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Abstract

Minimalist grammars have been criticized for
their inability to analyze successive cyclic
movement and multiple wh-movement in a
manner that is faithful to the Minimalist liter-
ature. Persistent features have been proposed
in the literature as a potential remedy (Stabler,
2011; Laszakovits, 2018). We show that not
all persistent features are alike. The persistent
features involved in multiple wh-movement do
not increase subregular complexity, making
this phenomenon appear very natural from the
perspective of MGs. The persistent features
in successive-cyclic movement, on the other
hand, change the subregular nature of move-
ment, favoring an alternative treatment along
the lines of Kobele (2006).

1 Introduction

Minimalist syntax assumes that movement is
feature-triggered, but in many cases a single feature
may trigger multiple movement steps. For exam-
ple, a single wh-feature on a phrase may cause it to
undergo a number of successive-cyclic movement
steps to the matrix clause, as in (1a). In (1b), a
single subject undergoes a number of raising steps,
which are sometimes analyzed as being driven by
a single feature on the subject.

(1) a. [Which car]i did Mary say [ti that John
thinks that [ti that Sue mentioned [ti
that Bill bought ti]]].

b. [The car]i seems to Mary [ti to appear
[ti to have been expected [ti to win the
race]]].

Alternatively, a single feature may cause multiple
independent phrases to move to the same position,
as in the Serbo-Croatian example of multiple wh-
movement below (cf. Bošković, 2002, p. 353).

(2) [Koi
who

kogaj
whom

[ti voli
loves

tj]]?

Minimalist grammars (MGs) are a formalization
of Minimalist syntax that aims for a high degree of
faithfulness so that common Minimalist analyses
can be easily recast in terms of MGs. But MGs
are built on the assumption that each movement
step is triggered by a pair of matching movement
features — one on the mover, one on the landing
site. By default, a single feature cannot trigger
multiple movement steps, which is at odds with the
very common analyses sketched above.

Multiple solutions have been provided in the lit-
erature. Kobele (2006, p. 84, 148) suggests that
cases like (1a) and (1b) may involve only a sin-
gle feature at the target site, with the intermediate
traces inserted as part of a single movement step
from the base position to the surface position in
the matrix clause. This way, MGs can retain their
original feature calculus while generating exactly
the kind of phrase structure trees that syntacticians
posit in their analyses (and which may be used in
post-syntactic steps, e.g. semantic interpretation
in the vein of Heim and Kratzer 1998). Stabler
(2011) and Laszakovits (2018), on the other hand,
extend MGs with persistent features which can par-
ticipate in multiple movement steps. The persistent
licensee features of Stabler (2011) handle the phe-
nomena in (1), whereas the persistent licensor fea-
tures of Laszakovits (2018) can be used to model
multiple wh-movement (although that was not the
original intent). At this point, little is known about
the formal impact of persistent features except that
persistent licensee features do not increase weak
generative capacity (Stabler, 2011).

Recent developments make this a more urgent
issue. MGs have been studied from the perspec-
tive of subregular complexity (Graf, 2018; Graf
and De Santo, 2019), which is more fine-grained
than the measures previously used in the MG lit-
erature. As a result, even minor changes in the
formalism can greatly impact subregular complex-
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ity, which may cause the reader to wonder why
anybody would want to use such a finicky notion
of complexity.

The subregular approach to syntax has three
major advantages: First, it provides novel ways
of limiting overgeneration in a principled fashion
and thus furnishes new explanations of typological
gaps and linguistic universals, for instance why no
syntactic phenomenon seems to involve modulo
counting (Graf, 2020). Second, it also reveals sur-
prising parallels between syntax on the one side
and phonology and morphology on the other. Al-
though the weak generative capacity of phonol-
ogy and morphology (Kaplan and Kay, 1994) is
much less than that of syntax (Huybregts, 1984;
Shieber, 1985; Radzinski, 1991; Michaelis and
Kracht, 1997; Kobele, 2006), the complexity of
syntactic dependencies over trees is comparable
to that of phonological and morphological depen-
dencies over strings. The three language modules
apparently share a lot of computational machinery,
and this makes it easier to transfer empirical and
theoretical insights between them. Finally, there is
a number of efficient learning algorithms for sub-
regular string languages (Heinz et al., 2012; Jardine
and McMullin, 2017; McMullin et al., 2019), and
these algorithms are easy to lift to tree languages;
if one assumes that the input to the child learner
includes some tree structure (e.g. semantic head-
argument relations), one of the subregular learning
algorithms could perhaps be extended into a new
learning algorithm for MGs and hence a form of
Minimalist syntax. Overall, then, the subregular
approach holds a lot of promise, and by studying
the subregular complexity of syntactic proposals,
we get a deeper understanding of the empirical via-
bility of this approach. Since persistent features are
so common in Minimalist analyses, it is important
to understand their impact on subregular complex-
ity, whether all types of persistent features are the
same from this perspective, and what this entails
for theoretical syntax.

