained jointly. During fine-tuning,
only the discriminative model parameters are used.
The discriminative model has essentially the same
architecture as BERT but trained in a discrimina-
tive manner using a different objective. We have
trained three different model sizes; a base model
with embedding and hidden size of 768, 12 atten-
tion heads and 12 transformer layers; a mid sized
model with embedding size of 384, hidden size of
512, 8 attention heads and 12 transformer layers;
a mid sizes tall model having same parameters as
the mid sized model but with 24 transformer layers.
We have also trained another mid sized model with
the combined PubMed abstract and PMC open ac-
cess full paper corpus instead of the two corpus
cascaded training approach used for the other three
Bio-ELECTRA models. For all models, the maxi-
mum allowed input sequence length was set to 512.
For all models besides the mid-tall model, the batch
size was set to 256. The mid-tall model had a batch
size of 128 because of the memory limitations of
a single tensor processing unit (TPU). The model
architectures, sizes and training times are summa-
rized in Table 2. All the models are trained on a
single 8 core version 3 TPU with 128 GB RAM.

While, we have used our Bio-ELECTRA models
for connectivity relation extraction only, the models
like BioBERT are applicable to many downstream
biomedical NLP tasks.

3 Experiments

We conducted our experiments in two phases. In
the first phase, all the binary connectivity relation
candidates in the 805 sentences extracted from the
open access subset of PubMed Central is annotated
by a curator. The curated base set is then randomly
split into 80/20% train/test set. Afterwards, ten
randomly initialized models are trained. The re-
ported results are average of 10 runs together with
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Model Params Architecture Steps Train Time/Hardware
Mid 50M hidden:512, layers:12 1.2M 6.5d on 8 TPUv3s
Base 110M hidden:768, layers:12 1.2M 12.5d on 8 TPUv3s
Mid-tall 88M hidden:512, layers:24, batch:128 1M 5.5d on 8 TPUv3s
Mid Combined 50M hidden:512, layers:12 1.2M 6.5d on 8 TPUv3s

Table 2: ELECTRA Models for Biomedical Domain

standard deviation. In the second phase, the base
set is enhanced via active learning.

As our baseline model, we have used a graph
convolution over dependency parse tree neural
model (Zhang et al., 2018) where the dependency
graph structure is represented by an adjacency ma-
trix over which convolution operations are per-
formed. The model uses word embedding vec-
tors for input encoding and stacked layers of graph
convolution network (GCN) layers to encode rela-
tions. The input encodings can be further contexu-
alized via a bi-directional long-short-term memory
(LSTM) layer, which we have used in our exper-
iments. For word embeddings we have used 300
dimensional Common Crawl (840B tokens) trained
GloVe (Pennington et al., 2014) vectors. The de-
pendency parse trees for the input sentences were
generated via Stanford CoreNLP (Manning et al.,
2014) package.

All the other models are fine-tuned from pre-
trained transformers based language representation
models. We have downloaded Bio-ELECTRA++
from Zenodo1. Besides our four biomedical cor-
pus pretrained ELECTRA models, we have used
BioBERT (Lee et al., 2019) version 1.1 and ELEC-
TRA Base models. The binary anatomical struc-
ture entities are masked in candidate sentences as
in (Zhang et al., 2018; Lee et al., 2019). Besides
that, no further preprocessing is done. All the mod-
els are trained for three epochs, using the the de-
fault learning rate and maximum allowed batch size
for our 8GB Nvidia RTX 2070 GPU.

The test performance of models tested are sum-
marized in Table 3. Even after the benefit of depen-
dency parses, contextualized graph convolution net-
works were at the bottom of the performance rank
tying with the smallest language representation
model. Two Bio-ELECTRA models, namely Bio-
ELECTRA Base and Bio-ELECTRA Mid outper-
formed BioBERT. Given that the Bio-ELECTRA
Mid has less than half the parameters of Bio-BERT,

1https://doi.org/10.5281/zenodo.
3971235

its performance is especially impressive. We chose
the best performing Bio-ELECTRA Base model
for the second stage.

3.1 Extending Curation Set via Active
Learning

Since labeled data set generation is costly and time
consuming, we have tried to leverage active learn-
ing to minimize curation effort while trying to max-
imize prediction performance. To this end, 250
randomly selected candidate sentences from the
nerve-ganglia PMC data set, are interactively cu-
rated by our curator in ten iterations. Each iteration
has consisted of 25 candidate sentences selected by
the binary relation extraction classifier trained on
all the the curated sentences from the previous itera-
tions plus the base training set. In the first iteration,
the classifier is trained on the base training set only.
For the control set, we have randomly selected 250
candidate sentences from the nerve-ganglia PMC
data set, which are annotated separately by our cu-
rator. We have used uncertainty sampling as our
oracle query strategy where the 25 unlabeled sen-
tences that are closest to the decision boundary
(probability estimate of 0.5) are selected for cu-
ration at each iteration. After each iteration, the
extended training set is used to train ten randomly
initialized models which are tested on the testing
set. The precision and F1 performance scores over
the active learning set is shown in Figure 1.

The testing performance of active learning based
vs random selection based training set expansion
is shown in Table 4. Active learning strategy was
significantly better than random selection based on
two-tailed t test.

3.2 Effect of Hyperparameter Optimization

The additional 500 curated sentences (250 from
active learning, 250 from random control set) are
combined with the base training set. To maximize
relation extraction performance, we used hyperpa-
rameter tuning on the 80%/20% training/dev set
split of the combined training set. Using hyper-
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Model Parameters Precision Recall F1

Contextualized-GCN 71.05 (4.36) 54.23 (4.20) 61.36 (3.01)
ELECTRA Base 110M 69.35 (4.23) 70.85 (5.43) 70.03 (4.39)
BioBERT 110M 67.82 (4.71) 72.34 (2.18) 69.89 (2.40)
Bio-ELECTRA++ 11M 54.41 (2.11) 70.32 (3.38) 61.26 (1.33)
Bio-ELECTRA Mid 50M 69.16 (3.53) 73.83 (2.24) 71.36 (2.16)
Bio-ELECTRA Base 110M 69.93 (2.91) 74.26 (3.55) 71.99 (2.76)
Bio-ELECTRA Mid Combined 50M 67.66 (2.38) 74.36 (5.80) 70.70 (2.78)
Bio-ELECTRA Mid-tall 88M 63.89 (4.51) 65.96 (3.81) 64.78 (2.98)

Table 3: Binary connectivity/no-connectivity relation extraction on base set

Data Set Precision Recall F1

Random 70.29 (1.69) 74.04 (3.27) 72.06 (1.68)
Active learning 75.88 (2.70) 75.11 (2.39) 75.47 (2.30)

Table 4: Test performance effect for active learning vs random selection based labeled set expansion

Figure 1: Average test performance over active learn-
ing iterations

opt (Bergstra et al., 2013) Python package, we
searched for the optimum F1 value for the follow-
ing hyperparameters; the learning rate among the
values 1e-5, 5e-5, 1e-4 and 5e-4, number of epochs
among the values 3, 5, 10. We have used the maxi-
mum possible batch size of 16 for our 8GB RAM
GPU. The best performing hyperparameter com-
bination was then used to train ten randomly ini-
tialized Bio-ELECTRA Base based connectivity
relation extraction classifiers. The results together
with ten runs using default learning parameters are
shown in Table 5. Hyperparameter optimization
performance was significantly better than default
learning parameter performance as determined by
two-tailed t test (p = 0.014)

To detect anatomical and functional connectivity
relations among candidate structure binary relation

sentences, we have introduced a three class classi-
fier based on the same Bio-ELECTRA Base lan-
guage representation model as the connectivity/no-
connectivity classifier. Ten randomly initialized
classifiers are trained using optimized hyperparam-
eters. The test performance is shown in Table 6.

4 Discussion

Connectivity relations constituted only about 12%
of the connectivity relationship candidates in our
corpus. Taking this into account, the anatomical
and functional connectivity detection performance
of our final classifier is good enough to be used
for ANS connectivity knowledge base construction
with drastically reduced domain expert curation.

When looking at our model’s performance, we
considered errors at the level of individual connec-
tivity relations labels, meaning we could (and did)
have some sentences with multiple errors. We de-
fined errors as cases where relation labels tagged
by the model and the annotator did not agree. We
performed our error analysis in two phases. In
phase 1, our analysis was performed using only
binary connectivity data (i.e. did annotators mark
a relationship using any type of connectivity or as
no relation) from 40 connectivity errors: 19 false
positives and 21 false negatives. False positives
were defined as instances when the model predicted
connectivity when there was actually no relation-
ship (as defined by the annotator). Inversely, false
negatives were cases when the model predicted
structures to have no relationship when there was
actually some type of connectivity. In phase 2, our
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Model Precision Recall F1

Bio-ELECTRA Base (default) 76.97 (2.72) 74.68 (2.32) 75.77 (1.99)
Bio-ELECTRA Base (opt) 77.32 (2.39) 77.98 (1.65) 77.62 (1.33)

Table 5: Connectivity/No-Relation test performance on the extended training set

Relation Precision Recall F1

Anatomical connectivity 68.93 (2.94) 77.12 (1.37) 72.77 (1.99)
Functional connectivity 82.79 (2.39) 68.00 (2.80) 74.61 (2.35)

Table 6: Anatomical/functional connectivity test performance on the extended training set

analysis was performed on anatomical connectivity
errors (18 false positives; 15 false negatives) and
functional connectivity errors (5 false positives; 11
false negatives). With both phases, we noticed pat-
terns emerging among the errors, although in most
cases, these errors were present across all connec-
tivity types. In other words, there was very little
difference between the errors seen in phase 1 vs.
the errors seen in phase 2.

The first identified error pattern was mislabeled
data due to human error. We noticed 4 instances
where the data was mislabeled. The second type of
error occurred because a solid line of demarcation
between connectivity types was difficult to estab-
lish due to ambiguities in our curation guidelines
and the overall difficulty of the task. When we
began annotating, connectivity between structures
could only be defined as anatomical, functional or
having no relation. After discussing the differences
in our annotations though, it became apparent we
needed to add additional connectivity types to clar-
ify the lines of demarcation between each. As a
result, we added structural, topological, and gen-
eral connectivities, and while we did see improved
classifier performance after adding these, it appears
we weren’t entirely successful in our attempts to
explicate our connectivity types. In the example,

"The central amygdaloid nucleus (CeA)
and the bed nucleus of the stria termi-
nalis (BNST), which is considered to be
a component of the “extended amyg-
dala”, establish important connections
with the hypothalamus and other brain
areas controlling visceral and sensory in-
formation."

BNST and the extended amygdala were incorrectly
identified as having anatomical connectivity. This
“part of the whole” pattern was seen multiple times
in our errors (binary, anatomical and functional),

primarily as a false positive. In future works, it
might benefit curation efforts to add additional con-
nectivity type(s), e.g. fractional connectivity for
this “part of the whole” pattern, in order to fur-
ther elucidate lines of demarcation. Additionally,
because connections between structures are not al-
ways obvious, even to human curators (i.e. if A
is connected to B and B is connected to C, is A
always connected to C?), the lines of demarcation
separating connectivity types may always remain
somewhat hazy.

We were able to identify a few additional pat-
terns by comparing the syntax and vocabulary of
sentences with errors to that of sentences without
errors. In general though, sentences with errors
tended to have far more complex sentence struc-
ture than sentences without. More specifically, er-
ror prone sentences generally contained far more
prepositional phrases and compound subject and
verb phrases. For example, we saw multiple errors
within the following sentence:

“Chemoreceptors in the carotid body
or aortic body in the walls of the inter-
nal carotid artery or the aorta sense the
level of oxygen or carbon dioxide in the
blood and convey these signals via the
glossopharyngeal and vagus nerves to
the nucleus of the tractus solitarius.”

Just from a cursory glance, it becomes obvious that
this sentence is complicated; it contains multiple
subject and verb phrases clouded by prepositional
phrases. Unfortunately, the convoluted nature of
the sentence hurts readability for both humans and
machines. Because humans also tend to have issues
understanding these highly complex sentences, we
feel the best solution is for authors to limit the com-
plexity of their sentences to reasonable levels when
possible. If a sentence is too complex for a human
to understand, it will most likely be too complex
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for a computer. Additionally, we noticed persis-
tent issues when subjects were not explicit. Unre-
solved pronouns (e.g. pronouns whose antecedents
are unknown) and ambiguous body structures (i.e.
fibers) tended to cause errors wherein the model
would correctly identify that the sentence contained
connectivity but would incorrectly identify which
structures are connected. With regards to verb us-
age, our model seemed to perform better when the
connectivity between structures was described in
active voice rather than passive. One potential ex-
planation is that sentences using active voice tend
to be more clear and simple than sentences using
passive voice. Lastly, our model seemed to per-
form worse the further apart the two connecting
structures were within the sentence.

5 Conclusions

In this paper, we introduced a labeled corpus for
ANS connectivity relations which is further ex-
panded via active learning. The labeled ANS con-
nectivity relation corpus is used to develop relation
extraction systems mostly based on language repre-
sentation neural models. We have introduced four
biomedical domain pretrained ELECTRA (Clark
et al., 2020) based discriminative language repre-
sentation models, two of which have outperformed
BioBERT (Lee et al., 2019) on the ANS connectiv-
ity relation extraction task. Using active learning
guided curation, the labeled corpus is expanded
minimizing the curation effort while significantly
improving ANS connectivity relation extraction
performance.

Based on the observed benefits of the ac-
tive learning, we are planning to use our Bio-
ELECTRA based relation extraction system in a
web based tool for ANS connectivity knowledge
base construction with active learning based con-
tinuous learning ability.

Software and Data Availability

All pretrained Bio-ELECTRA models are available
on Zenodo (https://doi.org/10.5281/
zenodo.4699034). The labeled connectivity
corpus and codebase including the connectivity
relation annotation tool are available on Github
(https://github.com/SciCrunch/
connectivity-re).
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Abstract

Biomaterials are synthetic or natural materials
used for constructing artificial organs, fabricat-
ing prostheses, or replacing tissues. The last
century saw the development of thousands of
novel biomaterials and, as a result, an expo-
nential increase in scientific publications in the
field. Large-scale analysis of biomaterials and
their performance could enable data-driven
material selection and implant design. How-
ever, such analysis requires identification and
organization of concepts, such as materials and
structures, from published texts. To facilitate
future information extraction and the applica-
tion of machine-learning techniques, we de-
veloped a semantic annotator specifically tai-
lored for the biomaterials literature. The Bio-
materials Annotator has been implemented fol-
lowing a modular organization using software
containers for the different components and or-
chestrated using Nextflow as workflow man-
ager. Natural language processing (NLP) com-
ponents are mainly developed in Java. This
set-up has allowed named entity recognition
of seventeen classes relevant to the biomateri-
als domain. Here we detail the development,
evaluation and performance of the system, as
well as the release of the first collection of an-
notated biomaterials abstracts. We make both
the corpus and system available to the commu-
nity to promote future efforts in the field and
contribute towards its sustainability.

1 Introduction

The last two decades saw the field of biomate-
rials and tissue engineering grow from a small
niche of biomedical research to an extensive do-
main, covering topics such as functional materi-
als, cell-material interaction, nanomaterials and
medical devices. The expanding scientific data

generated by the field is primarily available in
text documents, such as peer-reviewed research
papers, patents and conference abstracts. This ever-
growing knowledge is increasingly harder for re-
searchers to efficiently discover, organize and use.
For example, systematically reviewing the appli-
cations and scaffolds made of a commonly used
polymer such as poly-lactic-glycolic-acid (PLGA),
requires skimming through >12,000+ abstracts
(MEDLINE search on October 2020). Among the
different alternatives for the automated processing
of available texts, Natural Language Processing
(NLP) workflows for information retrieval and in-
dexing offer a much needed automated solution.
Such computational workflows facilitate informa-
tion discovery, information extraction and orga-
nization, saving researchers time and minimizing
manual tasks.

Central to information retrieval and indexing is
the extraction of concepts of interest, also known
as Named Entity Recognition (NER). NER is an
integral part of NLP workflows as it allows the au-
tomated identification of concepts in unstructured
text and its assignment to a pre-defined category
or class. For example, in the field of biomaterials,
categories may include ‘Biomaterials’ (‘PLGA’),
‘Structures’ (such as ‘fibre’ or ‘sponge’) and ‘Tis-
sues’ (such as ‘tendon’ or ‘bone’). The use of NER
to automatically recognize entities enables several
downstream applications, including machine trans-
lation, information retrieval and indexing as well
as automated question-answering mechanisms.

The recognition of concepts in the biomaterials
domain is complicated by language and terminol-
ogy originating from multiple scientific disciplines
(chemistry, engineering, biology, medicine). A sig-
nificant challenge lies in identifying and combining
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Figure 1: Overview of the workflow used in the development and validation of the Biomaterials Annotator.

lexical and semantic resources across domains, and
thus to date there are no automatic biomaterials-
specific NER systems to detect relevant entities of
interest.

Here, we report the development of the first
biomaterials-specific annotation system, designed
to recognize named entities from seventeen differ-
ent categories, reflecting the complexity and diver-
sity of contemporary biomaterials research. When
considering approaches for the design of the Bio-
materials Annotator, i.e. lexical versus machine
learning-based NER, such as CRF or RNN, it was
essential to consider the number of desired annota-
tion categories in the system (17) and the absence
of an annotated corpora for text mining efforts for
the majority of them. Based on these premises, it
was concluded that training a model for each cat-
egory was impractical. Thus, the system relies on
manually curated and validated lexical resources.

To cover entities from different domains, mul-
tiple nomenclatures, vocabularies, and especially
ontologies were identified and combined. To com-
bine these resources into a single instrument, the
Devices, Experimental scaffolds and Biomateri-
als Ontology (DEB) was used providing the log-
ical schema and the definition of key categories
(Hakimi et al., 2020).

The resulting open source-system, the Bio-

materials Annotator, along with an annotated
collection of biomaterials literature, are publicly
available for use and further development at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

2 Previous relevant work

Unlike general purpose NLP systems, biomedical
domain-specific tools require advanced approaches
to detect classes of interest such as diseases and
gene names. In this area, there are several well-
known and widely used systems and tools, such
as Metamap (Aronson, 2001) and Pubtator (Wei
et al., 2013), which were developed using dif-
ferent NER methodologies and approaches, e.g.
gazetteers and hand-made rule-based NER; ma-
chine learning-based NER that includes Hidden
Markov Model, Conditional Random Fields (CRF)
and recurrent neural network (RNN); and Hybrid
NER (Lee et al., 2003; McCallum and Li, 2003;
Song et al., 2004; GuoDong and Jian, 2004; Zhao,
2004; Yeh et al., 2005; Campos et al., 2013; Song
et al., 2018; Dang et al., 2018; Kaewphan et al.,
2018; Cho and Lee, 2019). In the context of this
work, generic text mining tools previously devel-
oped for the eTRANSAFE project (Pognan et al.,
2021) have been adapted and further developed for
the biomaterials domain.
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Whilst there are a handful of ontologies in the
biomaterials domain (such the nanoparticle ontol-
ogy NPO (Thomas et al., 2011) and the Bone and
Cartilage Tissue Engineering Ontology BCTEO
(Viti et al., 2014)), to the best of the our knowledge,
the DEB ontology (Hakimi et al., 2020) is the only
one that is tailored to link and curate concepts for
Biomaterials NER. Therefore, it specifically cov-
ers different categories related to the biomaterials
domain.

3 Methodology overview

To develop the annotation tool, the workflow
in Figure 1 was followed. Various corpora of
abstracts were used during the development,
covering the general biomaterials literature.
These corpora included a collection of man-
ually curated abstracts of the biomedical
polymer polydioxanone (Fuenteslópez et al 2021,
manuscript in preparation, GitHub repository:
https://github.com/ProjectDebbie/
polydioxanone_project) and a previously
published biomaterials gold standard collection
(Hakimi et al., 2020), comprising a total of 1222
abstracts. Corpora were passed through four steps,
each described in detail below. The first step was a
text preprocessing component (section 3.1). This
was followed by concept recognition (section 3.2),
initially using the MeSH controlled vocabulary
and the DEB ontology. Then, the annotations
were evaluated by two domain experts, errors
were flagged up and additional lexical resources
were added through keyword searches. Concept
recognition, manual evaluation and curation of
lexical resources were performed in an iterative
manner during the development phase (section 3.3)
over 1000 abstracts. Once the development phase
was completed, validation by domain experts was
performed on 199 independent abstracts which
were not used during the development process
(section 4.1). The resulting annotated collection
of biomaterials abstracts was published as open
source.

3.1 Text preprocessing

To prepare the text for concept recognition,
several Natural Language Processing (NLP) steps
were performed, namely: tokenization, sentence
splitting, part-of-speech tagging and morpho-
logical analysis (Figure 2.A). We developed the
Standard NLP preprocessing component which

Figure 2: Overview of the components of the Bioma-
terials Annotator; including the standard preprocessing
steps (A) and the biomaterials named entity recognition
steps (B).

includes the steps previously outlined. This
component is written in JAVA and it uses the
Stanford CoreNLP Natural Language Processing
open source toolkit. The use of the Stanford
CoreNLP API benefits greatly from the provision
of a set of stable, robust, high quality linguistic
analysis components, which can be easily invoked
for common scenarios (Manning et al., 2014).
The Standard NLP preprocessing component
is available at https://gitlab.bsc.es/
inb/text-mining/generic-tools/
nlp-standard-preprocessing.

3.2 Concept recognition

Here, we developed NER components to detect
relevant entities related to the biomaterials domain
based on the DEB ontology in conjunction with
other open relevant resources, such as the National
Cancer Institute Thesaurus (NCIT) and (CHEBI).
A comprehensive description of the resources
included in this work is described in section 3.3 and
Appendix B. Lexical resources were transformed
into gazetteers to be used in the NER process
(Figure 2.B). Internally, the NER process was
divided into three main steps; the MSH Annotator,
which annotates relevant categories from the
MeSH terminology; the Dictionary Annotator,
which annotated predefined categories from the
relevant dictionaries; and the Post-processing step
in which specific rules were executed. These in-
clude entity recognition based on lexical rules and
the removal of false positives, among other tasks.
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The MSH Annotator is available at https://
github.com/ProjectDebbie/debbie_
umls_annotations; and the Dictionary An-
notator and Post-processing rules are available at
https://github.com/ProjectDebbie/
DEBBIE_dictionaries_annotations.
These components are instances of the nlp-gate-
generic-component (https://gitlab.bsc.
es/inb/text-mining/generic-tools/
nlp-gate-generic-component), a
generic component developed in JAVA by our
team that uses the General Architecture of Text
Engineering (GATE) software (Cunningham et al.,
2013) and can be parametrized with gazetteers and
specific handmade JAPE (Java Annotation Patterns
Engine) rules. Using the Biomaterials Annotator,
every recognised entity is labelled with one of the
categories (Figure 3.A-B).

The nlp-gate-generic-component was configured
to use the GATE Flexible gazetteer, allowing to
capture the words present in the text as well as
their morphological root value (lemma). This en-
sures that inflected forms of a word (i.e. plural,
singular, -ing forms, tense) can be recognised and
analysed as a single item. In addition, the dictio-
naries used in the Biomaterials Annotator include
preferred synonyms, providing the possibility to
map terms semantically to a specific primary con-
cept. Thus, the Biomaterials Annotator performs
semantic mapping of the annotations by, not only
recognizing the category of an entity, but also link-
ing it to the appropriate entry in a well-established
resource (Jovanović and Bagheri, 2017). For exam-
ple, the terms: “canine”, “dogs” and “dog” were
all annotated under the ‘Species’ category; and in-
side the features of each annotation the preferred
term is “dog”. This enables the retrieval of all the
corresponding terms using the single search term

‘dog’.

To complete the annotation process, the annota-
tor executes JAPE rules for post-processing func-
tions, such as the removal of false positives and the
addition of information to each annotation. Added
information includes the ontology source, the ontol-
ogy term id, the lemma and the preferred synonym
(Figure 3.C-D). In addition, JAPE rules were run
to identify entities using lexical constraints and
address the concept recognition of abbreviations.
Rule-based entities recognition can use part-of-
speech of concepts, as an example; in the case
of ‘Cell’ category, there is a lexical rule defined to

detect concepts:
(Token.pos == "JJ" | Token.pos == "NN") To-
ken.root == "cell"
The inclusion of this rule enables the detection of
Cell-type concepts that are not present in the dic-
tionaries; e.g. “neuronal cells”, “cancer cell” and

“osteogenic cells”. The discovery of such rules is
a continuous work; future Biomaterials Annotator
versions will improve the lexical rules included to
detect relevant concepts.

Another key problem to address is the recogni-
tion of abbreviation concepts; to achieve this prob-
lem we developed a post-processing rule based
on a modified version of Schwartz’s algorithm
(Schwartz and Hearst, 2003). First, we detect
an abbreviation candidate given a text pattern
(regex=”(?:[a-z]*[A-Z][a-z]*)2,”); subsequently,
the Schwartz’s algorithm is applied to detect
whether there is a definition that matches the abbre-
viation candidate in the sentence; in such case, if
the definition has an entity class assigned to it, we
annotate the abbreviation with the same class. As
an example, in the following sentence: “We investi-
gated the potential of human bone marrow derived
Mesenchymal stem cells (MSCs) for neuronal differ-
entiation in vitro....”; the expression ‘Mesenchymal
stem cells’ is annotated under the ’Cell’ category.
But the ‘MSCs’ abbreviation is not; moreover in the
rest of the text the abbreviation is used instead of
its long form. The abbreviation-rule detects ‘MSCs’
as an abbreviation of ‘Mesenchymal stem cells’ and
assigns the ’Cell’ category to all the ‘MSCs’ men-
tions in the text.

3.3 Terminologies and ontologies curation
and manual evaluation

One of the main hurdles to biomaterials concept
recognition is the interdisciplinary nature of the
domain, with scientific texts containing concepts
from various fields such as biology, chemistry,
engineering and medicine. A key objective of
the Biomaterials Annotator was to identify and
combine lexical resources from the different
domains in order to cover as many relevant
biomaterials concepts as possible. Resources were
identified using a manual, bottom-up approach,
with cyclic re-iteration, as shown in Figure 1. As a
starting point, abstracts were annotated with the
automated NER approach described in section 3.2
using the DEB ontology. After each annotation
round, manual evaluation was performed by
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Figure 3: The appearance of an annotated abstract on GATE’s user interface. A) Shows the annotated text and in B)
colored labels used to tag annotations by their respective category. C) Information regarding each annotation (type,
position, features), and in D) a specific example: “polymers”: "BiomaterialType" entity with their corresponding
features.
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Figure 4: An illustration of part of the annotation schema (showing five out of seventeen categories), which relies
on multiple semantic resources for each annotation category. Full details of all categories and resources are in the
Appendix A.
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two domain experts. The evaluation entailed
reviewing samples of 10-20 abstracts in order
to flag annotation errors and highlight relevant
concepts which were missed by the system. The
flagged terms were used for keyword search in
the Bioportal (Martínez-Romero et al., 2017) and
the UMLS metathesaurus browser (Bodenreider,
2004). Through these searches, specific classes
(or ‘parent concepts’) within relevant ontologies
and UMLS ‘semantic types’ were identified
and added to the annotation schema (part of
which is shown for illustration in Figure 4). The
resources identified belonged to three categories:
ontologies, controlled vocabularies and nomen-
clatures. All the ontologies were open access and
downloaded in .owl format from NCBO Bioportal
(http://bioportal.bioontology.org)
(Martínez-Romero et al., 2017). The controlled
vocabulary (MeSH) was downloaded for use
under license from the UMLS Terminology
Services. The GMDN nomenclature was kindly
provided in .xml format by the GMDN agency
under a license. A summary of all the used
resources is in Appendix B. For the resources
to be used in the annotation system, relevant
classes were imported into a dictionary (gazetteer)
containing the following fields: the term, its
label (annotation category), the ID and whenever
available, a preferred synonym. The extraction of
desired classes from the ontologies to dictionary
format was done using an implementation of
owlready2 (Lamy, 2017) and the code (named
owl2dict_light) is available in an open github
repository as part of the (https://github.
com/ProjectDebbie/OWL2DICT). The
resulting dictionaries are also available
(https://github.com/ProjectDebbie/
DEBBIE_dictionaries_annotations).
These were in turn used by the Dictionary
Annotator component for concept recognition as
described above in section 3.2.

4 Results

4.1 Expert validation

To measure the efficiency of a text mining system
such as the Biomaterials Annotator, it is fundamen-
tal to organize and plan a validation stage aimed at
indicating the performance of the system. The Bio-
materials Annotator was validated through manual
verification of the validation set, an independent
collection of 199 abstracts. The annotated valida-

tion set, resulting from the execution of the Bio-
materials Annotator, was manually verified by 9
biomaterials experts. The validation process was
performed using the GATE user interface, where
annotations made by the system were presented
to the biomaterials experts with the possibility of
adding missing annotations, removing false annota-
tions and editing annotations. Once the expert had
finished the validation of a document, it was saved
as a different validated copy.

Two strategies to indicate if two annotations
agree or not were considered; a strict approach,
in which the annotations agree if they have the
same origin and end offset, and a more relaxed or
“lenient” approach, where the annotations agree
if they overlap at some point. For example, in
the partial approach the biomaterials expressions
“polyvinyl alcohol” and “polyvinyl” are considered
to agree, which does not happen in the strict agree-
ment.

To measure the performance of the NER system,
the set validated by the experts was taken as the
gold standard and the system’s output as the set
to be validated. Table 1 shows the recall, preci-
sion and F-score, including the strict and lenient
approaches, as well as an average between them.
The global scores calculated for the system are also
presented, obtaining an 0.75 strict F-score, 0.79
lenient F-Score and 0.77 average F-score.

Figure 5 shows the average F-scores calculated
for the different categories. Categories with an av-
erage F-score above 0.8 are considered categories
in which the concepts are satisfactorily covered by
the resources used (e.g. Structure, BiomaterialType
and Tissue). On the other hand, there are categories
with lower scores, and specifically: ’Biomaterial’,
’Biologically active substance’ and ’Cell’. The cat-
egories Biomaterials and Biologically active sub-
stance had significantly reduced accuracy because
they include many ambiguous concepts. Some ma-
terials may act as a biomaterial in one set-up, but
can also be measured in terms of cell expression
or non-biomaterial use in another set-up (e.g. col-
lagen). In the latter case, the human validator will
delete the ‘Biomaterial’ annotation. Solving this
kind of ambiguities will require other strategies,
such as specific lexical rules or machine learning
approaches. Another factor impeding good quality
annotations of Biomaterials is the lack of good qual-
ity vocabulary of medical polymers. Polymer and
co-polymer naming is notoriously variable, with

41



Category Precision
- strict

Recall
- strict

F-score
- strict

Precision
- lenient

Recall
- lenient

F-score
- lenient

Precision
- average

Recall
- average

F-score
- average

Adverse Effects 0.94 0.75 0.82 1 0.8 0.87 0.97 0.77 0.85
Associated Biological Process 0.88 0.68 0.77 0.94 0.73 0.82 0.91 0.71 0.79
Biologically Active Substance 0.58 0.43 0.49 0.7 0.52 0.59 0.64 0.48 0.54
Biomaterial 0.76 0.47 0.57 0.83 0.52 0.63 0.79 0.49 0.6
Biomaterial Type 0.92 0.88 0.9 0.98 0.93 0.95 0.95 0.9 0.92
Cell 0.76 0.59 0.66 0.84 0.65 0.73 0.8 0.62 0.69
Effect On Biological System 0.96 0.69 0.79 1 0.72 0.82 0.98 0.71 0.8
Manufactured Object 0.96 0.86 0.9 0.96 0.86 0.9 0.96 0.86 0.9
Manufactured Object Component 0.91 0.84 0.86 0.91 0.84 0.87 0.91 0.84 0.87
Manufactured Object Features 0.68 0.59 0.62 0.71 0.61 0.65 0.69 0.6 0.64
Material Processing 0.78 0.6 0.67 0.83 0.63 0.71 0.81 0.61 0.69
Medical Application 0.68 0.49 0.57 0.82 0.6 0.69 0.75 0.54 0.63
Research Technique 0.81 0.63 0.71 0.87 0.68 0.76 0.84 0.66 0.73
Species 0.97 0.79 0.87 0.99 0.81 0.89 0.98 0.8 0.88
Structure 0.93 0.77 0.84 0.95 0.79 0.86 0.94 0.78 0.85
Study Type 0.96 0.95 0.96 0.99 0.97 0.98 0.98 0.96 0.97
Tissue 0.8 0.77 0.78 0.85 0.82 0.83 0.82 0.8 0.81
Global 0.84 0.69 0.75 0.89 0.73 0.79 0.86 0.71 0.77

Table 1: The performance of the Biomaterials Annotator in a test set of 199 abstracts validated manually by 9
experts.

some named by their commercial name or abbrevi-
ation. To address these inaccuracies, future work
will involve expanding relevant ontologies using
tools such as Spike (Taub-Tabib et al., 2020), in-
cluding additional lexical rules, and adding ma-
chine learning components.

4.2 Full system implementation and
availability

A significant challenge for scientific software ap-
plications is providing facilities to share, distribute
and run such systems in a simple and convenient
way. Furthermore, an important concern is the
possibility of replicating the results obtained
during the research. In order to accomplish these
requirements and follow good practices, we de-
veloped the Biomaterials Annotator using Docker
as software container technology and Nextflow
as the workflow manager. Through the use of
Docker, all the subcomponents of the Biomaterials
Annotator were individually compartmentalized;
hosting their own dependencies and programs that
work only inside the isolated container. In addition,
the Nextflow workflow manager was used for
the automated orchestration and execution of the
pipeline. By using this architecture, the entire tool,
or any of its individual components, can be easily
installed and run in heterogeneous environments.
The Biomaterials Annotator is available at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

The Biomaterials Annotator is part of DEB-
BIE (Database of biomedical materials), a
wider system that retrieves abstracts from
pubmed, annotates using the Biomaterials An-

notator and deposits them in an open access
database. DEBBIE is under development and
can be accessed at https://github.com/
ProjectDebbie/DEBBIE_pipeline.

Category Count
Adverse Effects 657
Associated Biological Process 6231
Biologically Active Substance 7709
Biomaterial 5726
Biomaterial Type 1543
Cell 6839
Effect On Biological System 972
Manufactured Object 5967
Manufactured Object Component 2307
Manufactured Object Features 4200
Material Processing 2728
Medical Application 3868
Research Technique 3701
Species 2089
Structure 4136
Study Type 1806
Tissue 9997
Entities 70476
Tokens 392605
Sentences 15979
Abstracts 1222

Table 2: Annotated biomaterials corpus statistics.

4.3 Annotated corpus release

Another key objective was to generate the first an-
notated corpus with entities related to the bioma-
terials domain. Such a corpus will facilitate the
development and evaluation of text mining mod-
els for automated extraction of biomaterials-related
data from text.

The biomaterials annotated dataset consists of
1222 biomaterials abstracts describing the evalu-
ation of biomaterials in either a laboratory or a
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Figure 5: Average F-score of the automated annotations across categories.

clinical setting. Each abstract is individually con-
tained as a separate file under the GATE format.
Table 2 shows statistics concerning the number of
concepts corresponding to the different categories,
as well as the number of total entities, sentences
and tokens.

The annotated biomaterials corpus is
available and free for use; information
to access the corpus can be found at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

5 Conclusions and future directions

In this work we present the Biomaterials Annota-
tor, an ontology-based NER system that identifies
17 domain specific types of concepts and delivers
an annotated biomaterials corpus of 1222 MED-
LINE articles available for future text mining and
machine learning efforts. We have carried out a val-
idation activity to measure the performance of the
NER system, with the participation of nine bioma-
terials experts, obtaining a global average F-score
of 0.77.

Future work in the development of the system
could involve annotating relations and linking iden-
tified concepts to manufactured biomaterials ob-
jects. It may also include incorporating additional
categories using controlled resources. Improve-
ments to the system will continue in an iterative

manner aiming to enhanced performance in key
categories such as Biomaterials and Cells. In addi-
tion, future versions of the Biomaterials Annotator
will be closely related to the DEBBIE system and
include additional functionalities and features de-
veloped to achieve its main objectives.

The Biomaterials Annotator and the annotated
corpus are open source and available to the com-
munity to promote future efforts in the field and
contribute towards its sustainability.
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A Semantic resources

Table 3: List of semantic resources used by the Biomaterials Annotator

Semantic Resource Name Acronym Scope and relevance Type

1 Chemical Methods
Ontology CHMO Methods used to collect chemical

experiments data. Ontology

2 Chemical Entities of
Biological Interest CHEBI Compounds of biological relevance,

macromolecules. Ontology

3
The Devices, Experimental
Scaffolds and Biomaterials
Ontology

DEB
Biomaterials-related concepts,
materials, structures,
material processing.

Ontology

4 EDAM Bioimaging
Ontology

EDAM-
BIOIMAGING

Imaging and sample preparation
techniques. Ontology

5 Global Medical Device
Nomenclature GMDN Full names of medical devices. Nomenclature

6 Interlinking ontology of
biological concepts IOBC

Biological concepts including
biological phenomena, diseases,
molecular functions,
research imaging techniques.

Ontology

7 Medical Subject Headings MeSH
A hierarchically organized
vocabulary produced by
the NLM.

Controlled
vocabulary

8 National Cancer Institute
Thesaurus NCIT Vocabulary for clinical care,

translational and basic research.
Controlled
vocabulary

9 Nanoparticle ontology NPO The description, preparation, and
characterization of nanomaterials. Ontology

10 Ontology for Biomedical
Investigations OBI

Biomedical protocols, instruments,
data generated, materials, analysis
performed.

Ontology

11 Ontology of Nuclear
Toxicity ONTOTOXNUC Models, chemicals, tools, research

techniques and models. Ontology

12 Precision Medicine
Ontology PREMEDONTO

Human disease terms, genomic,
molecular, phenotype, related
medical vocabulary.

Ontology

13 Uber Anatomy Ontology UBERON An integrated cross-species
anatomy ontology Ontology
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B Annotation categories

Table 4: Annotation categories, their respective semantic resources and imported classes

Annotation
category Definition Resource and imported classes

1 Biomaterial
A non-drug raw material
or substance suitable for
inclusion in systems which
augment or replace the
function of bodily tissues
or organs.

DEB: Biomaterials
CHEBI: Macromolecule
MeSH: Biomedical or Dental Material

2 Biomaterial
Types

Classification or nature
of biomaterials. DEB: Biomaterial Type

3
Biologically
Active
Substance

Substance included in a
manufactured object in
order to impart a biological
activity.

DEB: Biologically Active Substance
MeSH: amino acid, peptide, protein
Biologically Active Substance
Pharmacologic Substance
NCIT: Protein Domain

4 Manufactured
Object

A physical object created
by hand or machine.

DEB: Manufactured Object
MeSH: Medical device
GMDN: Full nomenclature

5
Manufactured
Object
Component

A part, region or
component referred to
as a distinct unit, such
as a surface or a layer.

DEB: Manufactured Object Component

6 Medical
Application,
Disease
or condition

Intended use, context,
function or outcome of
the manufactured object.

DEB: Medical Application
MeSH: Disease or Syndrome
Therapeutic or Preventive Procedure
Anatomical Abnormality

7 Manufactured
Object
Features

Characteristics inherent
or given during processing
to a manufactured object or
its components.

DEB: Manufactured Object Features
MeSH: Chemical Viewed Structurally

8 Structure

The configuration, form
or texture associated with
a manufactured object
or its components.

DEB: Structure

9
Associated
Biological
Process

A cellular or biological
process that the
manufactured object is
designed to cause
or support, or is measured
to affect.

DEB: Associated Biological Process
MeSH: Organ or Tissue Function
Molecular Function
Cell Function
Biological function
NCIT: Cellular Process

10 Material
Processing

A planned process which
results in physical changes
in a specified input
material.

DEB: Material Processing
CHMO: Material Processing

11 Cell
The reported cell line
or primary cell
type.

MeSH: Cell
NCIT: Cell
UBERON: Bone cell, cardiocyte
circulating cell
connective tissue cell
epithelial cell

12 Species
The species and /or
breed used in the
study.

MeSH: Mammal

13 Tissue
A tissue or an organ
mentioned in the
study as the target
or test system for
the biomaterial object
or medical device.

MeSH: Tissue,
Body Location or organ
Body part, organ or
organ component
UBERON: Tissue
PREMEDONTO:Body Part,
Organ, Organ System
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Table: Continued

Annotation
category Definition Resource and imported classes

14 Adverse
Effects

An unfavourable or
unintended disease, sign,
or symptom (including an
abnormal laboratory
finding) that is temporally
associated with the use
of a medical device or
biomaterial.

DEB: Adverse Effects
MeSH: Pathologic Function

15 Research
Technique

The reported laboratory
technique or instrument
used in an experimental
study.

MeSH: Laboratory Procedure,
Molecular Biology Research Technique
DEB: Research Technique
NCIT: Research Technique
NPO: Instrument
IOBC: Microscope
OBI: Assay
EDAM: Imaging,
Sample preparation
ONTOTOXNUC: Outil

16
Effect
On Biological
System

The effect associated with
manufactured object in
a specific test system
(cells, tissue or organism).

DEB: Effect On Biological System

17 Study
Type

The study set up,
such as in vitro,
in vivo, or clinical.

DEB: Study Type
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Abstract

Automatically extracting keyphrases from
scholarly documents leads to a valuable con-
cise representation that humans can under-
stand and machines can process for tasks, such
as information retrieval, article clustering and
article classification. This paper is concerned
with the parts of a scientific article that should
be given as input to keyphrase extraction meth-
ods. Recent deep learning methods take ti-
tles and abstracts as input due to the increased
computational complexity in processing long
sequences, whereas traditional approaches can
also work with full-texts. Titles and abstracts
are dense in keyphrases, but often miss im-
portant aspects of the articles, while full-texts
on the other hand are richer in keyphrases but
much noisier. To address this trade-off, we pro-
pose the use of extractive summarization mod-
els on the full-texts of scholarly documents.
Our empirical study on 3 article collections
using 3 keyphrase extraction methods shows
promising results.

1 Introduction

Automatic keyphrase extraction is the process of
identifying representative phrases in a document
that summarize its content. Keyphrases are impor-
tant pieces of information for many applications,
including information retrieval (Ji et al., 2019;
Boudin et al., 2020), text classification (Meng et al.,
2019), text summarization (Song et al., 2019), en-
tity recognition (Du et al., 2018) and event detec-
tion (Hossny et al., 2020).

This work focuses on keyphrase extraction from
scholarly documents. In particular, we consider an
interesting issue in this domain, which concerns
the part of a scientific article that should be given
as input to keyphrase extraction methods.

Table 1 shows representative supervised and un-
supervised keyphrase extraction methods from the
most popular categories of the task (deep learning,

traditional supervised, graph-based, and statistics-
based), along with the parts of academic articles
that they consider, among Title+Abstract (TA),
Full-text (F) and other Specific Parts (S/P).

Approaches TA F S/P
Deep Learning

Meng et al. (2017) X
Basaldella et al. (2018) X

Chen et al. (2018) X
Ye and Wang (2018) X
Wang et al. (2018) X

Patel and Caragea (2019) X
Chan et al. (2019) X

Alzaidy et al. (2019) X
Chen et al. (2019) X

Çano and Bojar (2019) X
Zhu et al. (2020) X
Zhou et al. (2020) X

Zahedi et al. (2020) X
Traditional Supervised

Witten et al. (1999) X X
Medelyan et al. (2009) X X

Nguyen and Luong (2010) X X X
Caragea et al. (2014) X X
Wang and Li (2017) X X

Graph-based
Mihalcea and Tarau (2004)* X X

Wan and Xiao (2008)* X X
Bougouin et al. (2013) X X
Sterckx et al. (2015) X X

Boudin (2018) X X
Mahata et al. (2018) X X

Statistics-based
TfIdf X X

El-Beltagy and Rafea (2009) X X
Campos et al. (2020) X X

Table 1: Types of textual content, i.e., Title+Abstract
(TA), Full-text (F), and Specific Parts (S/P) of the docu-
ment, used by supervised and unsupervised keyphrase
extraction approaches in the training and evaluation
process. Approaches with an asterisk (*) are evaluated
on TAs and Fs in Hasan and Ng (2010).

We can see that recent deep learning keyphrase
extraction and generation methods take titles and
abstracts as input, due to the complexity in pro-
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cessing larger sequences. Traditional supervised
learning methods, as well as unsupervised ones can
handle full-texts, but this does not necessarily lead
to better results compared to using just titles and ab-
stracts. Papagiannopoulou and Tsoumakas (2018)
show that graph-based methods achieve better ac-
curacy when titles and abstracts are used, while
the strong baseline TfIdf works best with full-text.
Florescu and Caragea (2017) and Boudin (2018)
show that keyphrases generally occur in positions
very close to the beginning of a scholarly document.
Nguyen and Luong (2010) show that title and ab-
stracts have the highest density of keyphrases, fol-
lowed by the conclusions, introduction and related
work sections.

It appears that there is a trade-off between us-
ing titles and abstracts versus using full-texts of
academic papers as input to keyphrase extraction
methods. Full-texts provide richer information, in-
cluding more keyphrases, but at the same time they
are much more noisy compared to the titles and
abstracts. Motivated from this observation, our
scientific question is whether using automated sum-
marization models on the full-text of a scientific
article can lead to textual information that is richer
than titles and abstracts, yet less noisy than full-
texts.

Towards answering this question, we present
some first steps employing extractive summariza-
tion. Our main goals are to: a) investigate the
dynamics of summarization in keyphrase extrac-
tion, paving the way for the research community
to develop approaches combining techniques from
both tasks (e.g., via multi-task learning) and b) pro-
vide some guidelines to practitioners of the field
suggesting better utilization of the full-texts. Our
empirical study provides strong evidence that the
full-text extractive summaries manage to capture
keyphrases, which in most cases improve the per-
formance of state-of-the-art supervised and unsu-
pervised keyphrase extraction methods (regarding
the F1 score) on three datasets compared to the
conventional use of abstracts and full-texts.

2 Our Approach and Alternatives

We are interested in finding out whether we can
improve the signal-to-noise ratio of the input given
to keyphrase extraction approaches by applying au-
tomated summarization on the full-text of scientific
articles. As a first step towards investigating this
hypothesis, we focus on extractive summarization

models.
We generate extractive summaries from the cor-

responding full-texts using the pre-trained distil-
lated RoBERTa model distilroberta-base-ext-sum
from the TransformerSum1 library. Distillated
RoBERTa is a version of RoBERTa (Liu et al.,
2019), which is based on DistilBERT (Sanh et al.,
2019). It is a lighter, faster and smaller variant of
the original RoBERTa, that achieves a time speed-
up of 50%, while retaining 95% performance of
the original model.

Furthermore, we investigate the utility of alterna-
tive input types, such as the first three paragraphs
of the document that include the title, the abstract
and a part of the document’s introduction. We ex-
periment with two different paragraph lengths in
words, i.e., 220 and 400.

Our investigation includes the standard input
types, i.e., title+abstract and full-text, too. For deep
learning methods, we split full-texts into sentences
and paragraphs, as they cannot handle their whole
length at once due to memory limitations.

Finally, we explore an ensemble approach to
keyphrase extraction, which involves the late fusion
of two input types: the standard title plus abstract
and the title plus the extractive summary. We apply
keyphrase extraction methods to these two input
types independently and then consider the union of
the extracted keyphrases.

Table 2 presents all these approaches along with
their abbreviations, which will be used in the rest
of our work.

Abbr. Description
TA Abstract

ABSE Abstract in Sentences
F Full-text

FP Full-text in Paragraphs
FS Full-text in Sentences
TS Extractive Summary
AS Abstract ∪ Extractive Summary

3P220 First 3 Paragraphs - length in words: 220
3P400 First 3 Paragraphs - length in words: 400

Table 2: Descriptions of the different approaches along
with their abbreviations. The title is part of the input in
all cases.

3 Experimental Setup

Our empirical study includes three keyphrase ex-
traction methods: TfIdf, as a baseline method, Mul-
tipartiteRank (MR) (Boudin, 2018), as a strong

1https://github.com/HHousen/TransformerSum
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graph-based method, and Bi-LSTM-CRF (BLC)
(Alzaidy et al., 2019), as a strong neural model.
Due to the lack of publicly available code for a
BLC model tailored to keyphrase extraction, we
proceeded to our own implementation, which we
make publicly available along with all experiments
in this paper2.

BLC is trained using the train and validation sets
from (Meng et al., 2017). Specifically, we trained
both models described in (Alzaidy et al., 2019),
i.e., the BLCTA on the documents’ abstracts and
the BLCABSE on the abstracts’ sentences (used
only with test datasets that their text is split in
sentences and only for the model comparison). Ex-
periments were performed on a Ryzen 5 3600 CPU
with 16GB RAM. Training the model on title and
abstract takes approximately 24 hours for a total of
5 epochs, while training on title and abstract split
in sentences takes about 5 hours to complete.

These keyphrase extraction methods are evalu-
ated on three well-known datasets that contain full-
text articles from the computer science domain: Se-
mEval (Kim et al., 2010), NUS (Nguyen and Kan,
2007), and ACM (Krapivin et al., 2008). These
datasets contain 244, 211, and 2304 documents,
respectively (we merged the train and test sets of
the SemEval dataset).

We compute F1 (F1@10 for unsupervised meth-
ods) according to both the exact (E) and partial (P)
(Rousseau and Vazirgiannis, 2015) string match to
determine the number of correctly matched phrases
with the golden ones for a document. We also apply
stemming to the methods’ output and the article’s
golden phrases as a pre-processing step before the
evaluation process. We employ the authors’ and
readers’ (in case they are available) keyphrases as a
gold evaluation standard for all dataset collections.

Finally, we use a two-sided Wilcoxon signed-
rank test to check the statistical significance of the
results in terms of the most popular exact match
evaluation between the proposed input types and
the conventional ones, at a significance level of
0.05. We denote with a “*” the statistical signif-
icance with TA and with a “†” the statistical sig-
nificance with ABSE or F (in cases there is an
improvement).

2https://github.com/intelligence-csd-auth-gr/keyphrase-
extraction-via-summarization

4 Results and Discussion

Table 3 gives the percentage and actual number
(in parentheses) of keyphrases that appear inside
each textual content type (F, 3P400, 3P220, TS, TA)
for each of the 3 datasets (SemEval, NUS, ACM).
We can see that full-texts contain the highest per-
centage of keyphrases, as expected. Note that this
number is less than 1, as a small percentage of the
keyphrases that authors or readers assign to papers
do not appear inside the paper’s full-text. The per-
centages of 3P400 and 3P220 are high too. Extrac-
tive summaries contain less keyphrases than the pre-
vious content types, but more than titles+abstracts.
This is a positive sign, which combined with low
amount of noise, could lead to improved keyphrase
extraction results.

SemEval NUS ACM
F 0.857 (3239) 0.878 (2157) 0.738 (9079)

3P400 0.668 (2523) 0.696 (1710) 0.665 (8172)
3P220 0.582 (2197) 0.624 (1533) 0.616 (7572)

TS 0.518 (1956) 0.576 (1415) 0.573 (7041)
TA 0.439 (1658) 0.514 (1264) 0.530 (6518)

TotalKPs 3778 2458 12296

Table 3: Percentage of keyphrases, along with ac-
tual number of keyphrases inside parentheses, that
are found in each textual content type (TA, F, TS,
3P220, 3P400) for each of the 3 datasets (SemEval,
NUS, ACM). The last row shows the total number of
keyphrases per dataset (TotalKPs).

One disadvantage of extractive summaries, is
that they require an additional pre-processing step
compared to the rest pre-existing textual content
types. The average time to generate the extractive
summary per document in the machine used for the
experiments is 2.21, 2.13, and 2.34 seconds for the
SemEval, NUS, and ACM datasets, respectively.
This is not high for offline applications, while for
online ones, higher scale hardware and/or more
efficient architectures could be employed.

4.1 Bi-LSTM-CRF

Table 4 shows the results of our implementation
of the BLC model, along with the ones published
in (Alzaidy et al., 2019) for the kp20k test set
from (Meng et al., 2017). BLC solves a sequence
classification task: for each word, it outputs a bi-
nary label indicating whether this word belongs
to a keyphrase or not. The evaluation of BLC in
(Alzaidy et al., 2019) was based on the F1-score of
this binary sequence classification task that BLC
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solves, which we also compute for our implemen-
tation. We also show the results of our implemen-
tation in terms of the exact and partial evaluation
approaches.

S E P
Our BLCTA 0.381 0.137 0.408

Original BLCTA 0.418 - -
Our BLCABSE 0.288 0.150 0.301

Original BLCABSE 0.356 - -

Table 4: F1 based on sequence (S), exact (E) and partial
(P) evaluation for the original BLC approach and our
implementation.

The results of the two BLCTA implementations
are close to each other. The difference could be
attributed to two things: a) the pre-processing of the
data, which is not described in detail in (Alzaidy
et al., 2019), and b) the fact that Alzaidy et al.
(2019) might have not included the title in their
experiments, as this is not clear in the paper. For
BLCABSE , the difference is larger which might
be a result of the above and the selected hyper-
parameters, which we fine-tuned on BLCTA.

Table 5 shows the results of BLC with the
standard and proposed input types. Results indi-
cate no significant improvement using extractive
summaries compared to titles and abstracts, even
though TS includes more keyphrases across all
datasets (see Table 3). However, this evaluation
may be slightly unfair to TS as input to BLC, since
the model used the original documents’ abstracts
for training. TAs and TSs may have substantial
differences in their syntax, structure, etc. Never-
theless, AS performs better than TA, meaning that
TS manages to introduce unseen keyphrases to TA,
which seems promising for the potential of extrac-
tive summarization.

SemEval NUS ACM
BLC E P E P E P
TA 0.103 0.196 0.129 0.270 0.148 0.325

ABSE 0.161 0.325 0.182 0.360 0.179 0.387
FP 0.157∗ 0.349 0.144∗ 0.319 0.082 0.241
FS 0.132∗ 0.316 0.102 0.226 0.068 0.175
TS 0.097 0.192 0.128 0.265 0.139 0.317
AS 0.118∗ 0.226 0.145 0.300 0.151∗ 0.345

3P220 0.143∗ 0.264 0.168∗ 0.337 0.157∗ 0.352
3P400 0.088 0.187 0.102 0.239 0.138 0.336

Table 5: F1 based on exact (E) and partial (P) eval-
uation approach for BLC on 3 different datasets (Se-
mEval, NUS, ACM) using various textual content types
as input, i.e., TA, ABSE, FP, FS, TS, AS, 3P220, 3P400.

In addition, our findings show that we achieve
higher F1-scores when we predict on the abstracts
split into sentences rather than the entire abstract.
This indicates the inability of the model to retain
past information from longer text excerpts, which
is a common problem for RNNs. Note that for
all the results of the experiments in Table 5, we
utilize only the BLCTA model, even on the text
excerpts split in sentences as it showed superior
performance than the BLCABSE .

Moreover, FP and 3P220 seem to be better alter-
natives to TA, as they constitute richer sources in
keyphrases, and the trained BLCTA model can uti-
lize them properly. Finally, the FS approach fails to
detect the full-text’s keyphrases due to the combina-
tion of noise and the disparity of important context,
which is a result of the extreme fragmentation of
long texts to sentences.

4.2 Unsupervised methods

Tables 6 and 7 show that the unsupervised meth-
ods TfIdf and MR certainly benefit from the ex-
tractive summaries (TS) as they outperform the
conventional approaches (TA, F) (except for the
MR method on NUS where the TS’s F1-score is
slightly lower than the F’s one). 3P200 and 3P400

approaches, in most cases, do not improve the
corresponding methods’ accuracy. Although the
introductory parts of a document contain many
keyphrases, they are also quite noisy due to general
descriptions related to the document’s topics.

SemEval NUS ACM
TfIdf E P E P E P
TA 0.143 0.312 0.179 0.377 0129 0.351
F 0.140 0.289 0.193 0.347 0.112 0.285

TS 0.162∗† 0.325 0.201∗ 0.388 0.143∗† 0.361
AS 0.160∗† 0.349 0.190 0.393 0.129 0.349

3P220 0.134 0.325 0.139 0.317 0.083 0.245
3P400 0.160∗† 0.362 0.171 0.361 0.099 0.277

Table 6: F1@10 based on exact (E) and partial (P) eval-
uation approach for TfIdf on 3 different datasets (Se-
mEval, NUS, ACM) using various textual content types
as input, i.e., TA, F, TS, AS, 3P220, 3P400.

5 Conclusions and Future Work

Our work set out to investigate whether using auto-
mated summarization, as a pre-processing step, can
lead to improved results in the task of keyphrase ex-
traction from scholarly documents. Our empirical
study shows that unsupervised approaches improve
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SemEval NUS ACM
MR E P E P E P
TA 0.137 0.344 0.154 0.376 0.116 0.354
F 0.135 0.343 0.158 0.396 0.100 0.333

TS 0.145 0.358 0.157 0.383 0.117† 0.360
AS 0.150∗† 0.367 0.158 0.376 0.110† 0.339

3P220 0.128 0.335 0.125 0.309 0.077 0.247
3P400 0.134 0.351 0.135 0.324 0.083 0.261

Table 7: F1@10 based on exact (E) and partial (P) eval-
uation approach for MR on 3 different datasets (Se-
mEval, NUS, ACM) using various input types, i.e., TA,
F, TS, AS, 3P220, 3P400.

their accuracy using extractive summaries as in-
put, highlighting the full-text’s useful information
for the task and showing a positive relationship be-
tween the tasks of extractive summarization and
keyphrase extraction.