In this paper, we show that the subregular view
of MGs reveals a split between persistent licensor
features on the one hand and persistent licensee fea-
tures on the other. Persistent licensor features are
a simple modification of MGs that has no impact
on their subregular complexity. Persistent licensee
features, on the other hand, are both more compli-
cated and more complex. When MGs are defined
in first-order logic, adding persistent licensor fea-

tures is a matter of changing a single quantifier,
whereas persistent licensee features require much
more elaborate modifications. In addition, MGs
with persistent licensee features lose the connec-
tion between movement and TSL-2 tree grammars,
which form the subregular backbone of standard
MGs. All of this makes persistent licensee features
more complex than persistent licensor features.

We argue that these findings support two linguis-
tic claims: First, the treatment of successive-cyclic
movement in Kobele (2006) as an epiphenomenon
without dedicated feature triggers is preferable
from a subregular perspective. Additional work
should be done on whether existing syntactic anal-
yses can be easily revised to be compatible with
this approach. Second, the existence of multiple
wh-movement is unsurprising because the computa-
tional machinery that is needed for standard move-
ment in MGs already furnishes all the power that is
needed for persistent licensor features, which can
give rise to this phenomenon.

On the way towards this result, we establish sev-
eral formal milestones that we hope will be useful
for future work. We begin with a definition of
MGs in first-order logic (Sec. 2.1, Fig. 2 and 3).
In contrast to earlier definitions (Graf, 2012), ours
builds on MG dependency trees, which have seen
increased usage in work on subregular complex-
ity. Section 2.2 then enhances the basic version
of MGs with persistent features, which is much
easier for persistent licensor features than for per-
sistent licensee features. After that, we switch from
first-order logic to the much more limited class of
TSL-2 tree languages (Sec. 3). Even though sev-
eral publications have already used the concept of
TSL tree languages (Vu, 2018; Vu et al., 2019),
this paper is the first one to include the full formal
definition (Sec. 3.1, Def. 1). It is already known
that MGs in single movement normal form can be
described as the intersection of multiple TSL-2 tree
languages, and we show that this result holds also
if one adds persistent licensor features to such MGs
(Sec. 3.2). However, the behavior of persistent li-
censee features cannot be handled correctly with
TSL-2.

Due to space constraints, we unfortunately have
to presuppose familiarity with MGs and subregular
complexity. The reader may consult Stabler (2011)
for additional details on MGs, Graf (2018) for an
intuitive discussion of TSL, and Cornell and Rogers
(1998) for a primer on model-theoretic syntax.
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2 MGs and first-order logic

2.1 Standard MGs

In MGs, all syntactic work is done by the fea-
ture calculus. Let Merge and Move be finite,
disjoint sets of Merge feature names and Move
feature names, respectively. In addition, the set
Pol := {+,−} contains two opposite polarities.
Then Feat := (Merge ∪Move) × Pol is the set
of all possible features. We adopt the following
terminology and notation for features:

Type Pol. Name Notation
Merge + Selector feature F+

Merge − Category feature F−

Move + Licensor feature f+

Move − Licensee feature f−

Given a finite set Σ of phonetic exponents, a
Minimalist grammar (MG) over Σ is a finite subset
G of Σ × Feat+. Each member of G is called a
lexical item, and we write σ :: f1 · · · fn instead of
〈σ, f1 · · · fn〉. Each lexical item has a feature string
where

1. all negative features follow all positive fea-
tures,

2. there is exactly one category feature, and this
feature precedes all other negative features,

3. if there are any positive features, the first one
is a selector feature.