It is worth noting that even though the gains on
the exact match F1-scores seem to be moderate,
this does not necessarily reflect the actual perfor-
mance gain. Considering that exact match scores
are generally low due to the strict nature of the
method, a moderate increase in performance leads
to considerable percentage gain over the initial per-
formance.

As future work, an interesting direction would
be to experiment with additional summarization
methods, including abstractive ones as well as their
combination with extractive ones. In addition, we
could experiment with additional recent and state-
of-the-art keyphrase extraction methods, including
methods building on top of contextual embeddings
(Sahrawat et al., 2020).
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Abstract

Argument mining targets structures in natural
language related to interpretation and persua-
sion. Most scholarly discourse involves inter-
preting experimental evidence and attempting
to persuade other scientists to adopt the same
conclusions, which could benefit from argu-
ment mining techniques. However, While var-
ious argument mining studies have addressed
student essays and news articles, those that tar-
get scientific discourse are still scarce. This
paper surveys existing work in argument min-
ing of scholarly discourse, and provides an
overview of current models, data, tasks, and
applications. We identify a number of key
challenges confronting argument mining in the
scientific domain, and suggest some possible
solutions and future directions.

1 Introduction

Scientific papers aim to present verifiable evidence
for a series of stated claims, anchoring these claims
in experiments, data, and references. However, the
interpretation of such objective sources of evidence
is often ambiguous and subjective. Thus, much of
scientific communication is essentially persuasive
and uses an argumentative structure to establish
the relevance, validity, and novelty of an author’s
main claims and conclusions (Pelclova and Wei-
lun, 2018). This argumentation takes the form of
a dialogue between the author and her readers, in
which new knowledge is proposed and an attempt
made to persuade the readers to accept and follow
particular claims (Fahy, 2008; Hyland, 2014). How-
ever, most current research on automatic document
processing ignores this argumentative context and
treats statements that are persuasive, tentative, or
speculative to be factual. This risks overstating the
certainty of claims and hypotheses, and bypasses

*These authors contributed equally

the rhetorical aspect of scientific discourse (see e.g.
(Gross and Chesley, 2012)).

Computational argumentation is a recent and
growing field of research concerned with the com-
putational analysis and generation of natural lan-
guage arguments and argumentative discourses.
Over the past decade, this area has attracted re-
searchers seeking to tackle different tasks includ-
ing argument mining, argument quality assessment,
and argument generation (for an overview, see e.g.
(Stede et al., 2018)). The most studied task is argu-
ment mining, i.e., the identification of argumenta-
tive units, argument components (e.g., conclusion
and premise), and structures of text documents.
However, despite a wealth of Natural Language
Processing (NLP) research on extracting informa-
tion from scientific literature—including entity ex-
traction (Augenstein et al., 2017; Hou et al., 2019),
relation identification (Luan et al., 2018), question
answering (Demner-Fushman and Lin, 2007), and
summarization (Erera et al., 2019)—relatively few
attempts have been made to model argumentative
structures in science.

This paper argues for an increased focus of the
NLP community on argument mining in scientific
documents. To encourage work at the intersection
of Scholarly Discourse Processing and Argument
Mining, we provide a brief overview of current
work in this field, and discusses the most used mod-
els, data, methods, and applications. We discuss a
number of challenges in mining the argumentative
structure of scientific documents and propose some
promising future directions.

2 Argumentation in Scientific Discourses

To support future efforts on argument mining of
scientific documents, we present a survey of the
literature from 2000 to the present, summarized
in Table 1 in the Appendix. To attempt to create
a somewhat comprehensive overview, we concen-
trated on papers published by the NLP commu-
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nity2. To obtain this list, we used Google Scholar
(https://scholar.google.com/) to find papers on “Ar-
gumentation Mining on Scientific Papers”, “Argu-
mentation Mining on Research Papers”, and “Ar-
gumentative Zoning on Scientific Papers”. We also
traced the references of some pivotal papers from
the proceedings of Argument Mining workshops3.

For each paper, we identified the Domain of
study (i.e., a specific scientific domain, full-text
or abstracts), the Objectives of the work, and the
Methods used. Furthermore, the papers can be
categorized under four areas of study, discussed, in
turn, below.

Corpus Creation and New Annotation Schemes
A number of studies propose an annotation scheme
for mining argumentative discourse in the science
domain. Many of these studies follow the well-
known argumentation model of Toulmin (Toulmin,
1958). Toulmin’s model targets the structure of an
argument, modelling it as a claim that is supported
by data following some warrants, which can be
supported by backing. The model has also two
optional components: qualifiers and rebuttals.

Examples of the studies that adopt Toulmin’s
model are Green (2014) and Lauscher et al.
(2018b). The former proposes the scheme of
premise (i.e., data and warrant) and conclusion.
The latter’s scheme includes background claim,
own claim, and data, which is used to annotate
40 publications from computer graphics.

Another model that is often used is that of argu-
mentation schemes (Walton et al., 2008). Argumen-
tation schemes target the structure of an argument,
where the argument is modeled as a set of proposi-
tions, i.e., a conclusion and one or more premises,
with a pattern that manifests the logical inference
between the conclusion and its premise. Walton
et al. (2008) proposed around 60 different schemes
including ‘argument from cause to effect’ and ‘ar-
gument from example’, among others. An exam-
ple of this approach is Green (2015a), where ten
schemes were selected and annotated in a corpus
of biomedical genetics articles.

Other studies focus on identifying argumenta-
tive discourse roles, especially argumentative zones

2In this paper, we focus our research on papers related
to argument mining for scholarly document processing and
exclude less central topics such as citation analysis: we hope
that future scholars can help augment our work with these and
similar related approaches

3See https://2021.argmining.org/ and links from there for
a full list of past workshops

(Teufel and Moens, 2002), assigning roles such as
‘aim’ and ‘background’ to large text spans (usually
paragraphs). Following this approach, several cor-
pora have been constructed for biomedical papers
(Guo et al., 2011), as well as papers in chemistry,
computational linguistics (Yang and Li, 2018), and
agriculture (Teufel, 2014).

Inspired by the theory of Freeman (2011), some
studies annotate the argumentative relations be-
tween arguments. For instance, Lauscher et al.
(2018a) consider the relations of ‘support’, ‘contra-
dicts’, and ‘same claim’. Kirschner et al. (2015), in
another study, consider the relations of ‘support’,
‘attack’, ‘detail’, and ‘sequence’, which were anno-
tated in 24 articles belong to the domain of educa-
tional and developmental.

Automatic Argument Unit Identification
Much work in argument mining focuses on iden-
tifying Argumentative Discourse Units (ADUs).
An ADU is a text span that plays a specific
role in an argument. In this way, argument unit
identification resembles named entity recognition
or discourse segment type identification. Green
(2017b) extracted argumentative units from
biomedical and biological articles using a semantic
rule-based approach. Lauscher et al. (2018a) and
Lauscher et al. (2018c) proposed several neural
multi-task learning models based on Bi-LSTM
to identify premises and conclusions. Other
papers propose different approaches to identify
argumentative zones, including supervised and
weakly-supervised approaches with a rich set
of linguistics features (e.g., (Guo et al., 2011)).
Identifying the ‘claim’ unit is tackled in several
papers such as Achakulvisut et al. (2019), which
employs transfer learning on top of a discourse
tagging model using a pre-trained BilSTM-CRF to
identify claims in biomedical abstracts. Extracting
‘evidence’ has been tackled in other studies, e.g.
Li et al. (2019) extracted evidence in biomedical
publications with sentence-level sequential
labelling, using BiLSTM-CRF and attention.

Automatic Argument Structure Identification
If unit identification resembles entity recognition,
argument structure identification is akin to rela-
tion extraction: this work aims to find typed rela-
tionships between ADUs. This more challenging
task has been addressed by relatively few studies:
Accuosto and Saggion (2020) extend existing dis-
course parsing models to address this problem on
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computational linguistics abstracts and identify the
argumentative discourses of computational linguis-
tics abstracts using lexical and ELMo embeddings,
while Song et al. (2019) analyze the argument struc-
ture of information science and biomedical science
articles through sequential pattern mining.

Applications To date, much of the application-
oriented work has focused on scientific article sum-
marization. An exception is Feltrim and Teufel
(2004), which had the goal of developing tools for
scientific writing for the computer science domain.
Other efforts aim to identify claims and evidence,
to enable claim-evidence based representations of
collections of documents, such as (de Waard et al.,
2009), (Groza et al., 2011) and (Li et al., 2021).
The goal here is to allow the reader to traverse the
reasoning behind a scientific claim to either experi-
mental evidence in the paper itself, or to reasoning
for data provided in cited papers. Recently, Yu
et al. (2020) study the problem of correlation-to-
causation exaggeration in press releases by com-
paring claims made in news articles and the corre-
sponding scientific papers.

3 Challenges

In this section, we describe a few challenges that
are relevant to argument mining in the scientific
literature. Although not only specific for the scien-
tific domain, these are hurdles that need to be faced
in future research to allow progress to be made.

Argumentation Modeling As described
above, various argument models have been
proposed (Stede et al., 2018). The selection of
which model fits scientific documents is a crucial
and challenging research question.

Most previous studies in argument mining of sci-
entific documents utilize either Toulmin’s model or
argumentation schemes. However, none of these
models seems to be a perfect fit: Toulmin’s war-
rants and rebuttals are not common to scholarly
argumentation4, and none of the other argument
schemes take the specific nature of scholarly ar-
gumentation into account. Adapting these models
for use seems to be an essential step to achieve
feasible annotation and identification of argument
structures in scholarly discourse.

4For example, Lauscher et al. (2018b) conducted an expert
annotation of the argumentative structures of a small set of
scientific publications based on Toulmin’s model. The annota-
tion results show that warrant, backing, qualifier, and rebuttal
are not observed in the publications.

Domain Knowledge Science communication en-
compasses a variety of domains, topics, and
methodologies organized into research communi-
ties, each following its own standards regarding the
structuring of documents and the arguments they
contain (Weinstein, 1990). These community con-
ventions present a barrier to understanding for non-
specialists and computational models alike. An
important open question, therefore, is whether ar-
gument mining techniques must be tailored to indi-
vidual scientific communities, or whether a unified
model can be adapted to address domain-specific
features of scientific argumentation.

Scientific Document Type Scientific communi-
cation involves a variety of document types, in-
cluding reviews, methods papers, and experimental
reports, among others 5. Each type concentrates on
specific aspects of the discussed topic and usually
provides particular types of evidence.

Analogous to the previous point, an open ques-
tion is whether different document types require
different models, or whether they can be accom-
modated by a single representation and modeling
approach tailored to different argument structures.

Enthymemes An enthymeme is the implicit (un-
stated) premise or conclusion in an argument. Be-
cause enthymemes are supposedly known by the
target audience (or easily constructed using com-
mon knowledge), enthymeme are rarely a problem
for humans. However, to the extent that shared
knowledge is required which is not found in the
document, this offers a challenge for argument min-
ing techniques.

As an example, Green (2014) conducted a man-
ual inspection of several arguments in the biomed-
ical genetics research literature, showing that ar-
guments with enthymemes are common there and
suggested explicitly providing domain knowledge
for reconstructing enthymemes.

Subjective Interpretation A common dilemma
in argument mining is that an argumentative text
may have multiple valid interpretations of its struc-
ture. This is a concern for scientific documents,
where the connection between a claim and its ev-
idence can be implicit, i.e., the author leaves this
connection to the readers’ interpretations.

In particular, experimental papers can follow a
line of reasoning that makes e.g. ‘biological sense’,

5For more examples of the types, see https://coling2018.
org/index.html%3Fp=156.html

58



i.e. where a specific experiment follows another
experiment to address a potential alternate inter-
pretation of the previous experiment. For a non-
biologist, this reasoning is unclear, and the reason
for these subsequent results are generally never
explicitly stated in the text.

Context-Dependence Context plays a key role
in text mining in general and argument mining
in particular. Scientific documents are at least as
complex as other genres where argument plays a
role, such as persuasive essays, to fulfil both the
persuasive role and the presentation of objectivity
which scientific writing demands (Vazquez Orta
and Giner, 2009-11). More specifically, selecting
the optimal boundaries of argumentative units in
scientific documents is known to be challenging
(Green, 2014; Stab et al., 2014). For instance, the
distance between a claim and its premise may be
particularly wide in scientific discourse, e.g., the
claim which is stated in one section can be sup-
ported by a premise in a different section.

4 Discussion

In summary, we have provided a brief overview of
current work and a summary of issues that need to
be addressed to make headway in the automated ar-
gument mining for scholarly documents. We hope
to have shown that more research is needed in this
field to enable better representation of the persua-
sive aspects of scholarly communication. This can
help provide a more realistic representation of how
scientific knowledge is obtained, and how authors
aim to persuade readers of the validity of claims.
In particular, seeing scholarly discourse as a prag-
matic discourse, i.e. one that humans undertake
with interpersonal, as well as informative goals,
can allow richer representations of the knowledge
structures underlying scientific progress.

As noted, applications of argument mining in sci-
entific discourse, such as summarization and aids
to technical writing, to date have been limited to
those that are relatively robust to errors, a partial
consequence of the immaturity of the field. In par-
ticular, these applications are mostly insensitive to
the factual content of scientific arguments. Mean-
while, a relatively mature community continues to
expand models and methods for information extrac-
tion in various scientific domains, usually with no
attention to the argumentative context in which the
target facts are presented. Because a correct un-
derstanding and use of facts is critical to scientific

understanding and progress, we see an opportunity
for many innovative applications at the intersection
of fact and argument. For example, models capable
of determining the salience of individual facts in a
domain could provide the basis for highly precise
forms of scientific information retrieval, or even
offer forms of automation that assist scientists in
maximizing the pertinence of their experiments.

To achieve this vision at scale, the argument
mining community must grapple with the problem
of increasing scientific domain specialization. It
is crucial that we separate the invariant features of
scientific argumentation from those that vary with
field and specialization, and that we investigate
effective methods of cross-domain transfer. To
this end, the field should seek consensus regarding
how scientific argumentation should be formalized
and strive for broad-coverage reference corpora
annotated under guidelines optimized for high inter-
annotator agreement.

To support these efforts, we suggest a greater
collaboration between participants of the schol-
arly document processing and argument mining
domains, with a particular focus on creating shared
models and shared and accessible corpora to spur
on research. We hope such conversations can com-
mence at this workshop and others, to inspire and
unite members of both communities with natural
language processing and improve sharing and im-
proving the outputs of science and scholarship.

5 Conclusion

This paper endeavors at promoting the collabo-
ration between the communities of scholarly dis-
course processing and computational argumenta-
tion, arguing for the ultimate importance of more
extensive research on argument mining in scientific
documents. Particularly, we address the current
contributions on argument mining for scientific doc-
uments by surveying about 40 papers that approach
different aspects and tasks such as proposing anno-
tation schemes, creating corpora, and identifying
argumentative discourse units as well as argumenta-
tive relations in scientific documents. Furthermore,
we describe various challenges for mining argu-
mentative structures of scientific documents and
suggest some strategic directions in order to ac-
complish remarkable benefits on a wide range of
downstream applications such as scientific writing
assistance, scientific articles summarization, and
quality assessment.
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Table 1: Argumentation Mining Literature on Scientific Discourse

Reference Domain Objectives Methods Additional Contribution
Manual Argument Analysis

Green (2015b) Biomedical
articles

Analyzed evidence based arguments
in four full-text articles on genetic
variants that may cause human health
problems and created a preliminary
catalog of argumentation schemes

Green (2017a) Biomedical
articles

Evaluate human analysts’ ability to
identify the argumentation scheme
and premises of an argument having
an implicit conclusion

Green (2018b) Biomedical
research articles

Explores how arguments in a research
article occur within a narrative of sci-
entific discovery and how they are re-
lated to each other

Green (2018a) Biomedical
Genetics articles

Provide a method for semantic rep-
resentation of arguments that can be
used in empirical studies of scientific
discourse as well as to support appli-
cations such as argument mining

Graves et al.
(2014)

Biomedical
articles

Analyses article title as a potential
source of claims and finds that fre-
quency of verbs in titles of experimen-
tal research articles has increased over
time

Corpus Creation and New Annotation Schemes
Green (2014) Biomedical

Genetics articles
Argument annotation scheme:
Premise (Data, Warrant) and Conclu-
sion

Theoretical challenges to cre-
ate an argument corpora

Green (2015a) Biomedical
Genetics articles

Identification of argumentation
schemes with specification of ten
semantically distinct argumentation
schemes

Annotation guidelines for ar-
gumentation corpora

Teufel and Moens
(1999)

Chemistry, Com-
putational Lin-
guistics

Detect argument zones in scientific ar-
ticles

Proposed a scheme and annotated
15 argument zone categories for 39
papers (5,374 sentences)

Kirschner et al.
(2015)

Scientific articles
(Educational and
Developmental
Psychology)

New annotation scheme to identify
argumentative relations - support, at-
tack, detail, sequence

Study of the annotation strat-
egy across 24 articles, an anno-
tation tool, a new graph-based
inter-annotation measure

Lauscher et al.
(2018b)

Computer Graph-
ics scientific pub-
lications

Proposed a new argument-annotated
dataset of scientific publications

Adapted Toulmin’s model for
argumentative components: Back-
ground Claim, Own Claim, Data.
Relation between argumentative
components: support, contradicts,
same claim

Investigation on link between
argumentative nature of scien-
tific publications and rhetori-
cal aspects such as discourse
categories or citation contexts.

Alliheedi et al.
(2019)

Biochemistry arti-
cles

Determine rhetorical moves in the ar-
gument structure of biomedical arti-
cles

Annotated method sections of 105
text files based on a new annotation
scheme for identifying the struc-
tured representation of knowledge
in a set of sentences describing the
experimental procedures

Guo et al. (2012) Biomedical
papers

Introduce a tool for analysis and visu-
alizing argument structure (based on
AZ), and also facilitate expert AZ an-
notation

Used HTML, JavaScript, PHP,
XML for the annotation tool; SVM
classifier using features from Guo
et al. (2011)

Interactive annotation via ac-
tive learning; CRAB Reader
allows user to define AZ
schemes; AZ can be per-
formed on each word, sen-
tence, paragraph, document
level

Yang and Li
(2018)

Scientific ab-
stracts from ACL
Anthology

Construct a domain-specific dis-
course treebank annotated on
scientific articles

798 segmented abstracts were la-
belled by 5 annotators in 6 months.
506 abstracts were annotated more
than twice separately by different
annotators. In total, SciDTB con-
tains 798 unique abstracts with 63%
labelled more than once and 18,978
discourse relations.

Provide several baselines for
scientific discourse depen-
dency tree parsing

Automatic Argument Unit Identification
Green (2017b) Biomedical, Bio-

logical articles
Argumentation extraction Semantic rule-based approach Demonstrates the need for

a richer model of inter-
argument relationships in
biomedical/biological re-
search articles.
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Reference Domain Objectives Methods Additional Contribution

Lauscher et al.
(2018a)

Computer Graphics
scientific publica-
tions

A toolkit for rhetorical analysis of
argument component identification,
discourse role classification, subjec-
tive aspect classification, citation
context classification, summary rel-
evance classification

Token-level sequence la-
belling, sentence-level classifi-
cation using Bi-lSTM

Command-line tool, RESTful API,
web application

Lauscher et al.
(2018c)

Computer Graphics
scientific publica-
tions

Proposed two neural multi-task
learning (MTL) models for argu-
mentative analysis based on the
tasks in (Lauscher et al., 2018a)

Bi-LSTM based simple MTL
model for sentence-level clas-
sification, hierarchical MTL
for sequence labelling

Adapted Toulmin’s model for
argumentative components: Back-
ground Claim, Own Claim, Data.
Relation between argumentative
components: support, contradicts,
same claim

Teufel (2014) Chemistry, Compu-
tational Linguistics,
Agriculture

Views scientific argumentation de-
tection as limited-domain intent
recognition

Model based on recognition of
28 rhetorical moves in text

Guo et al. (2011) Biomedical ab-
stracts

Investigating a weakly-supervised
approach for AZ detection when a
limited amount of training data is
available

Features like location, word
bi-gram, verb, verb cues,
PoS, grammatical relations,
subj/obj, voice are used with
ASVM, ASSVM, TSVM,
SSCRF

Conclusion that location of AZs are
super important, directions to facili-
tate easy porting of AZ schemes to
new NLP tasks and domains

Li et al. (2019) Biomedical publica-
tions

Automatic evidence extraction us-
ing scientific discourse tagging
based on classification by de Waard
et al. (2009)

sentence-level sequential la-
belling using BiLSTM-CRF +
Attention

Leveraging scientific discourse tag-
ging for evidence fragment detec-
tion

Achakulvisut et al.
(2019)

Biomedical ab-
stracts

Automated claim extraction Neural discourse tagging
model based on a pre-trained
BilSTM+CRF followed by
transfer learning and fine
tuning on a expert annotated
dataset

New dataset of 1,500 expert-
annotated biomedical abstracts
indicating whether the sentence
presents a scientific claim.

Houngbo and
Mercer (2014)

Biomedical articles Identify the components of IMRaD
rhetorical structure in biomedical
papers

Applied a few heuristics to
construct a corpus and used
machine learning techniques
(Naive Bayes and SVM)
to classify sentences into
Method,Result or Conclusion

Pinto et al. (2019) Biomedical papers Claim-evidence matching as a
learning to rank problem where
goal is to find evidence in the
form of a paper to make a natural
language claim appear credible; to
assist scientific argumentation

Rhetoric Classification Task
and Claim-Evidence Rank
Task using NB-BoW, SVM-
BoW, CNN on data from
a Wikipedia dump with
word2vec trained on PubMed
Central UMLS, SemMedDB
databases

Augmenting "prestige" meta-data
features for a paper improved per-
formance, to rank claim-evidence
pairs, a model should account for
other semantic properties beyond
simple content-matching

Faiz and Mercer
(2014)

Biomedical papers Extraction of connections or
“higher order relations" between
biomedical relations (relationship
between biomedical entities). The
higher order relation conveys a
causal sense, which indicates that
the latter relation causes the earlier
one.

In the first stage, the au-
thors use a discourse relation
parser to extract the explicit
discourse relations from text.
In the second stage, the au-
thors analyze each extracted
explicit discourse relation to
determine whether it can pro-
duce a higher order relation.

Pilot evaluation on AIMed corpus
for protein-protein interaction pre-
diction: identify the full argument
extent which contain the biomedi-
cal entities

Yepes et al. (2013) MEDLINE/PubMed
abstracts

An evaluation of several learning
algorithms to label abstract text
with argumentative labels, based
on structured abstracts available in
MEDLINE/PubMed

Naive Bayes, SVM, Lo-
gistic Legression, CRF,
AdaBoostM1 as classifiers for
the argumentation labels on
abstract text. In addition to
textual features, the position
of the sentence or paragraph
from the beginning of the
abstract is used

A data set to compare and evalu-
ate GeneRIF indexing approaches.
The sentence annotation are: Ex-
pression, Function, Isolation, Non-
GeneRIF, Other, Reference, and
Structure on MEDLINE articles.

Automatic Argument Structure Identification
Stab et al. (2014) Scientific articles Identification of argumentation

structures
Argument unit identification
and relation extraction

An evaluation dataset of 20 scien-
tific full-texts annotated with argu-
ment relations ‘support’, ‘attack’,
‘sequence’

Feltrim et al.
(2006)

Brazilian PhD The-
ses

A system to detect argumentative
structures in text

The annotation scheme has
the following rhetorical cate-
gories: Background, Gap, Pur-
pose, Methodology, Results,
Conclusion and Outline. A
Naive Bayes classifier to iden-
tify the argumentative units

Porting of Argumentative Zoning
(AZ) from English to Portuguese. A
pilot system to demonstrate the ef-
fectiveness of AZ for a critiquing
tool to support academic writing

Accuosto and Sag-
gion (2020)

Computational
linguistics abstracts

Argument unit identification and re-
lation extraction

Explore two transfer learning
approaches in which discourse
parsing is used as an auxiliary
task when training argument
mining models

Propose a new annotation schema
and use it to augment a corpus of
computational linguistics abstracts
that had previously been annotated
with discourse units and relations

Song et al. (2019) Information Science
and Biomedical arti-
cles

Apply sequential pattern mining
to analyse the common argument
structure in two scientific domains
(Information science and biomedi-
cal science)
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Reference Domain Objectives Methods Additional Contribution
Applications

Accuosto and Sag-
gion (2019)

Computational
Linguistics ab-
stracts

Leverage existing discourse parsing
RST annotations (Stede et al., 2017)
to identify argumentative components
and relations

Transfer learning to improve the
performance of argument mining
tasks trained with a small corpus of
60 abstracts by leveraging the dis-
course annotations available in the
full SciDTB () corpus; sequence la-
belling task with dependency-based
word embeddings, contextualized
ElMo, RST encodings, GloVe

Enrich a subset of SciDTB
with additional layer of ar-
gumentation, EDUs as mini-
mal span for annotation, pi-
lot task to predict accep-
tance/rejection using automat-
ically identified argumentative
components and relations

Contractor et al.
(2012)

Biomedical
papers

Leveraging on AZ features for extrac-
tive summarization of scientific arti-
cles

Used AZ categories as features in fi-
nal sentence selection process + ad-
ditionally used verbs, tf-idf, citation
and reference occurrences, locative
features for classification to gener-
ate initial set of candidate sentences.
Then performed k-Means cluater-
ing to group similar sentences and
select the centroid from each group
to generate the summary (redun-
dancy elimination)

Demonstrated the efficacy of
weakly-supervised AZ classi-
fier for less training data by
Guo et al. (2011) for scientific
article summary extraction

Teufel and Moens
(2002)

Computational
Linguistics papers

Summarize scientific articles by con-
centrating on the rhetorical status of
statements in an article

Developed an algorithm to select
content from articles and clas-
sify them into rhetorical cate-
gories which integrate argumenta-
tion structure in scientific papers

Feltrim and Teufel
(2004)

Brazilian PhD
Theses in Com-
puter Science

Integrated Argumentative Zoning into
an automatic Critiquing Tool for Sci-
entific Writing in Portuguese (SciPo)

Implemented a set of 7 features, de-
rived from the 16 used by (Teufel
and Moens, 2002), Naive Bayes as
the classifier

Port the feature detection stage
of AZ from English to Por-
tuguese, a human annotation
experiment to verify the re-
producibility of the annotation
scheme, intrinsic evaluation of
AZ-part of SciPo

Groza et al.
(2011)

Production and
Manufacturing,
Biomedical,
Law/Legal

The authors present SALT (Semanti-
cally Annotated LATEX), a semantic
authoring framework that enables the
externalization of the argumentation
and rhetoric captured in scientific pub-
lication’s content.

The annotation framework is a lay-
ered organization of three ontolo-
gies: the Document Ontology - cap-
turing the linear structure of the
publication, the Rhetorical Ontol-
ogy - modeling the rhetorical and
argumentation, and the Annotation
Ontology - linking the rhetoric and
argumentation to the publication’s
structure and content.

A LATEX and MS-Word plu-
gin for semantic annotation of
scientific publications as per
SALT scheme

de Waard et al.
(2009)

Proposal to extract knowledge from
articles to allow the construction of
a system where a specific scientific
claim is connected, through trails of
meaningful relationships, to experi-
mental evidence. To improve ac-
cess to collections of scientific papers
represented as networks of collection
of claims that have a defined epis-
temic value, with links to experimen-
tal evidence and argumentative rela-
tionships to other statements and ev-
idence. The authors coin this concep-
tual approach ‘Hypotheses, Evidence
and Relationships’ (HypER).

Yu et al. (2020) PubMed papers
and news articles

Study exaggeration in press releases Developed a new corpus and trained
models that can identify causal
claims in the main statements in
a press release. By comparing
the claims made in a press re-
lease with the corresponding claims
in the original research paper, the
authors found that 22% of press
releases made exaggerated causal
claims from correlational findings
in observational studies.

Li et al. (2021) Biomedical
papers

demonstrate the benefit of leverag-
ing scientific discourse tags for down-
stream tasks such as claim-extraction
and evidence fragment detection

Develop a sentence-level sequence
tagging model to label discourse
types for each sentence in a para-
graph
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Abstract

Applications based on scholarly data are of
ever increasing importance. This results in dis-
advantages for areas where high-quality data
and compatible systems are not available, such
as non-English publications. To advance the
mitigation of this imbalance, we use Cyrillic
script publications from the CORE collection
to create a high-quality data set for metadata
extraction. We utilize our data for training
and evaluating sequence labeling models to ex-
tract title and author information. Retraining
GROBID on our data, we observe significant
improvements in terms of precision and recall
and achieve even better results with a self de-
veloped model. We make our data set covering
over 15,000 publications as well as our source
code freely available.1

1 Introduction

The use of scholarly data becomes more and more
important as the rate of academic publications
keeps increasing and automated processing gains
relevance, such as scientometric analysis and schol-
arly recommendation (Sigurdsson, 2020; Zhang
et al., 2020). Consequentially, limitations of schol-
arly data and approaches based thereon directly
translate into disadvantages for the affected publica-
tions, in terms of, for example, discoverability and
impact. One particular limitation of scholarly data
nowadays is an underrepresentation of non-English
content (Vera-Baceta et al., 2019; Moskaleva and
Akoev, 2019). While supporting multiple lan-
guages poses challenges, such as language-specific
preprocessing requirements (Grave et al., 2018;
McCann, 2020), disregarding non-English work
is problematic (Amano et al., 2016; Lynch et al.,
2021). To further the availability of high-quality
scholarly data beyond the anglophone publication
record, we showcase the creation and application
of a data set for training and evaluating sequence
labeling tasks on Cyrillic publications.

Figure 1: Schematic overview of our approach.

Recent years have seen an increased focus on
multilinguality in natural language processing ap-
proaches, such as language models (Devlin et al.,
2019) and data sets (Caswell et al., 2021). Fur-
thermore, there are efforts to specifically support
languages that use non-Latin scripts (Roark et al.,
2020; Pfeiffer et al., 2021). With regards to Cyril-
lic script languages, approaches concerned with
named entity linking in Web documents (Piskorski
et al., 2021), as well as approaches to extracting
keywords from scientific texts (Bolshakova et al.,
2019) exist. Model training for these types of infor-
mation extraction tasks is increasingly done using
automatically generated high-quality training data.
This has, for example, been done for tasks such
as text extraction from scholarly PDF files (Bast
and Korzen, 2017), identification of publication
components such as figures and tables in scanned
documents (Ling and Chen, 2020), and the pars-
ing of bibliographic references (Grennan and Beel,
2020; Thai et al., 2020).

We extend this approach to non-English schol-
arly data. To this end, we use Cyrillic script docu-
ments from the CORE data set (Knoth and Zdrahal,
2012) to train and evaluate sequence labeling mod-

1See https://github.com/IllDepence/
sdp2021.
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els for identifying publications’ metadata (title and
authors) in unlabeled text, as illustrated in Figure 1.

Overall, the contributions we make with this
paper are as follows.

1. We showcase an effective method for creating
high-quality data for training and evaluating
metadata extraction sequence labeling models
on multilingual scholarly data.

2. We provide a data set for Cyrillic, comprising
15,553 publications spanning three languages
and 27 years.

3. We create sequence labeling models that out-
perform available methods on Cyrillic data.

2 Data Set Creation

2.1 Data Selection
Although many large scholarly data sets exist nowa-
days, most are restricted in terms of language cov-
erage, language related metadata, or availability of
full text documents. The PubMed Central Open
Access Subset,2 for example, only contains Latin
script publications,3 the Semantic Scholar Open
Research Corpus (Lo et al., 2020) is restricted to
English, and the Microsoft Academic Graph (Sinha
et al., 2015; Wang et al., 2019) contains no full
texts. Furthermore, none of the aforementioned of-
fers metadata on publications’ language. We chose
to use the CORE data set4 (Knoth and Zdrahal,
2012)—a large scholarly data set consisting of PDF
documents and metadata aggregated from institu-
tional and subject repositories—for our approach
because it is not restricted by language, offers full
papers and partly provides language metadata.

To obtain Cyrillic script publications, we first
filter the whole collection for the language labels
of four Cyrillic script languages, namely Russian,
Ukrainian, Bulgarian, and Macedonian, resulting in
23,850 documents. Noticing that a lot of the items
we identified are clustered in certain ID ranges of
CORE, we extend our data to roughly 48,000 pa-
pers by applying language detection on the PDF
files of documents adjacent in the set of CORE
IDs. After removal of duplicates (papers with dif-
ferent CORE ID but identical PDF) we end up with
27,755 documents.

2See https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/.

3See https://www.ncbi.nlm.nih.gov/pmc/
about/faq/#q16.

4Specifically, we use the 2018-03-01 full text data set
version of CORE containing 123,988,821 documents.

Number of tokens

(a) Distribution before keyword filtering.

Number of tokens

(b) Distribution after keyword filtering.

Figure 2: Change in document title length due to key-
word filtering.

Examination of our data at this point reveals
that it contains documents other than scientific pa-
pers, such as lecture notes, lecture schedules, and
untypically long documents such as whole confer-
ence proceedings. To remove these, we perform
two filtering steps. First, we remove documents
whose title contains either of the words студентiв
(UKR: “student”), Конспект лекцiй (UKR: “lec-
ture schedule”), Програма (RUS: “program”, as
in study program) and Диплом (RUS: “diploma”),
leaving around 22,000 documents and changing
the distribution of document title lengths as shown
in Figure 2. Second, we drop documents whose
length exceeds the 95% quantile (68 pages). Fi-
nally, we remove papers for which CORE does not
provide basic metadata, and papers for which the
plain text was not extractable from the PDF. This
leaves us with 15,553 papers, which form the basis
for our work and the provided Cyrillic data set.

2.2 Data Preparation

To prevent having to remove large portions of the
identified Cyrillic papers due to missing metadata
(see previous section), we decide to focus on publi-
cations’ title and list of authors. In order to create
training data for sequence labeling tasks, we obtain
the JSON metadata and PDF of each of the selected
publications from CORE. From the PDF, we ex-
tract the plain text contained in the first page using
PDFMiner5, identify the title and authors from the
JSON metadata and insert labels accordingly (see
Section 3.2.1 for details).

5See https://github.com/euske/pdfminer.
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2.3 Data Set

The resulting data set comprises 15,553 papers
spanning 27 years and three languages. For each
paper, we provide ground truth sequence labeling
output in TEI6 format and as annotated plain text.7

A detailed breakdown of languages, obtained
using fastText (Joulin et al., 2016, 2017) language
detection is shown in Table 1. Languages with
less than five occurrences throughout the data set
are not included. The distribution of papers by
publication year is shown in Figure 3. A breakdown
of the topics8 covered by the data set is shown in
Table 2. Analysing the origin of papers, we note
that 90% originate from either the “A.N.Beketov
KNUME Digital Repository”9 or the “Zhytomyr
State University Library.”10

Language #Documents
Ukrainian 11,708
Russian 3,786
Bulgarian 54

Table 1: Distribution of languages.

Topic #Documents
Engineering 2,472
Economics 2,429
Urban Planning/Infrastructure 2,263
Education 2,255
Other (Linguistics,
Zoology, Psychology ...) 6,134

Table 2: Distribution of topics.

#
D
o
cu
m
e
n
ts

Figure 3: Distribution of publication years of the final
data set.

6See https://tei-c.org/.
7See https://zenodo.org/record/4708696.
8For details of how topics were determined see https:

//github.com/IllDepence/sdp2021.
9See https://eprints.kname.edu.ua/.

10See http://eprints.zu.edu.ua/.

3 Application

To assess the utility of our data set, we use it to
retrain GROBID (Lopez, 2008–2021), a widely
used metadata extraction tool (Nasar et al., 2018),
as well as a standalone sequence labeling model,
and evaluate their performance against an off-the-
shelf version of GROBID.

3.1 GROBID Training

GROBID utilizes several models for different tasks,
each of which can be retrained. Our use case—
the extraction of title and author information—
concerns the header model, which is based on con-
ditional random fields (CRF). Retraining the header
model from scratch using our data set, we note that
for a significant portion of PDFs, GROBID is not
able to produce plain text on which the CRF would
then be applied. Because of this, we are only able
to use 9,620 papers (62% of the data set) for re-
training.

3.2 Standalone Sequence Labeling Model

3.2.1 Data Preprocessing
For our standalone model we decide to label the
textual content of the first page of each paper using
four tags, namely Author, B-title (beginning of the
title, i.e. the first title token), I-title (tokens inside
the title) and Misc (everything else).

To this end, we extract the plain text from the
PDF using PDFMiner, tokenize the text accord-
ing to whitespace, and replace newlines with a
NEWLINE token. The publication’s title is then
identified using the JSON metadata and each to-
ken labeled accordingly. NEWLINE tokens within
a sequence of title tokens are preserved.

For the matching of authors, we split the au-
thor strings from the metadata into surname and
given names. We first locate the surnames in the
token sequence, and label the occurrence closest
to the title as Author. Because given names can
appear written-out as well as abbreviated in the
form of initials, we heuristically identify the latter
as follows. Given an identified surname, we search
within a window of eight tokens before and after
the surname11 for uppercase characters followed
by a period. Matching initials are then labeled ac-
cordingly. Written-out given names are normally

11Eight being given in the edge case where a sur-
name is followed by a separating comma, two ini-
tials and a newline somewhere in-between. E.g.:
“<surname>, <initial>. <newline><initial>.”.
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Figure 4: Network architecture.

matched just like surnames.
From the tokens we derive vectorized embed-

dings using fastText. Following Chiu and Nichols
(2016) we use representations with 100 dimensions.
In addition to the embeddings, we add five addi-
tional feature dimensions to the word vectors as
done by Huang et al. (2015). These contain infor-
mation about whether a token is uppercase, capi-
talized, contains punctuation, contains a line break
or is styled like an author initial (uppercase and
ending in a period character).

3.2.2 Model Training
For our standalone model we choose to use a
BiLSTM network, as is commonly done for se-
quence labeling tasks (Huang et al., 2015).

We trim input sequences to the first 1,000 tokens,
resulting in an input space of 1, 000× 105 dimen-
sions per document, as each token is represented by
a 100-dimensional vector with a set of five added
features per token. The output space is of equal
length and contains a one-hot-encoded representa-
tion of one of the four labels Author, B-title, I-title
and Misc.

Because title and authors only make up a small
fraction of the words at the beginning of a publica-
tion, tokens with the Misc label make up a majority
of our data. To prevent the trivial prediction of
the Misc label playing too much of a role in train-
ing, each input word token is given an individual,
heuristically determined weight value of either 1
for Misc. or 5 for Author and *-title labels.

The final network, as shown in Figure 4, consists
of a BiLSTM layer followed by a ReLU activated
dense layer, a dropout layer and a final dense layer
with softmax activation. For training, categorical
cross entropy serves as the model’s loss function
and recall is employed as the target metric. Further-
more, the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 0.0001 is used.

Model Precision Recall F1
GROBID vanilla 0.06 0.06 0.06
GROBID retrained 0.85 0.81 0.83
BiLSTM 0.84 0.96 0.90

Table 3: Overall evaluation scores.

Modellabel Precision Recall F1
GROBID retr.title 0.90 0.90 0.90
BiLSTMtitle 0.88 0.96 0.92
GROBID retr.author 0.81 0.74 0.77
BiLSTMauthor 0.80 0.95 0.87
GROBID retr.misc - - -
BiLSTMmisc 0.99 0.99 0.99

Table 4: Evaluation scores per label.

4 Evaluation

To assess the performance of both the off-the-
shelf and retrained GROBID as well as the stan-
dalone BiLSTM model, we perform five-fold cross-
validations and measure the overall precision, re-
call, and F1 score.12

Because GROBID retraining is only possible on
roughly two thirds of our data (see Section 3.1)
we evaluate the off-the-shelf (“vanilla”) GROBID
model on the same subset in order to maximize
comparability of the evaluation results.

Regarding the comparability to our standalone
BiLSTM model, a key difference lies in the fact
that we use four labels (Author, B-title, I-title and
Misc) instead of GROBID’s two (Author and Title).
To adjust for this difference, we decide to disregard
the Misc label and combine the two types of *-title
label by a weighted average.

The overall evaluation scores resulting from this
are shown in Table 3. We note that off-the-shelf
GROBID is only able to determine a small frac-
tion of title and author tokens correctly. Retraining
GROBID using our training data, however, signifi-
cantly improves the performance from an F1 score
of 0.06 to 0.83, on par with GROBID’s perfor-
mance on English documents (Nasar et al., 2018).
Our standalone BiLSTM model outperforms the re-
trained GROBID due to significantly higher recall
with a F1 score of 0.90. Looking at the evalua-
tion results per label for the retrained GROBID and
standalone BiLSTM model, as shown in Table 4,
we can see that the largest performance difference

12Since off-the-shelf GROBID does not have to be retrained,
it is simply evaluated on 100% of the data instead of five folds.
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Language Precision Recall F1
Ukrainian 0.83 0.95 0.89
Russian 0.88 0.97 0.92
Bulgarian 0.51 0.70 0.58

Table 5: BiLSTM evaluation scores per language.

is given in the recall of the author label (measuring
0.74 and 0.95 respectively).

For further assessment of the BiLSTM model’s
performance, we evaluate its predictions per lan-
guage as shown in Table 5. We can observe that
the model achieves higher scores for Russian docu-
ments compared to the results for Ukrainian. This
is especially notable since the amount of Ukrainian
documents in the data set is significantly higher
than that of Russian papers. One possible expla-
nation of this performance gap could be a more
consistent structure among the Russian documents.
Performance on the 50 Bulgarian documents within
the data set is comparatively low. While this could
likely be due to the vast majority of the respec-
tive training data being in a different language, the
informativeness of the score itself has to be con-
sidered keeping in mind that there are merely 50
documents for testing available.

5 Conclusion

Inspired by recent approaches creating high-quality
data for training and evaluating information ex-
traction tasks involving scholarly publications, we
utilize this approach to tackle the problem of under-
represented non-English scholarly (training) data.
To this end, we use Cyrillic script documents found
in the CORE data set to train sequence labeling
models for identifying publications’ metadata.

We create a data set of 15,553 papers spanning
27 years and three languages. Using this data set,
we retrain GROBID and thereby greatly improve
its performance. Furthermore, we train and evalu-
ate a separate sequence labeling model that is less
constrained by PDF parsing restrictions (see Sec-
tion 3.1), showing even better overall performance
results than the retrained GROBID model.

By showcasing the use of freely available non-
English publications to improve the availability of
high-quality data and models covering areas be-
yond the anglophone publication record, we hope
to inspire similar efforts for other languages. For
our own approach, we plan to extend it to the ex-
traction of bibliographic references in the future.
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Abstract

Large pretrained models have seen enormous
success in extractive summarization tasks. We
investigate, here, the influence of pretraining
on a BERT-based extractive summarization
system for scientific documents. We derive
performance improvements using an interme-
diate pretraining step that leverages existing
summarization datasets and report state-of-the-
art results on a recently released scientific sum-
marization dataset, SCITLDR. We systemati-
cally analyze the intermediate pretraining step
by varying the size and domain of the pretrain-
ing corpus, changing the length of the input
sequence in the target task and varying target
tasks. We also investigate how intermediate
pretraining interacts with contextualized word
embeddings trained on different domains.

1 Introduction

Text summarization is a quintessential NLP task
that involves generating a coherent and succinct
summary of an article containing the most salient
information from the original article. Summariza-
tion systems are particularly useful for scientific
articles that tend to be long and rich in technical
content. Summarization can arguably reduce in-
formation overload on researchers and facilitate
the quick retrieval of relevant papers from vast
amounts of scientific literature. Broadly, summa-
rization techniques can be categorized as extractive
or abstractive. While abstractive systems treat the
summarization problem as a natural language gen-
eration task and produce new phrases and sentences
directly in the summary, extractive techniques se-
lect salient phrases or sentences verbatim from the
original document to create a summary. Maynez

∗∗Correspondence to pjyothi@cse.iitb.ac.in

et al. (2020), Kryscinski et al. (2020), Huang et al.
(2020) report factual hallucinations in abstractive
summarization. Durmus et al. (2020) highlight the
trade-off between faithfulness and abstractiveness.
Since for the scientific summarization task, it is
critical to be factually-accurate and be faithful to
the source document, we focus on extractive sum-
marization of scientific articles.

Large pretrained language models (e.g.
BERT (Devlin et al., 2019)) have been successfully
used for many NLP tasks including summariza-
tion (Liu and Lapata, 2019), using the following,
now widely-adopted, two-step approach:

Pretraining. Start with a pretrained model like
BERT and suitably adapt its architecture to fit
the target task.

Finetuning. Finetune the model using a labeled
dataset for the target task.

Recent work shows the benefits of interspersing
the pretraining and finetuning steps with an inter-
mediate pretraining step (Phang et al., 2018),(Vu
et al., 2020). This intermediate step often involves
supervised pretraining using labeled datasets from
different domains for a task that is related to or is
the same as the target task. While the efficacy of
such pretraining approaches have been studied in
prior work for natural language understanding tasks
(like entailment, question answering, etc. (Vu et al.,
2020)), the effect of pretraining on summarization
has been far less explored.

In this work, we explore the benefits of inter-
mediate pretraining using existing summarization
datasets for a target task involving the summa-
rization of scientific articles. We obtain improve-
ments in performance over state-of-the-art extrac-
tive summarization baseline systems on a new sci-
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entific summarization benchmark, SCITLDR (Ca-
chola et al., 2020). We also make the following key
observations:

• Intermediate pretraining using labeled sum-
marization datasets (even when containing ar-
ticles that are very different in domain from
scientific articles) is very beneficial to low-
resource target tasks like SCITLDR. We also
derive additional benefits by filtering the inter-
mediate pretraining data to only retain a subset
of articles (based on a similarity metric) that
best matches the target task.

• While starting with a BERT-based model
pretrained on scientific articles (e.g., SCIB-
ERT(Beltagy et al., 2019)) offers a small ad-
vantage compared to the standard BERT-based
model as an initialization, this advantage is
eclipsed by the effect of intermediate pretrain-
ing which is much more significant.

• The benefits from intermediate pretraining
diminish with access to sufficiently large
amounts of finetuning data in the target task.
We also observe a trend of diminishing re-
turns with the intermediate pretraining, as we
increase the amount of pretraining data.

2 Related Work

Transfer Learning Pretrained language models
like BERT(Devlin et al., 2019) are trained on self-
supervised training objectives over large amount of
unlabelled text corpus. As shown in (Phang et al.,
2018), (Zhang and Bowman, 2018), (Phang et al.,
2020), the pretrained knowledge in these models
can be leveraged by domain and task adaptive pre-
training before finetuning the model to the desired
target task. Gururangan et al. (2020), Chakrabarty
et al. (2019), Beltagy et al. (2019) finetune lan-
guage models on the domains of interest and show
improvements on the respective in-domain tasks.

Summarization Recent works in summarization
MatchSum (Zhong et al., 2020), BERTSUM (Liu
and Lapata, 2019), STEPwise ETCSum (Narayan
et al., 2020) use pretrained language models. BART
(Lewis et al., 2020), PEGASUS (Zhang et al.,
2020) use variants of self-supervised training ob-
jectives on massive amounts of text corpora and
compute to achieve stellar performance on sum-
marization tasks. While most of the recent works
focus on improving state-of-the-art results on news
datasets like CNN/DailyMail and XSum, improv-

ing summarization on scientific documents is an
overlooked area.

Intermediate Pretraining Howard and Ruder
(2018) first introduced the idea of intermediate pre-
training in NLP and its benefits on the 6 tasks of
classification. The benefits of this in summariza-
tion has been shown by Yu et al. (2021) where in
they finetune BART (Lewis et al., 2020) on XSUM
(Narayan et al., 2018) and show its results on low
resource domain adaptation benchmark for sum-
marization . We show the effects of intermediate
pretraining in the context of scientific document
summarization.
Scientific Summarization Cachola et al. (2020)
introduce the SCITLDR task and benchmark a va-
riety of summarization models such as MatchSum
and BERTSUM on the task. Impressive results
were reported by Pilault et al. (2020), Zaheer et al.
(2020) on scientific datasets like Pubmed, arXiv
using compute-intensive transformer based mod-
els. We report results on Pubmed and SCITLDR

where our models use significantly less compute
and achieve superior results on SCITLDR over
BERTSUM and MatchSum.

Cross task learning Lebanoff et al. (2018), Mao
et al. (2020) use methods that adapt single docu-
ment summarization task to multi document sum-
marization setup, namely using the CNN/Daily
Mail (CNN/DM) dataset. While it is similar to
the idea of the intermediate finetuning used in this
paper, the end task is different and are tested over
a different set of metrics. Zhong et al. (2019) con-
ducts some experiments with supervised pretrained
knowledge transfer, we do extensive experiments
in the context of scientific summarization.

3 Base Model

In this paper, we base our experiments on the BERT-
SUM (Liu and Lapata, 2019) architecture that uses
BERT embeddings and formulates extractive sum-
marization as a sentence classification problem.
The intermediate pretraining step uses data from a
summarization task that is different from the target
task and could also be from a different domain. We
also experiment with replacing pretrained BERT
embeddings with SCIBERT embeddings (Beltagy
et al., 2019).

BERTSUM Model We use the extractive model
proposed by Liu and Lapata (2019) as our base
model. It uses a BERT-based encoder (Devlin et al.,
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2019) to obtain sentence level representations of a
document using the [CLS] token at the beginning
of each sentence. Several transformer layers are
stacked to represent the discourse. These trans-
former layers are jointly fine-tuned with BERT on
a sentence classification task with a sigmoid layer
as the final output predicting whether or not each
sentence in the input document should be in the
summary. The loss of the model is a cross-entropy
loss for binary classification.

Using SCIBERT Embeddings Beltagy et al.
(2019) finetune BERT-Base on scientific docu-
ments from the biomedical and computer science
domains. To leverage the stylistic variation and
adapt to domain knowledge specific to scientific
articles, we examine the effects of replacing BERT
embeddings in the BERTSUM model with SCIB-
ERT embeddings.

4 Experimental Setup

4.1 Summarization Datasets
We evaluate the models on two scientific sum-
marization benchmark datasets— Pubmed (Co-
han et al., 2018) and SCITLDR (Cachola et al.,
2020). We use the CNN/DM (Hermann et al., 2015)
dataset for intermediate pretraining.
SCITLDR. SCITLDR is a curated corpus contain-
ing computer science articles, with each article hav-
ing one or more reference TLDR’s or one-sentence
summaries. The inputs could either be abstract-
only (SCITLDR-A) or the abstract, introduction
and conclusion sections of the article (SCITLDR-
AIC). We present results for both settings and use
the splits specified in (Cachola et al., 2020).

Pubmed. The Pubmed dataset consists of scien-
tific articles from PubMed.org. We used the splits
and preprocessing steps from (Zhong et al., 2020),
wherein the introduction is used as the article and
the abstract is used as the summary.

CNN/DM. The CNN/DM dataset consists of news
articles and highlights from CNN and Daily Mail
news articles, on diverse topics including sports,
health, business, etc. The standard splits are
used for training, validation and testing without
anonymizing the entities. Appendix A contains
more detailed statistics about all the three datasets
used in this work.

For intermediate pretraining, we also exper-
iment with a subset of articles from Pubmed
and CNN/DM together (henceforth referred to

as MIXED) that are most similar to our target
tasks, SCITLDR-A and SCITLDR-AIC (Guo et al.,
2020). We derive BERT-base embeddings for each
Pubmed and CNN/DM article via [CLS] tokens.
Then, we select 83K articles (roughly 35K and 48K
articles from Pubmed and CNN/DM, respectively)
with the smallest averaged L2 distance between
embeddings of the Pubmed/CNN/DM articles and
the SCITLDR target tasks.1

4.2 Models and Implementation Details

Our extractive summarization system uses the
BERT-based architecture by (Liu and Lapata, 2019)
described in Section 3. For intermediate pretrain-
ing, we use one of CNN/DM, Pubmed or MIXED.
The finetuning step involves data from one of
three target tasks, SCITLDR-A, SCITLDR-AIC
and Pubmed. For all training steps, we set the
dropout rate to 0.1 and learning rate to 2e-3, which
are the reported parameters in (Liu and Lapata,
2019) for CNN/DM. We use a batch size of 3000
for all experiments involving CNN/DM during pre-
training. The best model is selected on the basis of
validation ROUGE scores for one-line summaries
on the validation set. This is done to select the
model with the best "extreme" summarization ca-
pability. When evaluating on Pubmed, the number
of sentences extracted is set to 6, as reported in
(Zhong et al., 2020). For fine-tuning on SCITLDR-
A as well as SCITLDR-AIC, the batch size is set to
100 and the number of extracted sentences to form
the final summary is 1.

Evaluation Metrics. The SCITLDR tasks have
multiple reference summaries for each test arti-
cle. We compute ROUGE scores between the
summary generated by our system and each of
the reference summaries. We consider the refer-
ence with the maximum ROUGE-1 score as the
main gold summary used in further evaluations.
We choose ROUGE-1 (R1), ROUGE-2 (R2) and
ROUGE-L (RL) as our main evaluation metrics,
as is typically done for summarization tasks. To
determine the best possible performance from an
extractive summarization system, we also compute
oracle scores by choosing a sentence from each test
article with the highest R1 score across all refer-
ence summaries and averaging these scores across
the test articles.

1We select 83K articles in MIXED, which is the size of
Pubmed, to examine the effect of varying pretraining corpora
of a fixed size.
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SCITLDR-A SCITLDR-AIC
R1 R2 RL R1 R2 RL

ORACLE 49.2 26.0 39.9 53.7 29.9 43.9
MatchSum† (BERT-base) 42.7 20.0 34.0 38.6 16.4 30.1

Our Models
Pretraining Datasets Using BERT
- 39.71 18.91 32.63 36.99 16.14 29.64
Pubmed (83K) 41.49 19.57 33.40 40.82 18.98 32.84
CNN/DM (83K) 41.69 19.55 33.44 41.93 20.10 33.95
MIXED (83K) 42.32 20.50 34.30 42.78 21.06 34.83
CNN/DM (Full) 42.26 20.32 34.09 42.21 20.24 34.19

Using SCIBERT
- 39.93 18.50 32.32 37.16 15.94 29.65
CNN/DM (83K) 40.60 19.04 32.93 40.74 19.09 32.95
Pubmed (83K) 41.10 19.33 32.87 40.61 18.69 32.68
CNN/DM (Full) 40.66 19.08 32.59 41.25 19.40 33.37

Table 1: Max ROUGE scores for SCITLDR on test sets. † Results from (Cachola et al., 2020)

Pubmed
R1 R2 RL

ORACLE 45.12 20.33 40.19
MatchSum† (BERT-base) 41.21 14.91 36.75

Our Models
Pretraining Datasets Using BERT
- 40.65 14.85 36.18
CNN/DM (Full) 40.77 14.92 36.29

Using SCIBERT
- 41.08 15.16 36.59
CNN/DM (Full) 40.59 14.76 36.12

Table 2: Mean ROUGE scores for Pubmed test sets.†

Results from (Zhong et al., 2020)

Dataset Size R1 R2 RL
83K ARTICLES 41.93 20.10 33.95
176K ARTICLES 42.27 20.37 34.32
286K ARTICLES 42.21 20.24 34.19

Table 3: Results by varying the size of the pretraining
dataset CNN/DM while finetuning on SCITLDR-AIC.

5 Results and Discussion

Table 1 and Table 2 show our main results. In the
first two rows, we present results from the state-of-
the-art MatchSum system (Zhong et al., 2020) and
oracle scores. The remaining rows show pretrain-
ing results using BERT and SCIBERT embeddings
in the BERTSUM model. Without any intermedi-
ate pretraining, SCIBERT offers a small advantage
over BERT on Pubmed and is statistically compa-
rable to BERT on both SCITLDR tasks. With pre-
training and using BERT, we observe significant
improvements in performance regardless of the pre-
training corpora used. (We significantly outper-
form MatchSum on SCITLDR-AIC.) With keeping
the size of the pretraining corpus fixed at 83K arti-

SCITLDR-AIC Pubmed
Input
Length R1 R2 RL R1 R2 RL
512 42.21 20.24 34.19 40.65 14.85 36.18
1024 42.21 20.34 34.35 42.44 16.39 37.86
1500 42.23 20.65 34.41 42.65 16.59 38.03

Table 4: Results by varying the input sequence length
while finetuning. The pretraining dataset is CNN/DM
for SciTldr-AIC and none for Pubmed.

cles, pretraining with MIXED gives the best results
showing that it is beneficial to selectively choose
articles in the pretraining corpus that best match the
target tasks. Unlike for the low-resource SCITLDR

target tasks, intermediate pretraining does not bene-
fit Pubmed showing that its effect diminishes when
sufficient amounts of finetuning data are available
for the target task.

With pretraining and replacing BERT with SCIB-
ERT, we observe a deterioration in performance
indicated by the drop in ROUGE scores (espe-
cially with CNN/DM). The SCIBERT initializa-
tion appears to be counterproductive when using
CNN/DM during intermediate pretraining. It is
more beneficial to start with BERT, rather than
SCIBERT, and pretrain on CNN/DM before the
final finetuning step.

Additionally, we undertake two ablation exper-
iments. 1) We investigate the effect of varying
amounts of pretraining data. We vary the size of
CNN/DM to 83K, 176K and 286K articles and
analyse the finetuning results on SCITLDR-AIC
with BERT embeddings. As shown in Table 3, R1,
R2 and RL scores increase on moving from 83K to
176K articles but performance stagnates with a fur-
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ther increase in the size of the pretraining corpus. 2)
During finetuning, we experiment with truncating
the input sequence lengths of SCITLDR-AIC and
Pubmed at 512, 1024 and 1500 tokens, as shown in
Table 4. We initialize the model with BERT embed-
dings for the first 512 tokens and repeat the last set
of weights for the remaining input tokens. We ob-
serve that the ROUGE scores improve with longer
input lengths, with a sizeable boost for Pubmed.