These are corollaries of the MG feature calculus.
In standard MGs, lexical items are combined

into a phrase structure tree via repeated applica-
tion of the feature checking operations Merge and
Move until the only remaining feature is C− on
the head of the assembled phrase structure tree
(Stabler, 1997; Stabler and Keenan, 2003). Rather
than defining these mechanisms directly, we follow
the two-step approach to MGs instead (Morawietz,
2003; Mönnich, 2006; Kobele et al., 2007; Graf,
2012). From this perspective, each MG is factored
into two components. One is a regular language of
abstract trees, the other is a spell-out mapping that
translates the abstract tree into the desired output
structure (e.g. a string, a phrase structure tree, or
a logical form). From this perspective, syntax is
about separating well-formed abstract trees from ill-
formed ones, and each Minimalist grammar can be
equated with its set of well-formed abstract trees.

For MGs, these abstract trees are often equated
with MG derivation trees (Fig. 1, left), but we adopt
a specific format of dependency trees (Fig. 1, right)
as this will simplify the discussion of subregular
complexity in Sec. 3. In the dependency tree for-
mat, the daughters of a node are its arguments,
with the n-th argument corresponding to the daugh-
ter with n − 1 right siblings. For the reader’s
convenience, Fig. 1 also contains dashed move-
ment arrows to indicate how each licensee feature
is matched up with the closest available licensor
feature, which, following Graf 2012, we call its
occurrence. This illustrates how the abstract trees
provide all the necessary information to obtain the
corresponding string or phrase structure tree. The
properties of the MG feature calculus are such that
the set of abstract trees can be defined in first-order
logic and hence is (sub)regular — this holds for
derivation trees as well as dependency trees.

The first-order definition of an MG’s set of well-
formed dependency trees is given in Fig. 2 and
Fig. 3. It uses first-order logic with the standard
quantifiers and boolean connectives, as well as the
proper dominance relation /+ and the sibling prece-
dence relation ≺: x /+ y iff x properly dominates
y, and x ≺ y iff x is a left sibling of y. In addition,
we treat each lexical item σ :: f1 · · · fn as a unary
predicate that acts as the label of a node in the
tree. This allows us to define ancillary predicates
like seli@j(x), which are just finite disjunctions of
labels that meet the relevant condition. In combina-
tion with a standard axiomatization of finite trees
(e.g. Backofen et al. 1995), these first-order formu-
las yield exactly the set of well-formed dependency
trees for any given MG.

To the best of our knowledge, this is the first time
a first-order definition of MG dependency trees is
presented in the literature. The central intuition is
that MGs involve dependencies between features.
In the case of Merge, this is easy. First, the number
of daughters of l must match exactly the number
of selector features on l. Furthermore, the category
feature of the i-th argument of a lexical item l must
match the i-th selector feature of l. Note that the
i-th argument is the i-th daughter from the right,
and that i-th selector feature of l is not necessarily
the same as the i-th feature of l because licensor
and selector features can be interspersed (hence the
distinction between fpi and fp@m in Fig. 2). Once
this distinction is accounted for, checking Merge re-
duces to checking a head’s selector features against
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Move

Merge

ε :: T+wh+C− Move

Merge

ε :: V+nom+T− Merge

who :: D−nom−wh− Merge

said :: C+D+V− Merge

that :: T+C− Move

Merge

ε :: V+nom+T− Merge

John :: D−nom− left :: D+V−

CP

whoi C′

C TP

ti T′

T VP

ti V′

said CP

that TP

Johnj T′

T VP

tj left

ε :: T+wh+C−

ε :: V+nom+T−

said :: C+D+V−

who :: D−nom−wh− that :: T+C−

ε :: V+nom+T−

left :: D+V−

John :: D−nom−

nom

nom

wh

nom

nom

wh

Figure 1: MG derivation tree, phrase structure tree, and MG dependency tree, for Who said that John left (under a
simplified analysis)

the category features of its arguments (Fig. 3).