6 Conclusions and Future Work

In this paper, we present a systematic investigation
of the benefits of transfer learning via pretraining
for extractive summarization of scientific articles.
We show improvements in ROUGE scores for the
SCITLDR benchmark using an intermediate pre-
training that uses existing summarization datasets.
We obtain additional benefits by filtering these ex-
isting datasets to construct a pretraining corpus that
best matches the target task. This suggests the need
for further explorations in future work on differ-
ent criteria to be used for selective pretraining and
how it could benefit both extractive and abstractive
summarization.
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A Appendix

A.1 Dataset Details

Corpus (C) |C | Source of C # of Tokens
Train Val Test Doc. Sum.

SciTldr-A 1992 papers
(1992 TLDRs)

619 papers
(1452 TLDRs)

618 papers
(1967 TLDRs) OpenReview API 159 21

SciTLDR-AIC 1992 papers
(1992 TLDRs)

619 papers
(1452 TLDRs)

618 papers
(1967 TLDRs) OpenReview API 993 21

CNN/DM (Full)
CNN/DM (83k)

287k
83k - - News Articles 685 53

Pubmed 83233 4946 5025 Biomedical Literature 444 209

Table 5: Dataset details of summarization datasets. Unlike the other datasets, SCITLDR consists of multiple
reference summaries for each article. SCITLDR-AIC has the highest compression ratio when compared to the
other datasets.

A.1.1 SCITLDR

This dataset is built from a combination of TLDRS written by human experts and author-written TLDRS

of computer science papers from OpenReview. OpenReview (https://openreview.net/) is one such example
where authors are asked to submit TLDRs of their papers, which communicates to both reviewers and
users of OpenReview the main content of the paper. SCITLDR has multiple reference summaries for each
of the test and validation articles. The additional reference summaries (apart from the author written one)
were obtained from human annotators. This is an "extreme" summarisation task as the compression ratio
is very high compared to the other datasets i.e. around 47 for the AIC task. While the dataset is inherently
abstractive in nature, the extractive oracle scores listed in Table ?? are quite high (in fact, they are much
higher than existing abstractive and extractive SoTA scores), which implies there is a lot of scope for
extractive summarisation.

A.1.2 CNN/DM
This dataset contains online news articles paired with multi-sentence summaries (which are highlights
of the news articles). The dataset is fairly large and also has a high extractive oracle (with ROUGE-1
/ ROUGE-2 / ROUGE-L scores of 52.59 / 31.24 / 48.87 ), although the summaries are not inherently
extractive. The compression ratio is much lower compared to SCITLDR i.e. around 13.

A.1.3 Pubmed
This dataset is collected from scientific papers. It has a very low compression ratio i.e. around 2 (which is a
direct consequence of using the introduction section as the document and the abstract as the corresponding
summary). The summaries are relatively long, compared to SCITLDR and CNN/DM, with around 6
sentences per summary.

A.2 Qualitative Analysis
We present examples of SCITLDR articles and generated summaries to illustrate the effects of pretraining
and other design choices (such as varying input lengths and BERT/SCIBERT initializations).
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A.2.1 Effect of Input Sequence Length on SciTLDR-AIC

Article 1
Good representations facilitate transfer learning and few-shot learning. Motivated by theories of language and communication
that explain why communities with large number of speakers have, on average, simpler languages with more regularity, we
cast the representation learning problem in terms of learning to communicate.Our starting point sees traditional autoencoders
as a single encoder with a fixed decoder partner that must learn to communicate. Generalizing from there, we introduce
community-based autoencoders in which multiple encoders and decoders collectively learn representations by being randomly
paired up on successive training iterations. Our experiments show that increasing community sizes reduce idiosyncrasies in
the learned codes, resulting in more invariant representations with increased reusability and structure. The importance of
representation learning lies in two dimensions. First and foremost, representation learning is a crucial building block of a neural
model being trained to perform well on a particular task, i.e., representation learning that induces the "right" manifold structure
can lead to models that generalize better, and even extrapolate. Another property of representation learning, and arguably the
most important one, is that it can facilitate transfer of knowledge across different tasks , essential for transfer learning and
few-shot learning among others BID0 . With this second point in mind, we can define good representations as the ones that are
reusable, induce the abstractions that capture the "right" type of invariances and can allow for generalizing very quickly to a
new task. Significant efforts have been made to learn representations with these properties; one frequently explored direction
involves trying to learn disentangled representations BID12 BID6 BID5 BID17 ), while others focus on general regularization
methods BID15 BID18 . In this work, we take a different approach to representation learning, inspired by successful abstraction
mechanisms found in nature, to wit human language and communication.Human languages and their properties are greatly
affected by the size of their linguistic community BID11 BID19 BID16 BID9 .....
Ground Truth Summaries
Motivated by theories of language and communication, we introduce community-based autoencoders, in which multiple encoders
and decoders collectively learn structured and reusable representations.
The authors tackle the problem of representation learning, aim to build reusable and structured represenation, argue co-adaptation
between encoder and decoder in traditional AE yields poor representation, and introduce community based auto-encoders.
The paper presents a community based autoencoder framework to address co-adaptation of encoders and decoders and aims at
constructing better representations.
Input Length 512 (ROUGE-1: 18.18, ROUGE-2: 0.00, ROUGE-L: 12.12)
Good representations facilitate transfer learning and few-shot learning .
Input Length 1024 (ROUGE-1: 28.57, ROUGE-2: 0.00, ROUGE-L: 14.29)
Our starting point sees traditional autoencoders as a single encoder with a fixed decoder partner that must learn to communicate.
Input Length 1500 (ROUGE-1: 60.0, ROUGE-2: 49.99, ROUGE-L: 55.99)
Generalizing from there, we introduce community-based autoencoders in which multiple encoders and decoders collectively
learn representations by being randomly paired up on successive training iterations.
Article 2
Generative models are important tools to capture and investigate the properties of complex empirical data. Recent developments
such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) use two very similar, but reverse,
deep convolutional architectures, one to generate and one to extract information from data. Does learning the parameters of
both architectures obey the same rules? .We exploit the causality principle of independence of mechanisms to quantify how the
weights of successive layers adapt to each other. Using the recently introduced Spectral Independence Criterion, we quantify the
dependencies between the kernels of successive convolutional layers and show that those are more independent for the generative
process than for information extraction, in line with results from the field of causal inference. In addition, our experiments
on generation of human faces suggest that more independence between successive layers of generators results in improved
performance of these architectures. Deep generative models have proven powerful in learning to design realistic images in a
variety of complex domains (handwritten digits, human faces, interior scenes). In particular, two approaches have recently
emerged: Generative Adversarial Networks (GANs) BID8 , which train an image generator by having it fool a discriminator that
should tell apart real from artificially generated images; and Variational Autoencoders (VAEs) BID15 BID21 ) that learn both
a mapping from latent variables to the data (the decoder) and the converse mapping from the data to the latent variables (the
encoder), such that correspondences between latent variables and data features can be easily investigated.....
Ground Truth Summaries
We use causal inference to characterise the architecture of generative models .
This paper examines the nature of convolutional filters in the encoder and a decoder of a VAE, and a generator and a discriminator
of a GAN.
This work exploits the causality principle to quantify how the weights of successive layers adapt to each other.
Input Length 512 (ROUGE-1: 25.92, ROUGE-2: 3.84, ROUGE-L: 14.81)
Using the recently introduced Spectral Independence Criterion, we quantify the dependencies between the kernels of successive
convolutional layers and show that those are more independent for the generative process than for information extraction, in line
with results from the field of causal inference.
Input Length 1024 (ROUGE-1: 38.46, ROUGE-2: 8.33, ROUGE-L: 23.08)
Generative models are important tools to capture and investigate the properties of complex empirical data.
Input Length 1500 (ROUGE-1: 82.05, ROUGE-2: 75.68, ROUGE-L: 82.05)
We exploit the causality principle of independence of mechanisms to quantify how the weights of successive layers adapt to each
other.

Table 6: Articles 1 and 2 have 1068 and 1265 tokens, respectively. We see that increasing the length of the input
sequence significantly improves the ROUGE scores.
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A.2.2 Effect of Pretraining on SciTLDR-AIC

Article 1
Recent advances in neural Sequence-to-Sequence (Seq2Seq) models reveal a purely data-driven approach to the response
generation task. Despite its diverse variants and applications, the existing Seq2Seq models are prone to producing short and
generic replies, which blocks such neural network architectures from being utilized in practical open-domain response generation
tasks. In this research, we analyze this critical issue from the perspective of the optimization goal of models and the specific
characteristics of human-to-human conversational corpora. Our analysis is conducted by decomposing the goal of Neural
Response Generation (NRG) into the optimizations of word selection and ordering. It can be derived from the decomposing
that Seq2Seq based NRG models naturally tend to select common words to compose responses, and ignore the semantic
of queries in word ordering. On the basis of the analysis, we propose a max-marginal ranking regularization term to avoid
Seq2Seq models from producing the generic and uninformative responses. The empirical experiments on benchmarks with
several metrics have validated our analysis and proposed methodology. Past years have witnessed the dramatic progress on the
application of generative sequential models (also noted as seq2seq learning (Sutskever et Despite these promising results, current
Sequence-to-Sequence (Seq2Seq) architectures for response generation are still far from steadily generating relevant and coherent
replies. The essential issue identified by many studies is the Universal Replies: the model tends to generate short and general
replies which contain limited information, such as "That’s great!", "I don’t know", etc. Nevertheless, most previous analysis over
the issue are empirical and lack of statistical evidence. Therefore, in this paper, we conduct an in-depth investigation on the
performance of seq2seq models on the NRG task....
Ground Truth Summaries
Analyze the reason for neural response generative models preferring universal replies; Propose a method to avoid it. Investigates
the problem of universal replies plaguing the Seq2Seq neural generation models.
The paper looks into improving the neural response generation task by deemphasizing the common responses using modification
of the loss function and presentation the common/universal responses during the training phase.
Pubmed (ROUGE-1: 20.51, ROUGE-2: 0.00, ROUGE-L: 20.51)
In this research, we analyze this critical issue from the perspective of the optimization goal of models and the specific
characteristics of human-to-human conversational corpora.
CNN/DM (ROUGE-1: 34.62, ROUGE-2: 8.00, ROUGE-L: 26.92)
Our analysis is conducted by decomposing the goal of Neural Response Generation (NRG) into the optimizations of word
selection and ordering.
CNN/DM+Pubmed (ROUGE-1: 37.50, ROUGE-2: 0.0 , ROUGE-L: 31.25)
Therefore, in this paper, we conduct an in-depth investigation on the performance of seq2seq models on the NRG task.
Article 2
Graph convolutional networks (GCNs) have been widely used for classifying graph nodes in the semi-supervised setting. Previous
works have shown that GCNs are vulnerable to the perturbation on adjacency and feature matrices of existing nodes. However, it
is unrealistic to change the connections of existing nodes in many applications, such as existing users in social networks. In this
paper, we investigate methods attacking GCNs by adding fake nodes. A greedy algorithm is proposed to generate adjacency and
feature matrices of fake nodes, aiming to minimize the classification accuracy on the existing ones. In additional, we introduce
a discriminator to classify fake nodes from real nodes, and propose a Greedy-GAN algorithm to simultaneously update the
discriminator and the attacker, to make fake nodes indistinguishable to the real ones....
Ground Truth Summaries
non-targeted and targeted attack on GCN by adding fake nodes The authors propose a new adversarial technique to add "fake"
nodes to fool a GCN-based classifier
Pubmed (ROUGE-1: 23.53, ROUGE-2: 0.0, ROUGE-L: 11.76)
Graph convolutional networks (GCNs) have been widely used for classifying graph nodes in the semi-supervised setting.
CNN/DM (ROUGE-1: 34.15, ROUGE-2: 5.13, ROUGE-L: 24.39)
A greedy algorithm is proposed to generate adjacency and feature matrices of fake nodes, aiming to minimize the classification
accuracy on the existing ones.
CNN/DM+Pubmed (ROUGE-1: 52.17, ROUGE-2: 38.09, ROUGE-L: 52.17)
In this paper, we investigate methods attacking GCNs by adding fake nodes.

Table 7: For both the articles, we note an increasing trend in the ROUGE scores with pretraining on Pubmed,
CNN/DM and MIXED (i.e., CNN/DM+Pubmed).
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A.2.3 Bert vs SCIBERT without pretraining on SciTLDR-AIC

Article 1
In this paper, we introduce a system called GamePad that can be used to explore the application of machine learning methods to
theorem proving in the Coq proof assistant. Interactive theorem provers such as Coq enable users to construct machine-checkable
proofs in a step-by-step manner. Hence, they provide an opportunity to explore theorem proving with human supervision. We
use GamePad to synthesize proofs for a simple algebraic rewrite problem and train baseline models for a formalization of the
Feit-Thompson theorem. We address position evaluation (i.e., predict the number of proof steps left) and tactic prediction (i.e.,
predict the next proof step) tasks, which arise naturally in tactic-based theorem proving. Theorem proving is a challenging AI
task that involves symbolic reasoning (e.g., SMT solvers BID2 ) and intuition guided search. Recent work BID7 Loos et al.,
2017; has shown the promise of applying deep learning techniques in this domain, primarily on tasks useful for automated
theorem provers (e.g., premise selection) which operate with little to no human supervision. In this work, we aim to move closer
to learning on proofs constructed with human supervision.We look at theorem proving in the realm of formal proofs. A formal
proof is systematically derived in a formal system, which makes it possible to algorithmically (i.e., with a computer) check these
proofs for correctness....
Ground Truth Summaries
We introduce a system called GamePad to explore the application of machine learning methods to theorem proving in the Coq
proof assistant.
This paper describes a system for applying machine learning to interactive theorem proving, focuses on tasks of tactic prediction
and position evaluation, and shows that a neural model outperforms an SVM on both tasks.
Proposes that machine learning techniques be used to help build proof in the theorem prover Coq.
Bert Output (ROUGE-1: 34.78, ROUGE-2: 4.55, ROUGE-L: 21.74)
We use GamePad to synthesize proofs for a simple algebraic rewrite problem and train baseline models for a formalization of the
Feit-Thompson theorem.
SCIBERT Output (ROUGE-1: 86.27, ROUGE-2: 81.63, ROUGE-L: 86.27)
In this paper, we introduce a system called GamePad that can be used to explore the application of machine learning methods to
theorem proving in the Coq proof assistant.
Article 2
We propose a novel method that makes use of deep neural networks and gradient decent to perform automated design on
complex real world engineering tasks. Our approach works by training a neural network to mimic the fitness function of a design
optimization task and then, using the differential nature of the neural network, perform gradient decent to maximize the fitness.
We demonstrate this methods effectiveness by designing an optimized heat sink and both 2D and 3D airfoils that maximize the
lift drag ratio under steady state flow conditions. We highlight that our method has two distinct benefits over other automated
design approaches. First, evaluating the neural networks prediction of fitness can be orders of magnitude faster then simulating
the system of interest. Second, using gradient decent allows the design space to be searched much more efficiently then other
gradient free methods. These two strengths work together to overcome some of the current shortcomings of automated design.
Automated Design is the process by which an object is designed by a computer to meet or maximize some measurable objective.
This is typically performed by modeling the system and then exploring the space of designs to maximize some desired property
whether that be an automotive car styling with low drag or power and cost efficient magnetic bearings BID1 BID4 . A notable
historic example of this is the 2006 NASA ST5 spacecraft antenna designed by an evolutionary algorithm to create the best
radiation pattern (Hornby et al.) . More recently, an extremely compact broadband on-chip wavelength demultiplexer was design
to split electromagnetic waves with different frequencies BID17 . While there have been some significant successes in this field
the dream of true automated is still far from realized. The main challenges present are heavy computational requirements for
accurately modeling the physical system under investigation and often exponentially large search spaces. These two problems
negatively complement each other making the computation requirements intractable for even simple problems.Our approach
works to solve the current problems of automated design in two ways. First, we learn a computationally efficient representation of
the physical system on a neural network. This trained network can be used to evaluate the quality or fitness of the design several
orders of magnitude faster. Second, we use the differentiable nature of the trained network to get a gradient on the parameter
space when performing optimization. This allows significantly more efficient optimization requiring far fewer iterations then
other gradient free methods such as genetic algorithms or simulated annealing....
Ground Truth Summaries
A method for performing automated design on real world objects such as heat sinks and wing airfoils that makes use of neural
networks and gradient descent.
Neural network (parameterization and prediction) and gradient descent (back propogation) to automatically design for engineering
tasks.
This paper introduces using a deep network to approximate the behavior of a complex physical system, and then design optimal
devices by optimizing this network with respect to its inputs.
Bert Output (ROUGE-1: 16.67, ROUGE-2: 4.35, ROUGE-L: 12.49)
This allows significantly more efficient optimization requiring far fewer iterations then other gradient free methods such as
genetic algorithms or simulated annealing.
SCIBERT Output (ROUGE-1: 62.75, ROUGE-2: 40.82, ROUGE-L: 39.22)
We propose a novel method that makes use of deep neural networks and gradient descent to perform automated design on
complex real world engineering tasks.

Table 8: For both the articles, we observe clear improvements in ROUGE scores with using SCIBERT as opposed
to BERT.
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Abstract

Scholarly documents have a great degree of
variation, both in terms of content (seman-
tics) and structure (pragmatics). Prior work
in scholarly document understanding empha-
sizes semantics through document summariza-
tion and corpus topic modeling but tends to
omit pragmatics such as document organiza-
tion and flow. Using a corpus of scholarly doc-
uments across 19 disciplines and state-of-the-
art language modeling techniques, we learn
a fixed set of domain-agnostic descriptors for
document sections and “retrofit” the corpus
to these descriptors (also referred to as “nor-
malization”). Then, we analyze the posi-
tion and ordering of these descriptors across
documents to understand the relationship be-
tween discipline and structure. We report
within-discipline structural archetypes, vari-
ability, and between-discipline comparisons,
supporting the hypothesis that scholarly com-
munities, despite their size, diversity, and
breadth, share similar avenues for expressing
their work. Our findings lay the foundation for
future work in assessing research quality, do-
main style transfer, and further pragmatic anal-
ysis.

1 Introduction

Disciplines such as art, physics, and political sci-
ence contain a wide array of ideas, from specific
hypotheses to wide-reaching theories. In scholarly
research, authors are faced with the challenge of
clearly articulating a set of those ideas and relat-
ing them to each other, with the ultimate goal of
expanding our collective knowledge. In order to un-
derstand this work, human readers situate meaning
in context (Justin Garten and Deghani, 2019). Sim-
ilarly, methods for scholarly document processing
(SDP) have semantic and pragmatic orientations.

The semantic orientation seeks to understand
and evaluate the ideas themselves through infor-
mation extraction (Singh et al., 2016), summariza-

tion (Chandrasekaran et al., 2020), automatic fact-
checking (Sathe et al., 2020), etc. The pragmatic
orientation, on the other hand, seeks to understand
the context around those ideas through rhetorical
and style analysis (August et al., 2020), corpus
topic modeling (Paul and Girju, 2009), quality pre-
diction (Maillette de Buy Wenniger et al., 2020),
etc. Although both orientations are essential for un-
derstanding, the pragmatics of disciplinary writing
are very weakly understood.

In this paper, we investigate the structures of
disciplinary writing. We claim that a “structural
archetype” (defined in Section 3) can succinctly
capture how a community of authors choose to or-
ganize their ideas for maximum comprehension
and persuasion. Analogous to how syntactic analy-
sis deepens our understanding of a given sentence
and document structure analysis deepens our under-
standing of a given document, structural archetypes,
we argue, deepen our understanding of domains
themselves.

In order to perform this analysis, we classify sec-
tions according to their pragmatic intent. We con-
tribute a data-driven method for deriving the types
of pragmatic intent, called a “structural vocabu-
lary”, alongside a robust method for this classifica-
tion. Then, we apply these methods to 19k schol-
arly documents and analyze the resulting structures.

2 Related Work

We draw from two areas of related work in SDP:
interdisciplinary analysis and rhetorical structure
prediction.

In interdisciplinary analysis, we are interested in
comparing different disciplines, whether by topic
modeling between select corpora/disciplines (Paul
and Girju, 2009) or by domain-agnostic language
modeling (Wang et al., 2020). These comparisons
are more than simply interesting; they allow for
models that can adapt to different disciplines, help-
ing the generalizability for downstream tasks like
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information extraction and summarization.
In rhetorical structure prediction, we are inter-

ested in the process of implicature, whether by
describing textual patterns in an unsupervised way
(Ó Séaghdha and Teufel, 2014) or by classifying
text as having a particular strategy like “statis-
tics” (Al-Khatib et al., 2017) or “analogy” (Au-
gust et al., 2020). These works descend from ar-
gumentative zoning (Lawrence and Reed, 2020)
and the closely related rhetorical structure theory
(Mann and Thompson, 1988), which argue that
many rhetorical strategies can be described in terms
of units and their relations. These works are moti-
vated by downstream applications such as predict-
ing the popularity of a topic (Prabhakaran et al.,
2016) and classifying the quality of a paper (Mail-
lette de Buy Wenniger et al., 2020).

Most similar to our work is Arnold et al. (2019).
Here, the authors provide a method of describing
Wikipedia articles as a series of section-like topics
(e.g. disease.symptom) by clustering section
headings into topics and then labeling words and
sentences with these topics. We build on this work
by using domain-agnostic descriptors instead of
domain-specific ones and by comparing structures
across disciplines.

3 Methods

In this section, we define structural archetypes
(3.1) and methods for classifying pragmatic intent
through a structural vocabulary (3.2).

3.1 Structural Archetypes

We coin the term “structural archetype” to focus
and operationalize our pragmatic analysis. Here,
a “structure” is defined as a sequence of domain-
agnostic indicators of pragmatic intent, while an
“archetype” refers to a strong pattern across docu-
ments. In the following paragraphs, we discuss the
components of this concept in depth.

Pragmatic Intent In contrast to verifiable propo-
sitions, “indicators of pragmatic intent” refer to
instances of meta-discourse, comments on the doc-
ument itself (Ifantidou, 2005). There are many ex-
amples, including background (comments on what
the reader needs in order to understand the content),
discussions (comments on how results should be
interpreted), and summaries (comments on what
is important). These indicators of pragmatic intent
serve the critical role of helping readers “digest”

material; without them, scholarly documents would
only contain isolated facts.

We note that the boundary between pragmatic in-
tent and argumentative zones (Lawrence and Reed,
2020) is not clear. Some argumentative zones are
more suitable for the sentence- and paragraph-level
(e.g. “own claim” vs. “background claim”) while
others are interpretative (e.g. “challenge”). This
work does not attempt to draw this boundary, and
the reader might find overlap between argumenta-
tive zoning work and our section types.

Sequences As a sequence, these indicators re-
flect how the author believes their ideas should best
be received in order to remain coherent. For exam-
ple, many background indicators reflects a belief
that the framing of the work is very important.

Domain-agnostic archetypes Finally, the spec-
ification that indicators must be domain-agnostic
and that the structures should be widely-held are in-
cluded to allow for cross-disciplinary comparisons.

We found that the most straightforward way to
implement structural archetypes is through classi-
fying section headings according to their pragmatic
intent. With this comes a few challenges: (1) defin-
ing a set of domain-agnostic indicators, which we
refer to as a “structural vocabulary”; (2) parsing
a document to obtain its structure; and (3) finding
archetypes from document-level structures. In the
proceeding section, we address (1) and (2), and in
Section 4 we address (3).

3.2 Deriving a Structural Vocabulary

Although indicators of pragmatic intent can exist on
the sentence level, we follow Arnold et al. (2019)
and create a small set of types that are loosely re-
lated to common section headings (e.g. “Meth-
ods”). We call this set a “structural vocabulary”
because it functions in an analogous way to a vo-
cabulary of words; any document can be described
as a sequence of items that are taken from this vo-
cabulary. There are three properties that the types
should satisfy:

A. domain independence: types should be used
by different disciplines

B. high coverage: unlabeled instances should be
able to be classified as a particular type.

C. internal consistency: types should accurately
reflect their instances
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Domain Independence As pointed out by
Arnold et al. (2019), there exists a “vocabulary
mismatch problem” where different disciplines talk
about their work in different ways. Indeed, 62%
of the sampled headings only appear once and are
not good choices for section types. On the other
hand, the most frequent headings are a much better
choice, especially those that appear in all domains.
After merging a few popular variations among the
top 20 section headings (e.g. conclusion and sum-
mary, background and related work), we yield the
following types1: introduction (a section which
introduces the reader to potentially new concepts;
n = 10916), methods (a section which details how
a hypothesis will be tested; n = 2116), results
(a section which presents findings of the method;
n = 3119), discussion (a section which interprets
and summarizes the results; n = 3118), conclu-
sion (a section which summarizes the entire paper;
n = 7738), analysis (a section which adds addi-
tional depth and nuance to the results; n = 951),
and background (a section which connects ongoing
work to previous related work; n = 800). Figure 2
contains discipline-level counts.

High Coverage We can achieve high coverage
by classifying any section as one of these section
types through language modeling. Specifically, the
hidden representation of a neural language model
h(·) can act as an embedding of its input. We use
the [CLS] tag of SciBERT’s hidden layer, selected
for its robust representations of scientific literature
(Beltagy et al., 2019).

To classify, we define a distance score d(·) for a
section s and a type T as the distance between h(s)
and the average embedding across all instances of
a type, i.e.

d(s, T ) =

∣∣∣∣h(s)−
∑

t∈T h(t)

‖T‖

∣∣∣∣

Note that since the embedding is a vector, ad-
dition and division are elementwise. Then, we
compute the distance for all types in the vocabulary
V and select the minimum, i.e.

stype = argmin
T∈V

(d(s, T ))

Internal Consistency Some sections do not ad-
equately fit any section type, so nearest-neighbor

1Although abstract is extremely common we found it re-
dundant as a section type as it only exists once per paper and
in a predictable location.

classification will result in very inconsistent clus-
ters. We address this problem by imposing a thresh-
old on the maximum distance for d(·). Further,
since the types have unequal variance (that is, the
ground truth for some types are more consistent
than other types), we define a type-specific thresh-
old as half of the distance from the center of T to
the furthest member of T , i.e.

thresholdT = 0.5 ·max
t∈T

(d(t, T ))

The weight of 0.5 was found to remove outliers
appropriately an maximize retrofitting performance
(Section 4.2).

We also note that some headings, especially brief
ones, leave much room for interpretation and make
retrofitting challenging. We address this problem
by concatenating tokens of each section’s heading
and body, up to 25 tokens, as input to the language
model. This ensures that brief headings contain
enough information to make an accurate represen-
tation without including too many details from the
body text.

4 Results and Discussion

4.1 Data

We use the Semantic Scholar Open Research Cor-
pus (S2ORC) for all analysis (Lo et al., 2020). This
corpus, which is freely available, contains approxi-
mately 7.5M PDF-parsed documents from 19 disci-
plines, including natural sciences, social sciences,
arts, and humanities. For our experiments, we ran-
domly sample 1k documents for each discipline,
yielding a total of 19k documents.

4.2 Retrofitting Performance

Retrofitting (or normalizing) section headers refers
to re-labeling sections with the structural vocabu-
lary. We evaluate retrofitting performance by manu-
ally tagging 30 of each section type and comparing
the true labels to the predicted values. Our method
yields an average F1 performance of 0.76. The
breakdown per section type, shown in Table 1, re-
veals that conclusion, background, and analysis
sections were the most difficult to predict. We
attribute this to a lack of textual clues in the head-
ing and body, and also a semantic overlap with
introduction sections. Future work can improve
the classifier with more nuanced signals, such as
position, length, number of references, etc.
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Figure 1: A comparison between the positions (normalized by document length; x axis) and frequencies (y axis)
of section types in Physics and Political Science. Comparable distributions of introduction, methods, analysis,
discussion, and conclusion, but different distributions of background and results.

Type Precision Recall F1
introduction 0.77 0.97 0.85
conclusion 0.67 0.72 0.69
discussion 0.88 0.88 0.88

results 0.80 0.85 0.83
methods 0.83 0.91 0.87

background 0.63 0.77 0.69
analysis 0.50 0.61 0.55
overall 0.72 0.88 0.76

Table 1: Type-level and overall performance for section
type retrofitting.

4.3 Analyzing Position with Aggregate
Frequency

A simple yet expressive way of showing the struc-
tural archetypes of a discipline is to consider the
frequency of a particular type at any point in the ar-
ticle (normalized by length). This analysis reveals
general trends throughout a discipline’s documents,
such as where a section type is most frequent or
where there is homogeneity.