Move is more involved as it requires a switch
from dominance between nodes to dominance be-
tween features. For each licensee feature f− on a
lexical item l, a matching licensor feature f+ has
to be available on another lexical item l′ that prop-
erly dominates l. But not every licensor feature on
l′ may be available for checking. Suppose that l′

has the feature string A+f+B+g+C−, and that l
is part of the argument that is selected via B+. In
this case f+ is not available for l because the MG
feature calculus requires all features preceding B+

to have already been checked before selection via
B+ takes place. Among the licensor features of
l′, only those after B+ are available. Hence it is
not enough that l′ properly dominates l, we have
to extend dominance to features such that we can
tell which features of l′ properly dominate the rel-
evant licensee feature of l. This is the job of J+,
where x J+

m,n y means that the m-th feature of
x properly dominates the n-th feature of y. With
this notion of feature-dominance, we can define
the matching licensor features in a recursive fash-
ion. The zero occurrence of lexical item l is the
matching selector feature on the mother of l. The
predicate occ0@m(x, l) is read as “the m-th feature
on x is the zero occurrence of l”. If l has any li-
censee features, we then try to find a match for its
first licensee feature. This is the closest licensor
feature that properly dominates the zero occurrence

of l, and this feature is the first occurrence of l. We
continue in the same fashion for each licensee fea-
ture of l, always looking for the closest matching
licensor feature that properly dominates the pre-
vious occurrence. The occurrences of l thus are
the specific licensor features that check licensee
features of l.

Standard MGs then impose two constraints on
movement. Every licensee feature must have a
matching occurrence (Move in Fig. 3), and every
licensor feature is an occurrence for exactly one
lexical item (SMC in Fig. 3). This creates a one-
to-one matching requirement where every licensee
feature checks exactly one licensor feature, and the
other way round. Relaxing the one-to-one match-
ing requirement allows for persistent licensee and/
or licensor features. In the next section, we will see
that such a modification does not change the first-
order nature of the dependency trees. Section 3
then shows that more limited, subregular notions
of complexity do reveal a difference in complex-
ity between the standard feature calculus and the
relaxed version.

2.2 Adding persistent features to MGs
MGs’ one-to-one matching between licensee and
licensor features can be relaxed in two directions:
a single licensee feature could check multiple li-
censor features, and a single licensor feature could
check multiple licensee features. The former case
of persistent licensee features was first defined in
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x / y
def
= x /+ y ∧ ¬∃z[x /+ z ∧ z /+ y] (1)

∃!nx[φ(x)]
def
=





¬∃x[φ(x)] if n = 0

∃x1, . . . xn

[∧
1≤i 6=j≤n ¬(xi ≈ xj)∧ otherwise

φ(xi) ∧ ∀y[φ(y)→ ∨
1≤i≤n y ≈ xi]

] (2)

fpi (x)
def
= fp is the i-th Move feature of polarity p (3)

Fp
i (x)

def
= Fp is the i-th Merge feature of polarity p (4)

fp@j(x)
def
= fp is the j-th feature of x (5)

fpi@j(x)
def
= fpi (x) ∧ fp@j(x) (6)

seli@j(x)
def
= the i-th selector feature of x is its j-th feature (7)

argn(x, y)
def
= x / y ∧ ∃!n−1z[y ≺ z] (8)

occ0@m(x, y)
def
=

∨

1≤i≤m

(
argi(x, y) ∧ seli@m(x)

)
(9)

φ(x, y,m)
def
= ∃z

[
(z ≈ y ∨ z /+ y) ∧

( ∨

1≤i≤m≤∆

occ0@i(x, z)
)]

(10)

x J+
m,n y

def
=





x ≈ y ∨ φ(x, y,m) if m > n

¬(x ≈ y) ∧ φ(x, y,m) if m = n

φ(x, y,m) otherwise

(11)

occn@m(x, y)
def
=

∨

f∈Move

(
f−n (y) ∧ f+

@m(x)∧

∃z
[ ∨

1≤i≤∆

(
occn−1@i(z, y) ∧ x J+

m,i z∧

¬∃z′
[ ∨

1≤j≤∆

(
f+
@j(z

′) ∧ x J+
m,j z

′ ∧ z′ J+
j,i z

)])])
(12)

Figure 2: Ancillary first-order predicates for defining MG dependency tree languages; ∆ is a suitable finite cutoff
point such as the length of the grammar’s longest feature string (in some cases, a lower threshold may suffice).