To illustrate the practicality of this analysis, con-
sider the hypothesis that Physics articles are more
empirically-motivated while Political Science ar-
ticles are more conceptually-motivated, i.e. that
they are on opposing ends of the concrete versus
abstract spectrum. We operationalize this by claim-
ing that Physics articles have more methods, results,

and analysis sections than Political Science. Fig-
ure 1 shows the difference between Physics and
Political Science at each point in the article. It re-
veals that not only do Physics articles contain more
methods and results, but also that Physics articles
introduce methods earlier than Political Science,
and that both contain the same amount of analysis
sections.

4.4 Analyzing Ordering with State
Transitions

A more structural analysis of a discipline is to look
at the frequency of sequence fragments through
computing transition probabilities. As a second
example, suppose we have a more nuanced hy-
pothesis: that Psychology papers tend to separate
claims and evaluate them sequentially (methods,
results, discussion, repeat) whereas Sociology pa-
pers tend to evaluate all claims at once. We can
operationalize these hypotheses by calculating the
transition probability between section si and si−1
conditioned on some discipline.

In Table 2, we see evidence that methods sec-
tions are more likely to be preceded by results sec-
tions in Psychology than Sociology, implying a
new iteration of a cycle. We might conclude that
Psychology papers are more likely to have cyclical
experiments, but not that Sociology papers conduct
multiple experiments in a linear fashion.
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Transition Probability Psych. Socio.
P (method → method) 0.31 0.20

P (results → results) 0.22 0.23

P (disc → disc) 0.16 0.13

P (method → results) 0.21 0.10

P (results → disc) 0.15 0.16

P (disc → method) 0.23 0.13

Table 2: Transition probabilities for methods, results,
and discussion in Psychology and Sociology

5 Conclusion and Future Work

In this paper, we have shown a simple method for
constructing and comparing structural archetypes
across different disciplines. By classifying the prag-
matic intent of section headings, we can visualize
structural trends across disciplines. In addition to
utilizing a more complex classifier, future direc-
tions for this work include (1) further distinguish-
ing between subdisciplines (e.g. abnormal psychol-
ogy vs. developmental psychology) and document
type (e.g. technical report vs. article); (2) learning
relationships between structures and measures of
research quality, such as reproducibility; (3) learn-
ing how to convert one structure into another, with
the ultimate goal of normalizing them for easier
comprehension or better models; (4) deeper investi-
gations into the selection of a structural vocabulary,
such as including common argumentative zoning
types or adjusting the scale to the sentence-level;
and (5) drawing comparisons, such as by clustering,
between different documents based strictly on their
structure.
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A Section Counts Before and After Retrofitting

Figure 2: The frequency of the top-7 section headings before (top) and after (bottom) retrofitting.

B Aggregate Frequency for Other Disciplines
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Figure 3: Aggregate Frequency for 12 of the 19 disciplines
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Abstract

Presentation slides describing the content of
scientific and technical papers are an efficient
and effective way to present that work. How-
ever, manually generating presentation slides
is labor intensive. We propose a method to
automatically generate slides for scientific pa-
pers based on a corpus of 5000 paper-slide
pairs compiled from conference proceedings
websites. The sentence labeling module of
our method is based on SummaRuNNer, a neu-
ral sequence model for extractive summariza-
tion. Instead of ranking sentences based on
semantic similarities in the whole document,
our algorithm measures importance and nov-
elty of sentences by combining semantic and
lexical features within a sentence window. Our
method outperforms several baseline methods
including SummaRuNNer by a significant mar-
gin in terms of ROUGE score.

1 Introduction

It has become common practice for researchers to
use slides as a visual aid in presenting research
findings and innovations. Such slides usually con-
tain bullet points that the researchers believe to
be important to show. These bullet points serve
both as a reminder to the speaker (when he/she
is presenting) and summaries for audiences to un-
derstand. Manually creating a set of high-quality
slides from an academic paper is time-consuming.
We propose a method that automatically selects
salient sentences that could be included into the
slides, with the purpose of reducing the time and
effort for slide generation.

The main challenge for solving this problem is
to accurately extract the main points from an aca-
demic paper. This is due to the limitations of exist-
ing methods to fully encode semantics of sentences
and the implicit relations between sentences. Here,
we propose an extractive summarizer that identifies
the best sentence in a set of consecutive sentence

Figure 1: Main components of the model for summa-
rizing the paper and building the slides.

windows. The selection process depends on impor-
tance and novelty of the sentence that is modeled
by the neural networks. The selected sentences and
their frequent noun phrases are then structured in
a layered format to make the bullet points of the
slides.

Presentation slides are usually created with mul-
tiple bullet points organized in a multi-level hierar-
chical structure, usually with phrases summarizing
high level topics at the first level and bullets at the
second and other levels for further clarification or
details. Statistical analysis on our training data set
shows that more than 92% of the bullets are in the
first and second level and only 8% are in the third
layer. Therefore, we built our presentations in two
level bullet points only.

Our contribution is threefold.

• Propose a system that utilizes sentences with
high rankings for generating presentation
slides for research papers and is used as a
starting point in the slide generation process.
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• Create and provide PS5K, a corpus of 5000
paper-slide pairs in the field of computer
and information science. To the best of
our knowledge, this is the largest paper-slide
dataset and can be used for training and evalu-
ating slide generation models.

• Propose a novel method to rank sentences
within a sentence window, which improved an
existing state-of-the-art text-summarization
method by a significant margin.

2 Related Work

Summarizing scholarly articles in presentation
slides is different from standard text summariza-
tion (Xiao and Carenini, 2019), which focuses on
generating a paragraph of free text summary out of
a longer document. Automatic slide generation can
be done by first extracting salient sentences in a hi-
erarchical order and grouping them into slides that
are sequentially aligned with the original paper.

PPSGen (Hu and Wan, 2014) was a framework
that automatically generated presentation slides
from scientific papers. They applied Support Vec-
tor Regressor and Integer Linear Programming
(ILP) to rank and select important sentences. Wang
et al. (2017) generate slides by extracting phrases
from papers and learning the hierarchical relation-
ship between pairs of phrases to build the structure
of bullet points. Their model is trained on a small
set of 175 paper-slide pairs. The slideSeer (Kan,
2007) project crawled more than 10,000 paper-slide
pairs using the Google APIs to search for the slide
of papers using their title as a search query. The full
set of data is not publicly available (only 20 pairs
are available). Compared with previous works, our
model is trained and tested on a relatively large set
of 5000 paper-slide pairs and the dataset will be
publicly available for future works. There had been
some work on the alignment of presentations slides
to the article sections (Hayama et al., 2005; Kan,
2007; Beamer and Girju, 2009).

SummaRuNNer (Nallapati et al., 2017) is a neu-
ral extractive summarizer that treats the summa-
rization task as a sequence labeling problem. Sum-
maRuNNer was evaluated on CNN/Daily Mail cor-
pus, which contains news articles that are shorter
than research papers. We improve upon the Sum-
maRuNNer model for the summarization of scien-
tific papers.

3 Data

Producing a large dataset for summarization of sci-
entific documents is challenging and requires do-
main experts to make the summaries. The latest
CL-Scisumm 2018 summarization task contains
only 40 NLP papers with human-annotated refer-
ence summaries. Recently, ScisummNet (Yasunaga
et al., 2019) expanded the CL-Scisumm to 1000
scientific articles. TalkSum (Lev et al., 2019) sum-
marizes scientific articles based on the transcripts
of the presentation talks at conferences.

Using presentation slides made by the authors is
promising for the training of deep neural summa-
rization models as more conferences are providing
slides with papers.

We crawled more than 5,000 paper-slide pairs
from a manually curated list of websites, e.g.,
usenix.org and aclweb.org. GROBID (Lopez,
2009) is used to get metadata and the body of the
text from scientific papers in PDF format. Presen-
tations are transformed form PDF or PPT format
to XML by Apache Tika1. The Tika XML files are
divided into pages and the text is extracted using
Optical Character Recognition (OCR) tools. Most
venues of papers in our dataset are in computa-
tional linguistics, system, and system security. In
our dataset, there are on average 35 pages of slide
per presentation and 8 lines of text per slide page.
The majority (75%) of papers are published be-
tween 2013 and 2019. We used this dataset (called
PS5K) to train summarization models to identify
important parts of the input document at the sen-
tence level.

4 Method

Generating slides requires identifying important
sentences of the input scientific article and consists
of three main steps. The first is to label salient
sentences in the paper that are literally similar to
corresponding slides. The second is to train the
model to rank sentences and the final step selects
salient sentences based on the predicted scores, size
of the summary and the length of the sentences. Af-
terwards, frequent noun phrases are extracted from
the selected sentences to shape the hierarchical
structure of the bullet points. The architecture of
our model is shown in Figure 1.

1https://tika.apache.org/
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4.1 Sentence Labeling

The text in manually generated slides may not be
directly extracted from the original paper. Instead,
text can be truncated, summarized, or rephrased.
Therefore, we need to generate extractive labels
for sentences of the input document. The sentence
labeling process attempts to identify salient sen-
tences that are semantically similar to the corre-
sponding slides. This generates an extractive sum-
mary, which will be used as the ground truth for
training and evaluation.

The problem is formalized below:
A research paper can be represented as a se-

quence of n sentences D = {s1, s2, ...sn}, each
having a label yi ∈ {0, 1}, the system predicts
p(yi = 1), probability of including sentence i to
the summary.

SummaRuNNer treats the summarization task
as a sequence labeling problem, if adding the sen-
tence to the summary improves the ROUGE score,
the sentence is labeled with 1, otherwise it is la-
beled with 0. This method is suitable for news
articles such as CNN/DailyMail (Nallapati et al.,
2016) where the first couple of sentences in ar-
ticles usually cover the main content. Scholarly
papers usually contain a hierarchical structure of
sections. Each section should have its own sum-
mary as a part of the summary of the entire paper.
Therefore, the labeling process should be adapted
to distribute positive labels across all sections of
the paper. However, accurately parsing sections of
open domain scholarly papers is non-trivial. There-
fore, we propose a windowed labeling approach,
in which ranking is performed only within a series
of non-overlapping text windows, each of which
contains w consecutive sentences. A sentence is
labeled as 1 if adding the current sentence increases
the ROUGE-1 index. The best window size is deter-
mined empirically by trying different widow sizes
and calculating the ROUGE score between selected
sentences and the presentation slides. Section 5
elaborates on the experiments performed to select
the best window size.

4.2 Sentence and Document Embedding

The ranking of sentences depends on their salience,
novelty, and content similarity to the ground truth.
To quantify these characteristics, a document is
represented into a vector. We explore two methods
to build the embedding for the whole document.

Simple Document Embedding A simple docu-
ment embedding can be obtained by calculating the
average of sentence encodings generated by a Bi-
directional Long Short-Term Memory (BiLSTM)
(Hochreiter and Schmidhuber, 1997). A sentence
si can be encoded as Esi = [~hi, ~hi] in which Esi is
a concatenation of forward (~hi) and backward ( ~hi)
hidden states of the last token in sentence si. The
embedding for document D with n sentences is the
average of all sentence embeddings:

ED = ReLU(W × 1

n

n∑

i=1

Esi + b) (1)

in which ReLU is the activation function, W
and b are parameters to be learned.

Hierarchical Self Attention Document Embed-
ding This model embeds a document by applying
the attention mechanism at both word and sentence
levels (Al-Sabahi et al., 2018; Yang et al., 2016).

Sentence embeddings are obtained by encoding
word-level tokens of a sentence using BiLSTM and
then aggregating hidden layers using an attention
mechanism. Formally, considering a sentence si
with m words, the sentence encoding hsi is ob-
tained as a concatenation of all m hidden states of
word-level tokens (hsi = [h1, h2, ..., hm]) where
hsi ∈ Rm×2d and d is the embedding dimension
for each word. The attention weights are:

aword = softmax
(
Wattn × hTsi

)
(2)

where Wattn ∈ Rk×2d is the model matrix to be
learned. Then aword ∈ Rk×m and the embedding
for sentence si is:

Esi = average
k

(aword × hsi) (3)

where Esi ∈ R1×2d and k is the attention dimen-
sion which is set to 100 in our experiments.

Document embeddings (ED) are generated us-
ing sentence embeddings (Esi) built in the previous
step. A similar attention layer is applied on top of
sentence embeddings to build the document em-
bedding. The sentence level attention works as
the weights to emphasize important sentences in
document embedding.

4.3 Sentence Ranking

The rank of a sentence depends on its position in
the paper, salience, and novelty with respect to the
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previously selected sentences, calculated below:

pos = position×Wpos

content = Esi ×Wcontent

salience = ED ×Wsalience × ET
si

novelty = summaryi ×Wnovelty × ET
si

p(yi = 1) = σ(pos+ content+ novelty+

salience)

(4)

where Wpos ∈ R2d×1,where Wcontent ∈ R2d×1

Wsalience ∈ R2d×2d, and Wnovelty ∈ R2d×2d are
parameters to be learned. The position is the po-
sition of the sentence in the document specified
by a Embedding lookup function, σ is the sigmoid
activation function, and pos is its positional em-
bedding. The salience estimates the importance
of a sentence. The novelty represents the novelty
of a sentence with respect to the current summery.
The summary embedding is the weighted sum of
the previous sentences added to summary until sen-
tence i:

summaryi =
i−1∑

j=0

p(yi = 1)× Esi (5)

The higher chance of adding the sentence to the
summary gives it a bigger portion in the summary
embedding. Figure 2 shows the architecture for
predicting the score for the third sentence in a doc-
ument.

Figure 2: Score prediction for sentence 3 depends on
document embedding (ED), sentence embedding, the
embedding of the summary built until step 3 (Sum3),
and position of the sentence which is 3. The summary
is the weighted sum of the embeddings of the first and
second sentences.

With windowed labeling, the positive labels are
sparse. To deal with the imbalanced positive la-
bels, the following weighted cross-entropy loss is
adopted. The setting of w1 = −85 and w2 = −2

results in the highest ROUGE score.

−
n∑

i=0

w1yi × log (p(yi = 1))

+w2(1− yi)× log (1− p(yi = 1))

(6)

4.4 Sentence Selection

To select the sentences for the slide we tried 1) the
greedy approach that sequentially adds sentences
with highest scores until the maximum limit is hit
and 2) the ILP method that selects the sentences
by optimizing the following function using IBM
CPLEX Optimizer 2.

max
∑

i∈Ns

lixi × p(yi = 1)

∑

i

lixi < maxLen, ∀i, xi ∈ {0, 1}
(7)

where p(yi = 1) is the score of the sentence pre-
dicted by the model, xi is a binary variable showing
whether sentence i is selected for the summary or
not, li is the length of sentence i and penalizes short
sentences, and maxLen is the maximum length of
the summary.

4.5 Slide Generation

A typical presentation slide includes a limited num-
ber of bullet points as the first-level, which are usu-
ally phrases or shortened sentences. Some slides
may contain second-level bullet points for further
breakdowns. Table 2 shows that less than 8% of
the content of the presentations in the ground truth
corpus is covered in third-level bullets. We gener-
ate slides containing up to 2 bullet levels. Table 2
also shows that a slide title on average contains 4
words and either Level 1 or Level 2 bullets contains
on average 8 words. Each slide consists of on av-
erage 36 words in 5 bullets and each level-1 bullet
includes 2 second-level bullets.

Sentences selected are treated as the second-level
bullets. The first-level bullets are the noun phrases
extracted from the sentences. Noun phrases are
removed if they contain more than 10 words or just
1 word. Noun phrases with a document frequency
greater than 10 are excluded (e.g. “the model”).
The section, which the first sentence of a slide is
in, is found and its heading is used as the slide title.

2https://www.ibm.com/products/ilog-cplex-optimization-
studio
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Table 1: ROUGE scores for different models. Oracle and TextRank are unsupervised and do not need training. Ttr
standards for training time in hours based on Nvidia GTX 2080 Ti GPU. SRNN stands for SummaRuNNer.

Models ROUGE-1 ROUGE-2 ROUGE-L Ttr

Oracle (window=10) 57.12 16.53 27.62 -
Sefid et al. (Sefid et al., 2019) 36.33 8.73 17.02 -
TextRank (Barrios et al., 2016) 38.87 9.28 19.75 -
SRNN+ILP 45.12 11.65 22.96 18
SRNN+greedy 45.04 11.67 23.03 18
Attn+windowed SRNN+ILP 47.49 11.67 22.89 38
Attn+windowed SRNN+greedy 47.56 11.68 23.30 38
windowed SRNN+ILP 48.29 12.00 23.80 18
windowed SRNN+greedy 48.28 12.02 22.14 18

Table 2: Bullet points statistics.

Bullet-Point Fraction Avg Word Count

Title - 3.7
Level 1 56.5% 7.38
Level 2 35.5% 7.22
Level 3 7.9% 6.7

Table 3: ROUGE scores for oracle summaries gener-
ated with different window sizes.

Window Size R-1 R-2 R-L

3 42.95 11.13 21.59
5 44.34 11.43 22.35
7 44.88 11.64 22.47
10 45.93 12.00 22.75
15 45.52 11.84 22.68

The heading is truncated to the first 5 tokens. We
limit a maximum of 4 sentences per slide. If a topic
has more than 4 related sentences, the slide is split
into two distinct ones.

5 Experiments and Results

We estimated the parameters of our model on PS5K.
We split the dataset into training, validation, and
testing set, each consisting of 4500, 250, and 250
pairs, respectively. We experimented with different
window sizes and found that a window size of w =
10 gives the best ROUGE-1 recall (Table 3) and is
adapted for our model.

The Stanford CoreNLP (Manning et al., 2014)
is used to tokenize and lemmatize sentences to
the constituent tokens and to extract noun phrases.
GloVe (Pennington et al., 2014) 50-dimensional

vectors are used to initialize the word embeddings.
With the AdaDelta optimizer and a learning rate of
0.1, we trained for 50 epochs. The sentences are
truncated or padded to have 50 tokens (only 8% sen-
tences consist of more than 50 tokens). Similarly,
we adopt a fixed document size of 500 sentences
(only 3.5% of documents in our dataset have more
than 500 sentences). We used the standard ROUGE
score (Lin, 2004) to evaluate the summaries. The
ROUGE scores for summaries are tabulated in Ta-
ble 1. The summary size can not exceed 20% of
the size of the input document in words. TextRank
(Mihalcea and Tarau, 2004) is a graph based sum-
marizer that applies the Google PageRank (Page
et al., 1999) algorithm to rank the sentences. Sefid
et al. (Sefid et al., 2019) rank the sentences by com-
bining surface features, semantic and contextual
embeddings. The windowed SummaRuNNer+ILP
model outperforms the base SummaRuNNer by at
least 3 points in ROUGE-1 recall. Adding attention
layer to the model does not improve the ROUGE
score while it increases the training time consider-
ably as there are more parameters to be trained.

6 Conclusion

We create and make available PS5K, which is a
large slide-paper dataset consisting of 5,000 sci-
entific articles and corresponding manually made
slides. This dataset can be used for scientific docu-
ment summarization and slide generation. We used
state of the art extractive summarization methods to
summarize scientific articles. Our results show that
distributing the positive labels across all sections
of a scientific paper, in contrast to summarization
methods for news articles, considerably improves
performance.
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Abstract

Most summarization task focuses on generat-
ing relatively short summaries. Such a length
constraint might not be appropriate when sum-
marizing scientific work. The LongSumm task
needs participants generate long summary for
scientific document. This task usual can be
solved by language model. But an impor-
tant problem is that model like BERT is limit
to memory, and can not deal with a long in-
put like a document. Also generate a long
output is hard. In this paper, we propose a
session based automatic summarization model
(SBAS) which using a session and ensemble
mechanism to generate long summary. And
our model achieves the best performance in the
LongSumm task.

1 Introduction

Most of the document summarization tasks fo-
cus on generate a short summary that keeps the
core idea of the original document. For long
scientific papers, a short abstract is not long
enough to cover all the salient information. Re-
searchers often summarize scientific articles by
writing a blog, which requires specialized knowl-
edge and a deep understanding of the scien-
tific domain. The LongSumm, a shared task
of SDP 2021(https://sdproc.org/2021/
sharedtasks.html), opts to leverage blog
posts created by researchers that summarize sci-
entific articles and extractive summaries based on
video talks from associated conferences(Lev et al.,
2019) to address the problem mentioned above.

Most of the previous methods divide the doc-
ument according to section, and use the extrac-
tion or abstraction model to predict the summary
for each part respectively, and combine the results
as the final summary of the document. Section
based method may drop some important informa-
tion among the sections. Generally, only uses one
type of model for prediction can not make good use

of the advantages of different models. Combined
with the later models and solutions, we propose an
ensemble method based on session like figure1.

Figure 1: SBAS: a session based automatic summariza-
tion model

We split the task into four steps: session gen-
eration, extraction, abstraction, and merging the
results at the end. First, we split an document
into several sessions with a certain size, and use
a rouge metric to match the ground truth (sen-
tences from given document’s summary). Then,
we train two different types of model. One is the
abstraction-based model. Specifically, we use the
BIGBIRD(Zaheer et al., 2020), a sparse attention
mechanism that reduces this quadratic dependency
to linear, and PEGASUS(Zhang et al., 2020), a pre-
trained model specially designed for summariza-
tion. The other one is based on extraction method.
We test the performance of TextRank(Mihalcea
and Tarau, 2004; Xu et al., 2019), DGCNN(Dilate
Gated Convolutional Neural Network)(Su, 2018)
and BERTSUMM(Liu, 2019). In the end, for each
type of model, we generate the summary from the
one which has the best performance, and use an
ensemble method to merge the summaries together.
The result show that our method is effective and
beats the state-of-art models in this task.
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2 Related Work

The common automatic summarization is mainly
divided into the extraction-based summarization
and the abstraction-based summarization. The
extraction-based model extracts several sentences
and words from the original article by the seman-
tic analysis and sentence importance analysis to
form the abstract of the article. Typical models
include TextRank(Mihalcea and Tarau, 2004; Xu
et al., 2019) algorithm which based on sentence
importance and the extraction method based on
pre-training model(Liu, 2019). The abstracts ob-
tained by the extraction model can better reflect
the focus of the article, but because the extracted
sentences are scattered in different parts of the ar-
ticle, the coherence of the abstracts is a problem
to be challenged. The abstraction-based models
are based on the structure of seq2seq, and the pre-
training model is used to achieve better generation
effect like BART(Lewis et al., 2019), T5(Raffel
et al., 2019). Recently, PEGASUS(Zhang et al.,
2020), a pre-training model released by Google,
specially designed the pre-training mode for the
summarization task, and achieved the state-of-art
performance on all 12 downstream datasets.

This task focuses on the the solution of the long
summary. The input and ouput text of the tradi-
tional model is limited due to the memory and
time-consuming. However, this task requires the
model to summarize scientific papers and generate
very long summaries. To solve this problem, most
of the solutions in the the previous are based on sec-
tions(Li et al., 2020; Roy et al., 2020). They divide
scientific papers into sections, generate abstracts
for each seciton, and finally combine them to get
the final results. Resently, Google’s new model
BIGBIRD(Zaheer et al., 2020) , using sparse atten-
tion mechanism to enable the model fit long text, is
suitable for this task scenario.

3 Method

The pre-training model plays a significant role in
the field of automatic summarization, but due to
its huge amount of parameters, most of the models
can only be used for short text tasks. For long
articles, there are two common ways to do. One
is to directly truncate the long articles, the other
is to predict the articles according to the section.
This paper proposes a text segmentation method
based on session, and use an ensemble method with
the extraction model and the abstraction model to

generate the final summary.

3.1 Session Generation
Limited by the computational power, many meth-
ods chose to truncate long articles directly, which
makes the model unable to perceive the content of
the following articles, and the generated summary
can only reflect part of the input text. Others divide
the article into sections, but this also raise some
problems. The length and content of section are
different between different articles. The division
based on section may not reflect the relationship be-
tween text and abstract well. This paper proposes
a segmentation method based on session, which
divides the article into different sessions according
to the selected size, predicts the summary for each
session, and selects the most appropriate window
size in this task by adjusting the size of the session.

The specific data processing steps are as follows:
(1) First, select the appropriate session size(2048
words) and a buffer(128 words), which is used to
keep the last text of the previous session as the
context of the current session. (2) For generating
models. The real summary is divided into sen-
tences, and the corresponding summary sentence
is assigned to each session according to the rouge
metric. In order to make the model predict long
summaries as much as possible, a greedy match-
ing rule is used to allocate the summary sentences
to each session. we first drop the sentences with
the threshold 0.7, which denotes the rouge score
between the session and summary sentences. Then
we pick the sentences according to the scores until
meets the length we set, default 256 words.

Although this may cause different sessions to
predict the same summary, we think that duplicate
sentences can be detected through the later data
processing, and it is more important for the train-
ing model to generate long sentences . (3) For
the extraction model, we only need to match dif-
ferent sessions with their corresponding summary
sentences.

3.2 Abstraction-based Model
The training data contains around 700 abstractive
summaries that come from different domains of
CS including ML, NLP, AI, vision, storage, etc.
And the abstractive summaries are blog posts cre-
ated by NLP and ML researchers. The traditional
generation model is mainly based on the classical
transformers structure. In order to solve the prob-
lem of long text input , we use the sparse attention
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structure BIGBIRD(Zaheer et al., 2020), which
is proposed by Google recently, and makes fine-
tuning on its two open source pre-training models:

(1) Roberta(Liu et al., 2019): a bert model with
the dynamic masking and drops the next predict
loss

(2) PEGASUS(Zhang et al., 2020): a trans-
former model while using gap sentences generation
to pre-training.

The models used in this paper are both pre-
trained on arXiv datasets, so they have strong abil-
ity to generate abstracts.

3.3 Extraction-based Model
The extractive data have 1705 extractive summaries
which are based on video talks from associated con-
ferences(Lev et al., 2019). We have tried tree differ-
ent extraction models to select important sentence
from the documents.

(1) TextRank(Mihalcea and Tarau, 2004): We
simply use the TextRank algorithm to pick out
some most important sentences from the docu-
ments and limited the number of sentences ex-
tracted.

(2) DGCNN-Extraction(Su, 2018): DGCNN is
an 1D-CNN Network structure combines two new
convolution structure: dilated convolution(Gehring
et al., 2017) and gated convolution(Dauphin et al.,
2017).

Figure 2: DGCNN-Extraction model structure

The advantage of DGCNN-Extraction model is
that it can process the information of every sentence
in the text at same time, and identify the important
sentence by context. The way we train the model
is as follows:

1. We use NLTK to break the original paper into
multiple sentences, and label each sentence

according to the golden extractive summarize.

2. Transform each sentence by Roberta-Large
pre-trained model(Liu et al., 2019), and get
the output of last hidden layers as the feature
representation, then convert the feature matrix
to a fixed-size vector by average-pooling.

3. TRAINING: Feed the obtained sentence vec-
tors into the DGCNN-Extraction model (Fig-
ure 2) and binary classify each sentence.

4. INFERENCE: Take the sigmoid-output of the
model as the importance score for each sen-
tence, according to which we extract the cor-
responding sentences from the paper as the
extractive summary and the total length of the
summary is limited.

(3) BERTSUMM(Liu, 2019): BERTSUMM is
a Bert-based model designed for the extractive
summarization task. Different from DGCNN-
Extraction model, because of the limit of the input
length of Bert, we have to divide each paper into
sections, then treat each section as a independent
sample. As the result, we get 17720 sections in
total. Follow the practice in BERTSUMM paper,
we insert a [CLS] token before each sentence and
a [SEP] token after each sentence and the [CLS]
is used as a symbol to aggregate features from one
sentence. In each sections we label the [CLS] token
of sentences in ground-truth as 1 and others as 0.
We split the data into training data and validation
data and train the model on the training data. It’s
a pity that the F1-score of the result of validation
data only peaked at 0.35. We think it is because
this approach abandon the the information between
the sections and the assumption of sections inde-
pendence is not valid.

According to the performance of this three mod-
els on the validation set, we choose DGCNN-
Extraction model as the baseline of the extraction
model.

3.4 Ensemble Method

Abstraction model and extraction model have their
own advantages and disadvantages. The advantage
of abstraction model is that it can produce differ-
ent expression from the original text, and can bet-
ter summarize the original text, also the generated
summary will be more fluent than the extracted
summary. However, the disadvantage of this model
is that the generated content can not be controlled,
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and it can not guarantee that the model can pre-
dict all the key points of the original text. The
extraction model can capture most of the important
information directly from the score of the original
sentence. Therefore, this paper considers an ensem-
ble method to reorganize the abstracts predicted by
the abstraction model and the extraction model so
as to further improve the accuracy of the abstracts.
The specific implementation method is as follows:

1. self drop: since there are overlapping texts
between sessions, the results predicted by
the model may have repeated text. This pa-
per first divides the predicted summary into
sentences, and judges the sentence similar-
ity according to the rouge metric. The sen-
tences whose similarity are greater than a
certain threshold(rough1-f + rough2-f > 0.8)
will be determined as repeated sentences, and
the longest one (we think that the long sen-
tence carries more information) is selected as
the most representative sentence, the rest are
dropped.

2. sentence reorder: reorder the abstracted and
extracted sentences according to the session.
For each session we will predict summaries
by both abstracted and extracted model. And
we ordered them look like this : sess1 :
abs11, .., abs1n1 , ext11, .., ext1m1 ; sess2 :
abs21, .., abs2n2 , ext21, .., ext2m2 ; ..; sessm.
Because the abstraction model predicts the
sentence that is usually a summary sentence,
we put it before the extracted sentence in the
same session.

3. recall: we will filter the combined summaries
again and recall the most useful sentence for
the final result. To do this, we used TextRank
algorithm and dropped the sentences which
scores are under 0.9.

After these steps, the predictions from the differ-
ent models are well cleaned and merged. The most
important sentences are selected from the candidate
summaries to form the final result. The experiment
shows that the comparison of single model and
ensemble method has a significant effect.

4 Experiment

We extract the text from the PDF of paper by
using Science Parse(https://github.com/
allenai/science-parse). There is a lot of

dirty text in the data, which will make the model
hard to converge during training. So we clean the
text as follows: (1) replace the URL link in the
text with [url](2) remove special characters from
the text and keep only some common symbols. (3)
merge the broken words and remove some words
that is not in the word list.

We spilt the text of each paper into sessions,and
the best session size by testing should be 1024
words. The buffer size is 128 which we think is
enought to keep the context. Each sentence of
ground truth is set as the target summary of one of
the sessions according to the location of the most
similar sentence in the original paper. We use the
NLTK to count words of the session. As for pre-
trained model, all input session are truncated to
a maximum of 1024 words, and their target sum-
mary are truncated to a maximum of 128 words.
Based on the test results, the best generation model
is built as follows: The model is fine-tuned on
the pegasus-arxiv pre-trained model released by
Google which has about 570 million parameters
for 20 epochs with a learning rate of 2e-5. The
batch size is 8 and the model is trained on four
v100(32G) GPUs for about 20 hours. As for build-
ing DGCNN-Extraction model, all input papers are
truncated to a maximum of 400 sentences(1024d)
and 7 DGCNN-layers (with 1,2,4,8,16,1,1 dilation
rate) are added to the model. Then we compile
the model with Adam optimizer(learning rate =
0.001). The model is trained for 20 epochs on train-
ing set and the batch size is set to 32. DGCNN is
a lightweight model that only takes 30 minutes to
train.

Follow the method mentioned above, we ensem-
ble the summaries obtained from the best genera-
tion model and extraction model.

5 Result

We test three different models on the test
set: (1)SBASextract: the model only in-
clude the DGCNN-extraction model for summary.
(2)SBASabstract: the one using the PEGASUS
as a base abstractive model to generate the sum-
mary. (3)SBASensemble: the ensemble model of
the SBASextract and the SBASabstract. We com-
pare the final test scores of all metrics with other
teams on the leaderboard in Table 1.

The result show that both SBASabstract and
SBASextract model are competitive. As for the
result of SBASabstract, its recall-score is much
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Method rouge1f rouge1r rouge2f rouge2r rougeLf rougeLr

BART 0.1921 0.1122 0.0533 0.0310 0.1062 0.0620
Sroberta 0.4621 0.4377 0.1280 0.1212 0.1701 0.1610
Sharingan 0.5031 0.5164 0.1706 0.1744 0.2114 0.2162
Summaformers 0.4938 0.4390 0.1686 0.2498 0.2138 0.1898
CNLP −NITS 0.5096 0.5234 0.1538 0.1581 0.1951 0.2008
MTP 0.4858 0.4919 0.1330 0.1348 0.1697 0.1714
SBASabstract 0.5080 0.4755 0.1740 0.1634 0.2156 0.2016
SBASextract 0.5275 0.5415 0.1711 0.1747 0.2209 0.2262
SBASensemble 0.5507 0.5660 0.1945 0.1998 0.2295 0.2357

Table 1: Result for Long Scientific Document Summarization 2021

lower than F1-score, this might be caused by the
summary generated by SBASabstract is shorter
than the ground truth. We limit the length of sum-
mary extracted by SBASextract to 900 words, and
get an excellent result compared with other teams.
The result of SBASensemble is far superior to the
others models, we believe this is because our en-
semble method not only remove the redundant sen-
tences in the combined summary, but also make
the output of SBASextract well supplement for the
result of SBASabstract.

We extract some of the abstract for manual eval-
uation, and find that the abstract generated by our
method can generate sentences with high readabil-
ity and cover a lot of important information of the
paper, but sentence to sentence is not coherent, the
fluency of the abstract is insufficient. And we will
try to improve the fluency of the summary in future
work.

6 Conclusion

Pre-train models such as Bert and GPT have ob-
vious effects in all NLP fields, but they can’t deal
with long text due to their huge amount of param-
eters and computation. In this paper, we propose
an ensemble model based on session for the Long-
Summ task. In our method, the document is firstly
segmented according to the session, and some con-
text semantics are reserved. Then, the labels corre-
sponding to each session are matched by a specific
algorithm to generate a new dataset. The extrac-
tion and abstraction models are trained on the new
dataset, and the final summary is obtained by merg-
ing the results of different models through the en-
semble method. The method proposed in this paper
considers the context of the text as much as possi-
ble while limiting the memory growth, so that the
summary predicted by the model is more coherent.

And the method of merging two different types of
summary models is proposed for the first time. The
prediction results of different models are dropped
and combined for the second time, so as to make
the results closer to the real summary.

Our model has achieved the best performance in
all metrics of this task, but there for improvement.
The current approach is to compress the input and
output to make the task adapt to the model, but
the best design idea is to make the model fit the
task. One of the biggest problems is how to re-
duce the resource consumption of the transformers
structure model. BIGBIRD model proposed by
Google alleviates this problem through sparse at-
tention mechanism, but after our test, because of
the decoding part of the model still uses full atten-
tion, BigBird does not solve the problem of long
text output, and it is difficult to directly generate a
complete long summary from scientific documents
in this task. Therefore, future research can focus
on how to decode longer text, so that the language
model can adapt to more NLP scenarios.
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Abstract

The huge influx of published papers in the field
of machine learning makes the task of summa-
rization of scholarly documents vital, not just
to eliminate the redundancy but also to provide
a complete and satisfying crux of the content.
We participated in LongSumm 2021: The 2nd

Shared Task on Generating Long Summaries
for scientific documents, where the task is to
generate long summaries for scientific papers
provided by the organizers. This paper dis-
cusses our extractive summarization approach
to solve the task. We used TextRank algorithm
with the BM25 score as a similarity function.
Even after being a graph-based ranking algo-
rithm that does not require any learning, Tex-
tRank produced pretty decent results with min-
imal compute power and time. We attained 3rd

rank according to ROUGE-1 scores (0.5131
for F-measure and 0.5271 for recall) and per-
formed decently as shown by the ROUGE-2
scores.

1 Introduction

Text summarization or summarizing large pieces of
texts into comparatively smaller number of words is
a challenging machine learning (ML) task that has
gained significant traction in recent years. The ap-
plications are immense and diverse, from condens-
ing and comparing legal contractual documents to
summarizing medical and clinical texts. Often the
two approaches (Maybury, 1999) adopted for solv-
ing this task are:

• Extractive summarization:
Here those unmodified segments of the origi-
nal text are extracted and concatenated which
play the most significant role in expressing
the salient sentiment of the entire text. This
technique is mostly used for generating com-
paratively longer summaries.

• Abstractive summarization:
Here an abstract semantic representation of

the original content is formed by the model
which helps generate novel words/phrases for
the summary by text generation and paraphras-
ing methods. This technique is often useful
for generating concise summaries.

Recently, the task of summarizing scholarly
documents has grasped the attention of researchers
due to the vast quantity of papers published
everyday, especially in the field of machine
learning. This makes it challenging for researchers
and professionals to keep-up with the latest devel-
opments in the field. Thus, the task of summarizing
scientific papers aims not just to avoid redundancy
in text and generate shorter summaries but also
to cover all the salient information present in the
document which often demands longer summaries.
This would aid researchers to grasp the contents
of the paper beyond abstract-level information
without reading the entire paper.

Prior work on summarization of scientific
documents is mostly targeted towards generation
of short summaries but as mentioned before, in
order to encompass all the important ideas longer
summaries are required. LongSumm 20211 shared
task, on the other hand, aims to encourage the
researchers to focus on generating longer-form
summaries for scientific papers.

As mentioned before, extractive summarization
methods are better accustomed for generating
longer-form summaries than abstractive summa-
rization methods, in this paper we try to summarize
scientific documents using the extractive summa-
rization technique of TextRank (Mihalcea and
Tarau, 2004) algorithm. It is a graph-based ranking
algorithm to rank the sentences in a document
according to their importance in conveying the

1https://sdproc.org/2021/sharedtasks.
html
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information of the document. Different ’similarity’
functions can be used while creating the graph
which leads to varied results (Barrios et al.,
2016), therefore we chose BM25 as the similarity
function.

2 Related Works

Upon scrutinizing various approaches of document
summarization, we have found some of the
concurrent works in the field. One of these is
(Christensen et al., 2013). This work describes
extractive summarization as a joint process of
selection and ordering. It uses graph as its
elemental part, which is used to approximate the
discourse relativeness using co-reference, deverbal
nouns, etc. Similar works are shown by (Li et al.,
2011), (Goldstein et al., 2000) and (Barzilay et al.,
1999). Other works use the Google TextRank
algorithm (Mihalcea and Tarau, 2004) to bring out
the order in the text extraction. One of the works
(Mallick et al., 2019) uses the modified TextRank
plus graph infrastructure to extract contextual
information. It uses the sentence as nodes in the
graph and inverse cosine similarity2 to form the
weights of the edges of the graph. This graph
is passed as an input to the TextRank algorithm
which generates the required summary. Similar
approach is followed by (Ashari and Riasetiawan,
2017) which uses the power of TextRank and
semantic networks to form extractive summaries
which bear the semantic relations.

Some of the works like (Nallapati et al., 2017),
(Al-Sabahi et al., 2018) use capabilities of neural
networks to semantically extract the information
from the description and present it in human
readable form. One of the works (Nallapati et al.,
2016) uses a joint framework of classification and
selection on the textural data to form summaries.
Classifier architecture makes a decision as to
whether a particular sentence in sequence (as
selected by selector) will be the part of the
membership of the summary or not, whereas the
selector framework randomly selects the sentences
from the description and places it in the summary.

Apart from these, varied approaches were
adopted by the participants of the previous edition

2https://link.springer.com/chapter/10.
1007/978-3-642-41278-3_74

of the shared task, LongSumm 2020, as mentioned
in (Chandrasekaran et al., 2020). For instance, a
divide and conquer approach, DANCER, was used
in (Gidiotis et al., 2020) to summarize key sections
of the paper separately and combine them through
a PEGASUS based transformer to generate the
final summary. Another team (Ghosh Roy et al.,
2020) used a neural extractive summarizer to
summarize each section separately. A different
team utilized the BERT summarizer as shown
in (Sotudeh Gharebagh et al., 2020). The main
idea was based on multi-task learning heuristic in
which two tasks are optimized, namely the binary
classification task of sentence selection and the
section prediction of input sentences. They also
suggested an abstractive summarizer based on the
BART transformer that runs after the extractive
summarizer. Other methods were Convolutional
Neural Network (CNN) in (Reddy et al., 2020),
Graph Convolutional Network (GCN) and Graph
Attention Network (GAN) in (Li et al., 2020), and
unsupervised clustering in (Mishra et al., 2020)
and (Ju et al., 2020).

3 Dataset

3.1 Description

The LongSumm dataset is distinctive in the sense
that it consists of scientific documents which have
scientific jargon targeted for a niche audience,
unlike other summarization corpuses like news
articles for the general public. Due to the same rea-
son, it is difficult to find domain-specific scientific
documents with their longer-form summaries cov-
ering all their important details in a concise manner.

The organizers of LongSumm 2021 provided
corpus for this task includes a training set that
consists of 1705 extractive summaries, and 531
abstractive summaries of NLP and Machine Learn-
ing scientific papers. The extractive summaries are
based on video talks (Chandrasekaran et al., 2020)
from associated conferences while the abstractive
summaries are blog posts created by NLP and ML
researchers.

We used Textrank (Mihalcea and Tarau, 2004)
which is a graph-based ranking model for ranking
sentences in a document for extractive summariza-
tion. Therefore, only extractive summaries were
used as validation data. The extractive summaries
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are based on the TalkSumm (Lev et al., 2019)
dataset. The dataset contains 1,705 automatically
generated noisy extractive summaries of scientific
papers from the NLP and Machine Learning
domain based on video talks from associated
conferences (like ACL, NAACL, ICML). URL
links to the papers and their summaries and could
be found in the Github repository3 devoted to this
shared task. Each summary provides the top-30
sentences, which are on average around 990 words.

Another list of 22papers 4 was provided as
test data (blind). The summaries generated for
these papers were used for evaluation. ROUGE-1,
ROUGE-2 and ROUGE-L scores were used to
evaluate the performance of the system.

3.2 Preprocessing
After retrieving the text from the papers (links
to which were provided by the organizers) the
sections before ’Introduction’ (like Authors,
Abstract etc.) and after ’Conclusion/Results’
(like References, Acknowledgements etc.) were
removed as the text in these sections do not add
much valuable sentiments to the summary as
compared to the left over sections of the paper.
Further citation indexing, hyperlinks, newline and
redundant white-space characters were eliminated.

4 System Description

Our approach essentially was to use the TextRank
algorithm (Mihalcea and Tarau, 2004) to rank the
sentences corresponding to their relevance to the
whole text and use the most significant (highest
ranked) sentences as the summary.

4.1 TextRank
TextRank is a graph-based ranking algorithm
which is proven to be quite impactful for keyword
and sentence extraction from natural language
texts.

According to (Mihalcea and Tarau, 2004) for
sentence extraction, a graph is constructed for the
given document in which each vertex represents an

3https://github.com/guyfe/LongSumm/
tree/master/extractive_summaries

4https://github.com/guyfe/
LongSummtest-data-blind

entire sentence. Now the semantic links amongst
the vertices are identified by the "similarity" be-
tween the sentences, where “similarity” is mea-
sured as a function of their content overlap. The
formal expression for determining the similarity
of two sentences, Sa = wa

1 , w
a
2 , ..., w

a
Na

with Na

words, and Sb = wb
1, w

b
2, ..., w

b
Nb

with Nb words as
defined in (Mihalcea and Tarau, 2004):

Sim(Sa, Sb) =
|{wk|wk ∈ Sa&wk ∈ Sb}|
log(|Sa|) + log(|Sb|)

The text in the document can thus be represented
as a weighted on which the ranking algorithm
is run to sort the vertices (each representing a
sentence in the text) in reversed order of the
obtained score, from which we include the 30 most
significant sentences are selected and present them
in the same order as they appear in the document.

4.2 Gensim TextRank Summarizer
Variants of the similarity function can be chosen
to obtain improved results, an analysis of which
is shown in (Barrios et al., 2016). The different
similarity functions including LCS (Longest
Common Substring), cosine similarity, BM25
(Robertson et al., 1994), BM25+ (Lv and Zhai,
2011) and original TextRank similarity function
were evaluated using ROUGE-1, ROUGE-2 and
ROUGE-SU4 as metrics in (Barrios et al., 2016)
and the best results were obtained using BM25 and
BM25+.

The Summarizer module of the Gensim project 5

uses BM25-TextRank algorithm for summarization,
therefore we proceeded with this implementation
of TextRank to prepare the summaries. BM25 is a
variation of the TF-IDF model using a probabilistic
model. Given two sentences R, S, BM25 is defined
as:

BM25(R, S) =
n∑

i=1

IDF (si) ·
TF (si, R) · (k + 1)

TF (si, R) + k · (1 − b + b · |R|
Lavg

)

where k and b are parameters, and Lavg is the
average length of the sentences in the document.
TF is the term-frequency and IDF is the correction
formula given as:

IDF (si) =





log(N−n(si)+0.5
n(si)+0.5

) if n(si) > N/2

ε · avgIDF if n(si) ≤ N/2

5https://github.com/summanlp/gensim
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where ε takes a value between 0.5 and 0.3 and
avgIDF is the average IDF for all terms.

5 Result and Analysis

5.1 Result
The participating systems were evaluated by
ROUGE(Lin, 2004) scores, specifically using
ROUGE-1, ROUGE-2 and ROUGE-L metrics. Our
team’s name was CNLP-NITS and the result of our
system on blind test data of 22 papers using Tex-
tRank with BM25 similarity is given in Table 1.

Metric F-measure Recall
ROUGE-1 0.5131 0.5271
ROUGE-2 0.161 0.1656
ROUGE-L 0.1916 0.1971

Table 1: ROUGE scores for blind test data

As 22 papers was not a large dataset, we also
applied TextRank on the given dataset of extrac-
tive summaries (1700 of them) to get statistically
sound ROUGE scores for analysis, and the scores
obtained are shown Table 2.

Metric F-measure Recall
ROUGE-1 0.59389 0.5960
ROUGE-2 0.3349 0.3362
ROUGE-L 0.3393 0.3405

Table 2: ROUGE scores for training dataset of extrac-
tive summaries

5.2 Analysis
Individual ROUGE scores for each paper in the
training set was calculated for finding the average
scores.

The predicted and reference summary for the
paper 6 with one of the best ROUGE scores (as
given in Table 3) are as shown,

Metric F-measure Recall
ROUGE-1 0.88 0.88
ROUGE-2 0.8164 0.8164
ROUGE-L 0.8217 0.8217

Table 3: ROUGE scores for predicted summary of the
paper6 with one of the best performances

6https://www.aclweb.org/anthology/
P17-1098.pdf

Predicted summary (best performance):

Reference summary (best performance):

The predicted and reference summary for the
paper11 with one of the worst ROUGE scores (as
given in Table 4) are as shown,

7Complete summary at https://bit.ly/3914zEy
8Complete summary at https://bit.ly/3c5elHQ
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Metric F-measure Recall
ROUGE-1 0.305 0.305
ROUGE-2 0.0301 0.0301
ROUGE-L 0.1217 0.1217

Table 4: ROUGE scores for predicted summary of the
paper11 with one of the worst performances

Predicted summary (worst performance):

Reference summary (worst performance):

9Complete summary at https://bit.ly/3cWCmjo
10Complete summary at https://bit.ly/3f2XO9i

6 Conclusion and Future Work

In this paper we targeted our efforts towards Tex-
tRank algorithm in order to generate long extractive
summaries of given scientific research papers. Our
approach TextRank when used with BM25 similar-
ity function, even after not being a learning algo-
rithm, was able to achieve appreciable ROUGE-1
scores while remaining competitive in ROUGE-2
scores. As TextRank is a graph-based ranking al-
gorithm that ranks the sentences independently for
each document, it requires no training, thus being
compute and time efficient.

Although we approached the task using an al-
gorithm which does not require training and were
still able to produce substantial results, there is
definitely a scope for leveraging training data to
gather a general semantic structure from a collec-
tion of documents as a whole instead of working on
each document independently using neural network
based learning algorithms. This will definitely be
our prime focus for future work in extractive text
summarization. Nonetheless, through our partic-
ipation in LongSumm 2021 we tried to optimise
TextRank algorithm and put it to test against other
learning-based approaches of other teams and were
able to pull off significant results with compara-
tively low machine and time requirements.
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Abstract

This paper describes our submission for the
LongSumm task in SDP 2021. We propose
a method for incorporating sentence embed-
dings produced by deep language models into
extractive summarization techniques based on
graph centrality in an unsupervised manner.
The proposed method is simple, fast, can sum-
marize any document of any size and can sat-
isfy any length constraints for the summaries
produced. The method offers competitive
performance to more sophisticated supervised
methods and can serve as a proxy for abstrac-
tive summarization techniques.

1 Introduction

Automatic text summarization is a very old and im-
portant task in Natural Language Processing (NLP)
that has received continued attention since the cre-
ation of the field in the late 50’s (Luhn, 1958),
mainly because of the ever-increasing size of col-
lections of text. The objective of the task is, given
a document, to produce a shorter text with maxi-
mum information content, fluency and coherence.
The summarization task can be classified into ex-
tractive and abstractive. Extractive summarization
means that the summary is composed exclusively
of passages present in the original document and
abstractive summarization means that there can be
words in the summary that did not appear in the
original document.

Since the creation of the first neural language
models (Bengio et al., 2003), vector representa-
tions of text that encode meaning (called embed-
dings) have played a significant role in NLP. They
allow the application of statistical and geometri-
cal methods to words, sentences and documents
((Pennington et al., 2014), (Mikolov et al., 2013),
(Reimers and Gurevych, 2019)), leading to state-
of-the-art performance on several NLP tasks like

∗Please send correspondence to juan.ramirez.orta@dal.ca

Information Retrieval, Question Answering or Para-
phrase Identification. Among these neural lan-
guage models, very deep pre-trained neural lan-
guage models, like BERT (Devlin et al., 2018), T5
(Raffel et al., 2020), and GPT-3 (Brown et al., 2020)
have shown impressive performance in tasks like
language modelling and text generation or bench-
marks like GLUE (Wang et al., 2018).

An important variation of extractive summariza-
tion that goes back as far as the late 90’s (Salton
et al., 1994, 1997) utilizes graphs, where the nodes
represent text units and the links represent some
measure of semantic similarity. These early graph-
based summarization techniques involved creating
a graph where the nodes were the sentences or
paragraphs of a document and two nodes were con-
nected if the corresponding text units had a similar
vocabulary. After creating the document graph, the
system created a summary by starting at the first
paragraph and following random walks defined by
different algorithms that tried to cover as much of
the graph as possible.

A more evolved approach was the creation of lex-
ical centrality (Erkan and Radev, 2004) (Mihalcea
and Tarau, 2004) (Wolf and Gibson, 2004), which
is a measure of the importance of a passage in a text
where the sentences of the document are connected
by the similarity of their vocabularies.

The current state of the art in automatic summa-
rization with graphs is mainly based on algorithms
like PageRank (Brin and Page, 1998) enhanced
with statistical information of the terms in the doc-
ument (like in (Ramesh et al., 2014)) or Graph
Neural Networks (Kipf and Welling, 2016) on top
of deep language models (like in (Xu et al., 2019)).

Only two systems from the previous Scholarly
Document Processing workshop held in 2020 are
based on graphs: CIST-BUPT and Monash-Summ.

In CIST-BUPT (Li et al., 2020), they used Re-
current Neural Networks to create sentence em-
beddings that can be used to build a graph which

110



is then fed into a Graph Convolutional Network
(Kipf and Welling, 2016) and a Graph Attention
Network (Veličković et al., 2018) to create extrac-
tive summaries. To generate abstractive summaries,
they used the gap-sentence method of (Zhang et al.,
2019) to fine-tune T5 (Raffel et al., 2020).

In Monash-Summ (Ju et al., 2020), they propose
an unsupervised approach that leverages linguistic
knowledge to construct a sentence graph like in
SummPip (Zhao et al., 2020). The graph nodes,
which represent sentences, are further clustered to
control the summary length, while the final abstrac-
tive summary is created from the key phrases and
discourse from each cluster.

This work focuses on extractive summarization
using graphs leveraging sentence embeddings pro-
duced by pre-trained language models. The essen-
tial idea is that, while the sentence embeddings pro-
duced by SBERT (Reimers and Gurevych, 2019)
are not well suited for clustering algorithms like
Hierarchical Clustering or DBSCAN (Ester et al.,
1996), they produce excellent results in Paraphrase
Identification or Semantic Textual Similarity when
compared with Cosine Similarity, which implies
that they can be used along with graph centrality
methods. The text summarization method proposed
in this paper has the following contributions:

• Is unsupervised and can be used as a proxy
for more advanced summarization methods.

• Can easily scale to arbitrarily large amounts
of text.

• Is fast and easy to implement.

• Can fit any length requirements for the pro-
duction of summaries.

2 Methodology

In this section, we describe how the system works.
The system is composed of three main steps: first,
we use SBERT to produce sentence embeddings
for every sentence in the document to summarize;
next, we form a graph by comparing all the pairs
of sentence embeddings obtained and finally, we
rank the sentences by their degree centrality in this
graph. Fig. 1 gives an overview of the whole
method.

2.1 Sentence tokenization
The first step of our pipeline is to split the input text
into a list of sentences. This step is critical because

Document

Tokenization

Sentence
Embeddings

Graph
Generation

Ranking

Selection

Summary

Figure 1: The complete pipeline of the proposed
method. In the first step, we split the input text into sen-
tences by using a regular expression handcrafted specif-
ically for scientific documents. In the second step, we
compute the sentence embeddings of the parsed sen-
tences using SBERT. In the third step, we create a graph
by comparing all the pairs of sentence embeddings ob-
tained using cosine similarity. In the fourth step, we
rank the sentences by the degree centrality in the gen-
erated graph. In the fifth and final step, we only keep
a certain number of sentences or words to adjust to the
length requirements of the summary.

if the sentences are too long, the final summary
will have a lot of meaningless content (therefore
losing precision). However, if the sentences are too
short, there is a risk of not having enough context to
produce an accurate sentence embedding for them
or extracting meaningless sequences, like data in
tables or numbers that lie in the middle of the text.
We found that the function sent_tokenize()
from the NLTK package (Bird et al., 2009) often
failed because of the numbers in the tables and the
abbreviations, like "et al.", which are very common
in scientific literature. Because of this, we used a
regular expression handcrafted specifically to split
the text found in scientific documents.

2.2 Computing sentence embeddings

After extracting the sentences, the next step is
to produce the sentence embedding of each sen-
tence using SBERT (Reimers and Gurevych, 2019),
which is a Transformer-based (Vaswani et al., 2017)
model built on top of BERT (Devlin et al., 2018)
that takes as input sentences and produces sentence
embeddings that can be compared with cosine sim-
ilarity, which is given by the following formula:

sim(x, y) =
x · y
|x||y| .

As shown in (Reimers and Gurevych, 2019),
these sentence embeddings are superior in quality
than taking the CLS token of BERT or averaging
the sentence embeddings of the words in the sen-
tence produced by BERT, GloVe (Pennington et al.,
2014), or Word2Vec (Mikolov et al., 2013).
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SBERT, like BERT, was pre-trained on a gen-
eral large text collection to learn good sentence
embeddings, but it has to be fine-tuned on a more
specific data set according to the task. Since we
are working with scientific papers, we picked the
"base" version of RoBERTa (Liu et al., 2019) that
was fine-tuned in the MSMARCO data set (Bajaj
et al., 2016) for the Information Retrieval task.

2.3 Generation of the sentence graph

After the sentence embeddings have been produced,
the next step is to produce a weighted complete
graph with a node for each sentence in the text. Its
edges are weighted according to the cosine simi-
larities of the corresponding sentence embeddings.
An example graph is depicted in Fig. 2.

s1

s2

s3

s4

1− sim(e1, e2)

1− sim(e1, e3)

1− sim(e1, e4)

Figure 2: The process of graph generation and rank-
ing of the sentences. Every node in the generated com-
plete graph represents a sentence in the document and
the weight of each edge is given by the similarity be-
tween the nodes it conects. The importance of the
sentence in the document is modelled as rank(si) =∑n

j=1 1− sim(ei, ej), where ei and ej are the corre-
sponding SBERT sentence embeddings of si and sj .

To build this graph, the first step is to gather all
the pairwise cosine similarities in a matrix. Let
D = (s1, s2, ..., sn) be a document. Using SBERT,
we produce a sequence of vectors (e1, e2, ..., en),
where ei is the sentence embedding of si. Then,
we can compute the matrix A, where A[i, j] =
1− sim(ei, ej).

We make the following observations:

• The diagonal of A is composed exclusively of
zeros, because A[i, i] = 1− sim(ei, ei) = 0.

• The matrix A is symmetric, because A[i, j] =
1− sim(ei, ej) = 1− sim(ej , ei) = A[j, i].

• All the entries in A are non-negative, because
−1 ≤ sim(ei, ej) ≤ 1.

These observations imply that the matrix A
can be interpreted as the adjacency matrix of a
weighted complete graph G = (V,E) where V =
{s1, s2, ..., sn}, E = {(s1, s2)|s1, s2 ∈ V } and
the edges are weighted by the following function:
w(s1, s2) = 1− sim(e1, e2).

2.4 Ranking by centrality
The forth step is to assign a score for each sentence
that allows us to sort them by their importance in
the document. As a consequence, we define the
importance rank for each sentence as follows:

rank(si) =
n∑

j=1

A[i, j] =
n∑

j=1

1− sim(ei, ej),

(1)
where ei and ej are the corresponding SBERT sen-
tence embedding for si and sj .

To motivate this definition, we observe that
adding the entries of the matrix A columnwise
gives naturally a ranking of the nodes of G that
is a natural generalization of the degree centrality.
However, in our ranking, the most "central" sen-
tences (sentences that are similar to many other
sentences in the document) have lower scores than
the ones that are less "central."

To further support this definition, we observe
that if G were an undirected, unweighted simple
graph G = (V,E) (that is, the entries of A are
either 0 or 1, A is symmetric and only has zeros in
its diagonal), then we would have that

n∑

j=1

A[i, j] = #{v ∈ V |(vi, v) ∈ E}, (2)

which is the definition of the degree of node vi
and is clearly a (somewhat crude) measure of the
importance of the node in the graph.

It is important to note that in scientific papers,
which have around 300 sentences, the proposed
method takes around 1 second for the whole pro-
cess. This result implies that there is no obsta-
cle for applying this method to longer documents
since producing the sentence embeddings with the
SBERT implementation is very efficient, and the
only thing that we are doing is compare all the pairs
of sentence embeddings, which can be done with
highly efficient linear algebra libraries.

2.5 Summary selection
The final step in the method is to select the sen-
tences that are going to form the summary. To do

112



this, we can take only the bottom n-percentile in
reverse (as opposed to the top n-percentile, since in
our method, a lower rank means that the sentence is
more important in the document) or concatenate the
ranked sentences in reverse (so that the sentences
with the lowest ranks -that is, the most important
ones- come first) and take the first k words to sat-
isfy a word-length constraint for the summaries.

3 Experimental setup

3.1 Data set
Since our method is for unsupervised extractive
summarization, we only used the extractive sum-
maries in the TalkSumm data set (Lev et al., 2019)
to estimate the appropriate threshold value for the
sentence selection phase. As suggested in the task,
we used science-parse (AllenAI, 2019) to extract
the text of the scientific articles and split it into
sections. Given that the objective of the task is
to produce long summaries for the documents, we
discarded the title and abstract and then took as in-
put for the algorithm the remaining text as a single
block.

3.2 Evaluation
As is customary in summarization tasks, we used
ROUGE (Lin, 2004) in its variations ROUGE-1,
ROUGE-2 and ROUGE-L.

3.3 Percentile threshold in the selection phase
We tried with p = {1, 1.5, 2, 2.5, 5, 10, 15} as the
value of the bottom percentage of sentences to keep
for the final summary and truncated the output to
satisfy the 600 word limit for the task when the
summary was longer. It is important to note that
the freedom of this parameter allows the system to
produce summaries of arbitrary length, depending
on the task at hand.

4 Results

Overall, we observed that the 600-word constraint
of the task prevented our method from performing
better, but we also observed that the best summaries
produced by our method are too long (around 1,000
words or more). Table 1 displays the performance
of the method variations that we submitted to the
task.

5 Conclusion and Future Work

The method introduced in this work displays com-
petitive performance with more sophisticated meth-

Bottom % R-1 F R-1 R R-2 F R-2 R R-L F R-L R
1.0 0.24 0.15 0.06 0.03 0.11 0.07
1.5 0.29 0.21 0.08 0.05 0.13 0.09
2.0 0.33 0.25 0.08 0.06 0.14 0.10
2.5 0.37 0.29 0.09 0.07 0.15 0.11
5.0 0.44 0.39 0.12 0.10 0.16 0.14

10.0 0.46 0.43 0.12 0.12 0.17 0.16
15.0 0.46 0.43 0.12 0.12 0.17 0.16

Table 1: performance of the different variations of the
proposed method submitted to the task. In this setting,
the ranked sentences were sorted in reverse and con-
catenated to form a preliminary output, which was trun-
cated at 600 words to comply with the task’s require-
ments. The "Bottom %" column displays the percentile
used in the sentence selection phase of the method. R-
N F stands for the F-measure in ROUGE-N, while R-N
R stands for the Recall in ROUGE-N.

ods and can be useful when there is not enough
labelled data to train a deep neural summarization
system while being fast, simple and efficient. Over-
all, we observed that the precision component of
ROUGE for the proposed method has much room
for improvement, as having sentences as the min-
imal text units prevents it from filtering out the
less important phrases. Another important future
direction is to reduce the redundancy of the sum-
maries, as it is common to have several versions
of the same important sentence scattered across
the document, so all these versions of the sentence
appear in the final summary.
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Abstract

Scientific claim verification is a unique chal-
lenge that is attracting increasing interest. The
SCIVER shared task offers a benchmark sce-
nario to test and compare claim verification ap-
proaches by participating teams and consists
in three steps: relevant abstract selection, ra-
tionale selection and label prediction. In this
paper, we present team QMUL-SDS’s partic-
ipation in the shared task. We propose an
approach that performs scientific claim veri-
fication by doing binary classifications step-
by-step. We trained a BioBERT-large classi-
fier to select abstracts based on pairwise rel-
evance assessments for each <claim, title of
the abstract> and continued to train it to se-
lect rationales out of each retrieved abstract
based on <claim, sentence>. We then pro-
pose a two-step setting for label prediction, i.e.
first predicting “NOT_ENOUGH_INFO” or
“ENOUGH_INFO”, then label those marked
as “ENOUGH_INFO” as either “SUPPORT”
or “CONTRADICT”. Compared to the base-
line system, we achieve substantial improve-
ments on the dev set. As a result, our team
is the No. 4 team on the leaderboard.

1 Introduction

As online content continues to grow at an unprece-
dented rate, the spread of false information online
increases the potential of misleading people and
causing harm. Where the volume of information
shared online is difficult to be managed by human
fact-checkers, this leads to an increasing demand
on automated fact-checking, which is formulated
by researchers as ‘the assignment of a truth value
to a claim made in a particular context’(Vlachos
and Riedel, 2014).

Though a body of research focuses on conduct-
ing fact-checking in the politics domain, scientific
claim verification has also gained increasing in-
terest in the context of the ongoing COVID-19
pandemic. The SCIVER shared task provides a

Abstract Retrieval

Rationale Selection

Label Prediction

claim c

Top K abstracts

Identified abstracts

Identified rationales

"Enough_Info" classification verdict NEI

"Support" classification

verdict S

verdict C

TF-IDF similarity ranking

BioBERT abstract classification

BioBERT rationale classification

negative
positive

positive
negative

Figure 1: Overview of our step-by-step bi-
nary classification system. NEI stands for
“NOT_ENOUGH_INFO”, C stands for “CON-
TRADICT” and S stands for “SUPPORT”. Given
claim c, our system first retrieves top K TF-IDF
similarity abstracts out of the corpus, then uses a
BioBERT binary classifier to further identify desired
abstracts on top of that. With retrieved abstracts, our
system then uses another BioBERT binary classifier
to select rationales. We finally do label prediction
in a two-step fashion, i.e. first make verdicts on
“ENOUGH_INFO” or not and, if positive, then make
verdicts on “SUPPORT” or not.

valuable benchmark to build and evaluate systems
performing scientific claim verification. Given a
scientific claim and a corpus of over 5000 abstracts,
the task consists in (i) identifying abstracts relevant
to the claim, (ii) delving into the abstracts to select
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evidence sentences relevant to the claim, and (iii)
subsequently predicting claim veracity.

This paper presents and analyses team QMUL-
SDS’s participation in the SCIVER shared task. In
particular, we explore creative approaches of solv-
ing the challenge with limited resources. Figure 1
provides an overview of our system. While many
other systems make use of external datasets, e.g.
FEVER (Thorne et al., 2018), our system focuses
on efficient use of the SCIFACT dataset (Wadden
et al., 2020). Furthermore, in the interest of keep-
ing the efficiency of our system, we limit our model
choices to the size of RoBERTa-large (Liu et al.,
2019), ruling out for example GPT-3 (Brown et al.,
2020) and T5 (Raffel et al., 2020), which were used
in other participating systems. More specifically,
our system mainly uses RoBERTa (Liu et al., 2019)
and BioBERT (Lee et al., 2020). The latter is pre-
trained on biomedical text and therefore is very
close to our target domain. With improved pipeline
design, our system shows competitive performance
with limited computing resources, achieving the
6th position in the task and ranked 4th when dis-
tinct teams are considered. 1

2 Related Work

Several approaches have been proposed to perform
scientific claim verification in the three-step set-
tings proposed in SCIVER.

Upon publication of the SCIFACT dataset (Wad-
den et al., 2020), the authors introduced VERISCI
as a baseline system. It is a pipeline with three mod-
ules: abstract retrieval, rationale selection and label
prediction. The abstract retrieval module returns
the top K highest-ranked abstracts determined by
the TF-IDF similarity between each abstract and
the claim at hand. The rationale selection module
trains a RoBERTa-large model to compute rele-
vance scores with a sigmoid function and then se-
lects sentences whose relevance scores are higher
than the threshold T . The label prediction module
trains a RoBERTa-large model to do three-way clas-
sification regarding sentence-pairs, where the can-
didate labels are "SUPPORT", "CONTRADICT"
and "NOT_ENOUGH_INFO". Empirically the sys-
tem set the K value to 3 and the T value to 0.5. Due
to its inspiring design, reasonable performance and
good efficiency, in this paper we take VERISCI
system as our baseline.

After the publication of the SCIFACT dataset,
1Code is available here.

several approaches have been published, some of
which chose to participate in the SCIVER shared
task. We next discuss the top 3 ranked entries. The
VERT5ERINI system (Pradeep et al., 2020) ranked
1st on the leaderboard. This system first retrieves
a shortlist of top 20 abstracts by using the BM25
ranking score (Robertson et al., 1994), which is
then fed into a T5 model to rerank and retrieve the
top 3 abstracts; it then trains a T5 model to calcu-
late relevance scores for each sentence, on which
a threshold of 0.999 is applied to select rationales;
it finally trains a T5 model to do three-way clas-
sification for predicting labels. This system has
demonstrated the performance advantages of using
T5, a model that is substantially bigger than other
language models.

The ParagraphJoint system (Li et al., 2021)
ranked 2nd on the leaderboard. It first uses
BioSentVec (Chen et al., 2019) to retrieve the top
K abstracts and then jointly trains a RoBERTa-
large model to do rationale selection and label pre-
diction in a multi-task learning setting. The sys-
tem is first trained on the FEVER dataset and then
trained on SCIFACT dataset. Its application of
multi-task learning techniques proved to be very
successful and inspires further research in this di-
rection.

The team who ranked 3rd on the leaderboard,
Law & Econ (Stammbach and Ash), fine-tuned
their e-FEVER system on SCIFACT dataset, which
requires usage of GPT-3 and training on FEVER
dataset. Despite the big difference on model sizes,
our system achieves close performance to the e-
FEVER system on the leaderboard.

3 Approach

Following the convention of automated fact-
checking systems (Thorne et al., 2018) and the
VERISCI baseline system, we explore novel ways
of tackling the challenge by handling the three sub-
tasks: abstract retrieval, rationale selection and
label prediction.

3.1 Abstract Retrieval

Abstract retrieval is the task of retrieving relevant
abstracts that can support the prediction of a claim’s
veracity. Inspired by the baseline system, which
retrieves the top K (K = 3) abstracts with the
highest TF-IDF similarity to the claim, initially we
attempted a similar method with a state-of-the-art
similarity metric, i.e., BERTscore (Zhang et al.,
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2020). It computes token similarity using BERT-
based contextual embeddings. However, the results
we achieved were not satisfactory2 and was ruled
out in subsequent experiments.

Instead of completely relying on available met-
rics, we investigated performing abstract retrieval
in a supervised manner. In contrast to previ-
ous work (Pradeep et al., 2020) which performed
reranking, we formulate it as a binary classification
problem. We first empirically limit the corpus to
the top 30 abstracts with highest TF-IDF similarity
to the claim. We fine-tuned a BioBERT model (Lee
et al., 2020) with a linear classification head, which
we name as the BioBERT classifier thereafter, to
do binary classification on the top 30 TF-IDF ab-
stracts, i.e. predicting whether the abstract at hand
is correctly identified for the claim at hand given
the pairwise input <claim c, title t of the abstract>.
Due to the input length limits of BERT models,
we only use the title of the abstract at this stage,
assuming that the title represents a good summary
of the abstract.

3.2 Rationale Selection

Rationale Selection is the task of selecting rationale
sentences out of the retrieved abstracts. To avoid
manually tuning the threshold on various settings
like the baseline system, we address the problem as
a binary classification task in a very similar manner
to the last step. We continued training the BioBERT
classifier inherited from the abstract retrieval step
to do rationale selection, i.e. making binary predic-
tions on whether the sentence at hand is correctly
identified for the claim at hand given sentence pair
<claim c, sentence s>. As our classifier model only
outputs binary predictions with its linear head on
individual sentence pair cases, there is no need
to apply various ranking thresholds. Aiming to
achieve better overall pipeline performance, our
models are trained on abstracts retrieved in the first
step, rather than oracle abstracts.

3.3 Label Prediction

Label prediction is the task of predicting the ve-
racity label given the target claim and rationale
sentences selected in the preceding step of the
pipeline. A good selection of relevant abstracts
and rationales therefore is vital in the capacity of
the veracity label prediction system.

The baseline system we initially implemented

2See detailed results in appendix A

trained a RoBERTa-large model to do three-way
classification into one of “NOT_ENOUGH_INFO”,
“SUPPORT” and “CONTRADICT”. We observed
that, while the model was in general fairly accurate,
it performed poorly in predicting the "CONTRA-
DICT" class due to the scarcity of training data
pertaining to this class. However, it is known that
claims belonging to the “CONTRADICT” class
are particularly difficult to collect, and that auto-
mated fact-checking datasets tend to create them
synthetically by manually mutating naturally oc-
curring claims originally pertaining to the “SUP-
PORT” class (Thorne et al., 2018; Wadden et al.,
2020; Sathe et al., 2020). With the aim of im-
proving model performance on this class without
using extra data, we try to decrease wrong pre-
dictions accumulated by wrong predictions on the
other labels. For instance, the model may pre-
dict a claim to be “NOT_ENOUGH_INFO” while
it should be “CONTRADICT”, which makes it
a false positive for the “NOT_ENOUGH_INFO”
class and a true negative for the “CONTRADICT”
class. If the model has better performance on the
“NOT_ENOUGH_INFO” predictions, it would in
turn help the performance on the “CONTRADICT”
class.

Hence, we explore label prediction within a
two-step setting. First, we merge claims from
the “SUPPORT” and “CONTRADICT” classes as
“ENOUGH_INFO”. With this altered dataset, we
train a RoBERTa-large model as a neutral detector
to do binary classification into “ENOUGH_INFO”
or “NOT_ENOUGH_INFO”. Second, we merge
data from “NOT_ENOUGH_INFO” and “CON-
TRADICT” to be “NOT_SUPPORT” and train
another RoBERTa-large model as a support de-
tector to do binary classification on “SUPPORT”
or “NOT_SUPPORT”. Finally, when doing predic-
tions, we first use the neutral detector to predict
“ENOUGH_INFO” or “NOT_ENOUGH_INFO”
and only if the first prediction is “ENOUGH_INFO”
we use the support detector to predict “SUPPORT”
or “NOT_SUPPORT”. We take “NOT_SUPPORT”
instances as equivalent to “CONTRADICT” in-
stances in the three-way classification.

4 Results

We perform various experiments on the SCIFACT
dataset to identify the best models and techniques
to be submitted to the task. Unless explicitly speci-
fied, models are trained on the SCIFACT’s train set
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and evaluated on the SCIFACT’s dev set.

4.1 Abstract Retrieval
We limit the candidate abstracts to the top 30 with
the highest TF-IDF similarity scores, as this setting
achieves a high recall of 91.39%. With our bi-
nary classification method, we experimented with
BioBERT models that are pre-trained on close do-
main texts (Lee et al., 2020). To explore the poten-
tials of adapting pre-trained language models to the
current settings, we also conducted task adaptive
pre-training (Gururangan et al., 2020) on the SCI-
FACT corpus with BioBERT-base for 50 epochs
with batch size 1, which leads to a final perplexity
of 2.68. This parameter choice is made primarily
based on our limited time and computational re-
sources for the SCIVER shared task participation.
Further extensive exploration may lead to interest-
ing results. This model is denoted as BioBERT-
base*.

Table 1 reports performance of the baseline,
BioBERT-base, BioBERT-base* and BioBERT-
large models on abstract retrieval. The baseline
directly retrieves the top 3 abstracts with highest
TF-IDF similarity, which is also the method used
in the VERISCI system (Wadden et al., 2020). We
also report abstract level pipeline performance with
baseline rationale selector and baseline label predic-
tor to demonstrate its substantial impact on pipeline
performance.

Our method achieves noticeable improvements
over the baseline by largely decreasing the false
positive rate. More specifically, BioBERT-base
has the highest precision score, BioBERT-base*
has highest F1 score and BioBERT-large has the
highest recall score. With increased model size,
BioBERT-large has gained significant improve-
ments on recall but suffers with a precision drop
compared to BioBERT-base and BioBERT-base*,
which may suggest model underfitting. Overall our
approach leads to an approximate 10% increase
over the baseline approach on abstract level down-
stream performance.

4.2 Rationale Selection
In order to improve the overall design of the sys-
tem, we trained our rationale selection models with
abstracts retrieved by our abstract retrieval mod-
ule rather than oracle abstracts. We use abstracts
retrieved by BioBERT-large due to its highest re-
call score. In this step, we experiment with our
binary classification approach to identify rationale

Abstract Retrieval

Method P R F1

Baseline 16.22 69.86 26.33
BioBERT-base 83.23 64.11 72.43
BioBERT-base* 81.61 67.94 74.15
BioBERT-large 62.75 74.16 67.98

Downstream Performance

Abstract Level Label Only

Method P R F1

Baseline 56.42 48.33 52.06
BioBERT-base 84.30 48.80 61.82
BioBERT-base* 84.92 51.20 63.88
BioBERT-large 79.71 52.63 63.40

Abstract Level Label + Rationale

Method P R F1

Baseline 54.19 46.41 50.00
BioBERT-base 81.82 47.37 60.00
BioBERT-base* 82.54 49.76 62.09
BioBERT-large 76.81 50.72 61.10

Table 1: Comparison of abstract retrieval methods on
the dev set of SCIFACT.

sentences from retrieved abstracts for the claim at
hand. Given a sentence-pair <claim c, sentence s>,
the model, which was trained to do abstract selec-
tion in last step, is now trained to predict whether
the sentence at hand is correctly identified for the
claim at hand.

Table 2 reports results of the baseline, BioBERT-
base, BioBERT-base* and BioBERT-large models
on rationale selection. We also present sentence
level pipeline performance with oracle cited ab-
stracts 3 and baseline label predictor.

Our method leads to an increase in precision
score, a small decrease in recall score and a
small increase in F1 score. Interestingly, the
three BioBERT variants don’t show clear perfor-
mance differences, despite substantial differences
in model sizes. A small improvement on down-
stream sentence-level performance is achieved
overall.

4.3 Label Prediction
For label prediction, we use the two-step approach
that leverages RoBERTa-large as described in §3.3.
This approach is denoted as TWO-STEP thereafter.
Table 3 reports performance results for the label
prediction task with oracle cited abstracts and ora-

3It includes abstracts that are of "SUPPORT", "CON-
TRADICT" and "NOT_ENOUGH_INFO" relations to the
claims’ veracity. It is also referred as oracle abstracts with
NOT_ENOUGH_INFO (NEI) setting in SCIFACT dataset
paper.
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Sentence Selection

Method P R F1

Baseline 64.99 70.49 67.63
BioBERT-base 77.97 62.84 69.59
BioBERT-base* 74.38 65.03 69.39
BioBERT-large 77.08 63.39 69.57

Downstream Performance

Sentence Level Selection Only

Method P R F1

Baseline 74.48 59.02 65.85
BioBERT-base 83.81 56.56 67.54
BioBERT-base* 80.84 57.65 67.30
BioBERT-large 80.75 58.47 67.83

Sentence Level Selection + Label

Method P R F1

Baseline 66.90 53.01 59.15
BioBERT-base 74.90 50.55 60.36
BioBERT-base* 72.41 51.64 60.29
BioBERT-large 72.08 52.19 60.54

Table 2: Comparison of rationale selection methods on
the dev set of SCIFACT.

cle rationales. The baseline is the RoBERTa-large
three-way classifier used on VERISCI. Our TWO-
STEP method leads to a 4% increase in accuracy,
macro-F1 and weighted-F1 over the baseline. We
further present confusion matrices for each sys-
tem for analysis, where C stands for “CONTRA-
DICT”, N stands for “NOT_ENOUGH_INFO” and
S stands for “SUPPORT”. As the confusion ma-
trix shows, our method successfully improves the
overall predictions on the “CONTRADICT” class
without leveraging extra data.

Furthermore, Table 4 reports results on the
abstract-level label prediction with various settings
of upstream modules. Interestingly, both meth-
ods show noticeably decreased performance when
given an evidence of lower quality. From the oracle
evidence to the evidence retrieved by our system,
the baseline module’s F1 performance dropped by
19.70% and the TWO-STEP module dropped by
20.26% in absolute values; from the oracle evi-
dence to the evidence retrieved by the baseline
system, the baseline module’s F1 score dropped
by 30.14% and the TWO-STEP module dropped by
37.26% in absolute values.

Despite that, our TWO-STEP method always
outperforms the baseline method when given im-
proved evidence. Its F1 score is 2.02% - 2.58%
higher than the baseline on improved evidence re-
trieval settings. When given oracle cited abstracts
and oracle rationales, our method achieves 84.78%

Label Prediction Performance

Method Accuracy Macro-F1 Weighted-F1

Baseline 81.93 80.19 81.85
TWO-STEP 85.98 84.69 85.84

Confusion Matrix of Baseline

C N S

C 47 17 7
N 6 104 2
S 8 18 112

Confusion Matrix of TWO-STEP

C N S

C 53 7 11
N 2 107 3
S 12 10 116

Table 3: Comparison of label prediction methods with
oracle cited abstracts and oracle rationales.

Oracle Abstract + Oracle Rationale

Method P R F1

Baseline 90.75 75.12 82.20
TWO-STEP 88.54 81.33 84.78

OurSystem Abstract + OurSystem Rationale

Method P R F1

Baseline 76.92 52.63 62.50
TWO-STEP 73.62 57.42 64.52

Baseline Abstract + Baseline Rationale

Method P R F1

Baseline 56.42 48.32 52.06
TWO-STEP 43.31 52.63 47.52

Table 4: Comparison of label prediction methods with
various upstream modules.

F1 score.

4.4 Full Pipeline
Table 5 reports full pipeline performance on the
SCIFACT dev set. The baseline is the VERISCI
system. We compare pipeline systems with differ-
ent evidence retrieval models, i.e., BioBERT-base,
BioBERT-base* and BioBERT-large, combined
with the two-step label predictor using RoBERTa-
large.

Overall our system achieves substantial improve-
ments over the baseline. Across the evaluation
metrics, our precision scores are 15.75%-23.37%
higher than the baseline system, recall scores are
3.82%-14.21% higher and F1 scores are 10.11%-
16.08% higher than the baseline in terms of abso-
lute values. Interestingly, BioBERT-base obtains
the highest precision score, BioBERT-base* the
highest recall score and BioBERT-large the highest
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Label Only

System P R F1

Baseline 56.42 48.33 52.06
BioBERT-base + TWO-STEP 79.56 52.15 63.00
BioBERT-base* + TWO-STEP 78.91 55.50 65.17
BioBERT-large + TWO-STEP 73.62 57.42 64.52

Label+Rationale

System P R F1

Baseline 54.19 46.41 50.00
BioBERT-base + TWO-STEP 75.91 49.76 60.11
BioBERT-base* + TWO-STEP 73.47 51.67 60.67
BioBERT-large + TWO-STEP 69.94 54.55 61.29

Selection Only

System P R F1

Baseline 54.27 43.44 48.25
BioBERT-base + TWO-STEP 77.64 52.19 62.42
BioBERT-base* + TWO-STEP 72.00 54.10 61.78
BioBERT-large + TWO-STEP 72.76 57.65 64.33

Selection+Label

System P R F1

Baseline 48.46 38.80 43.10
BioBERT-base + TWO-STEP 68.29 45.90 54.90
BioBERT-base* + TWO-STEP 64.00 48.09 54.92
BioBERT-large + TWO-STEP 64.83 51.37 57.32

Table 5: Comparison of full pipeline performance on
the dev set of SCIFACT.

F1 for most of metrics.
Table 6 compares full pipeline performance on

SCIFACT test set with models trained on the com-
bination of SCIFACT train set and dev set. We used
BioBERT-large evidence selector and two-step la-
bel predictor as our system due to its overall best
performance. This submission ranked No. 6 on the
leaderboard.

5 Discussion and Future Work

Our intuitive step-by-step binary classification sys-
tem achieves substantial improvements over the
baseline without demanding additional data or ex-
tra large models.

An improved evidence retrieval module has
made the main contributions to the performance
boost. Our system makes an effort to improve the
abstract retrieval module after applying a scalable
traditional information retrieval weighting scheme,
TF-IDF. Instead of handling it as a re-ranking task
and manually selecting thresholds (Pradeep et al.,
2020), we formulate it as a binary classification
task, which makes better use of the available train-
ing data and decreases the false positive rate effec-
tively. When applying a similar approach to ratio-

Label Only

System P R F1

Baseline 47.51 47.30 47.40
OURSYSTEM 74.32 49.55 59.46

Label+Rationale

System P R F1

Baseline 46.61 46.40 46.50
OURSYSTEM 72.97 48.65 58.38

Selection Only

System P R F1

Baseline 44.99 47.30 46.11
OURSYSTEM 81.58 58.65 68.24

Selection+Label

System P R F1

Baseline 38.56 40.54 39.53
OURSYSTEM 66.17 47.57 55.35

Table 6: Full pipeline performance on SCIFACT’s test
set. OURSYSTEMuses BioBERT-large for abstract re-
trieval and rationale selection with two-step label pre-
diction, all trained on trained set and dev set.

nale selection, our model, which is only trained on
the SCIFACT dataset, still achieves improvements
over the baseline model, which makes use of the
FEVER dataset first. Furthermore, our model is
less dependent on parameters than other systems,
which is ideal in practical settings where one would
like to apply the model on new datasets without
having to find the best parameters for the dataset at
hand.

In addition, our TWO-STEP label prediction
module also makes positive contributions to overall
improvements. The difference on the label predic-
tion performance is very noticeable on different up-
stream settings. Unsurprisingly, both methods have
the best performance with F1 scores higher than
80% on the oracle setting, which is the closest to
their training data. Interestingly, this performance
fluctuation leads to the following observation: a la-
bel prediction module that has better performance
on the oracle evidence doesn’t necessarily have
better performance when given the incorrect evi-
dence. Regarding our TWO-STEP label prediction
method, it shows that our neutral detector is not
robust enough on the pipeline setting. One possible
solution is to train it on evidence retrieved by pre-
vious modules rather than on the oracle evidence
so that it learns to optimise for the pipeline setting.

Nevertheless, this problem is inevitable for a
pipeline system that has multiple machine learning
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modules, as errors in each of the modules will ac-
cumulate throughout the pipeline. A better system
design is desired such that it tackles the challenge
in a more systematic way. A promising approach
is to train a model to learn three subtasks in a mul-
titask learning manner so that it may optimise for
better overall performance.

6 Conclusions

In this paper, we proposed a novel step-by-step bi-
nary classification approach for the SCIVER shared
task. Our submission achieved an F1 score of
55.35% on the test set, ranking 6th among all the
submissions and 4th among all the teams. We show
that (1) concerning evidence retrieval, a classifica-
tion based approach is better than a ranking based
approach with manual thresholds; (2) two-step bi-
nary label prediction has better performance than
three-way label prediction with limited training
data; (3) a more systematic design of automated
fact-checking system is desired.
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A Appendix

Table 7 reports performance of using BERTscore
as a metric to do abstract retrieval. We chose Dis-
tilBERT as the BERT model for global ranking for
efficiency reasons, which was ran on a simgle GPU
for approximately 36 hours and it turned out to be
worse than TF-IDF.

We then tried various relevant BERT variants to
do reranking out of the top 30 abstracts with the
highest TF-IDF similarity. In general, with rea-
sonable large models that are trained on relevant
tasks, results are better than TOP 3 TF-IDF. How-
ever, the improvements remain trivial and it is not
comparable to our classification approach.

TOP K Global Ranking with DistilBERT

Method P R F1

TF-IDF TOP 1 60.11 54.07 56.93
BERTscore TOP 1 51.06 45.93 48.36
TF-IDF TOP 3 25.89 69.86 37.78
BERTscore TOP 3 23.58 63.64 34.41
TF-IDF TOP 30 03.39 91.39 06.54
BERTscore TOP 30 03.26 88.04 06.29

TOP 3 BERTscore Reranking under TOP 30 TF-IDF

Model P R F1

BERT-tiny 23.94 64.59 34.93
SciBERT 25.89 69.86 37.78
BioBERT-base 28.37 76.56 41.40
BioBERT-large 26.60 71.77 38.81
RoBERTa-large rationale selector 20.39 55.02 29.75
RoBERTa-large label predictor 25.89 69.86 37.78

Table 7: BERTscore abstract retrieval performance on
the dev set of SCIFACT.
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