∀x
[
¬∃y[y / x]→ C−(x)

]
(Final)

∀x
[ ∧

F∈Merge
1≤i<∆

(
F+
i (x)↔ ∃y

[
F−(y) ∧ argi(x, y)

])]
(Merge)

∀x
[ ∧

f∈Move
1≤i<∆

(
f−i (x)→ ∃y[

∨

1≤j<∆

occi@j(y, x)]
)]

(Move)

∀x
[ ∧

f∈Move
1≤m<∆

(
f+
@m(x)→ ∃!1y

[ ∨

1≤i<∆

occi@m(x, y)
])]

(SMC)

Figure 3: First-order constraints on dependency trees for standard MGs

279



Stabler (2011) to model successive cyclic move-
ment, and Stabler proved that MGs with persistent
features are weakly equivalent to standard MGs.
Persistent licensor features, on the other hand, were
recently proposed in Laszakovits (2018) to handle
specific instances of Case licensing, but they are
also implicitly assumed in some Minimalist syntax
analyses of multiple wh-movement (see Gärtner
and Michaelis 2010 for an MG-treatment of multi-
ple wh-movement without persistent licensor fea-
tures). Neither persistent licensee features nor per-
sistent licensor features are lacking in syntactic
applications.

The formal implementation of persistent licen-
sor features is easier than that of persistent licensee
features, so we consider the former first. The SMC
in Fig. 3 states that every licensor feature is an oc-
currence for exactly one lexical item. If we change
this to “at least one” (by replacing ∃!1y with ∃y),
each licensor feature becomes persistent and can
serve as an occurrence for distinct lexical items.
However, the feature is not persistent in the sense
that it can check multiple licensee features on the
same lexical item. Suppose l has the feature string
A−f−f−, so that it has to undergo two instances
of f-movement. In this case, it is not enough for
the dependency tree to contain a single persistent
f+. This feature would be the first occurrence of
l, but due to how we defined J+ there is no other
f+ in the dependency tree that properly dominates
the first occurrence of l, which means that l lacks
the second occurrence. Modifying the SMC thus
gives rise to a particular kind of persistent licensor
feature that still behaves like a normal licensor fea-
ture with respect to any fixed lexical item, but can
nonetheless serve as n occurrences for n distinct
licensor features.

We can also mix persistent and non-persistent
features, e.g. by defining Move features as triples
drawn from (Merge ∪ Move) × Pol × {1,∞},
where the third component encodes whether the
feature is persistent. Then the standard SMC would
hold for standard licensor features, and the relaxed
version for persistent licensor features. This is the
system defined in Fig. 4.

In contrast to persistent licensor features, per-
sistent licensee features require a relaxed notion
of occurrence. A few concrete examples illustrate
best how this ought to work. Suppose that the lex-
ical item l has the feature string A−f−∞g−∞, where
both licensee features are persistent. The licensee

feature g−∞ on l could check every g+ that prop-
erly dominates the second occurrence of l. The
feature f−∞ on l is more limited, though. We do
not want l to undergo any more f-movement after
it has started g-moving, so the persistent f−∞ on l
should only be allowed to check instances of f+

that properly dominate the first occurrence of l and
are properly dominated by the second occurrence
of l. But this, too, must be restricted further. Sup-
pose that f+ is the i-th occurrence of some other
lexical item l′. Unless f+ is persistent, it must not
be checked by f− on l′ and the persistent f−∞ on
l. Instead, this occurrence of l′ should also act as
an upper boundary, just like the g-occurrence of l.
Intuitively, then, a persistent licensee feature f−∞ of
l can keep checking instances of f+ after its occur-
rence until we reach I) the next occurrence of l, or
II) an occurrence of some f− on some other lexical
item.

This system is captured in first-order logic by
defining the notion of extended occurrence ecc
such that every licensor feature must be an occur-
rence or an extended occurrence of some lexical
item (exactly one if the licensor feature is not per-
sistent, at least one otherwise). Even though the
constraints in Fig. 4 are still fairly simple, the pred-
icate ecc hides a very convoluted reasoning mecha-
nism. This is indicative of the complicated nature
of persistent licensee features relative to persistent
licensor features, which will become even more ap-
parent in the next section on TSL and movement.

3 Persistent features are (not) TSL

Subregular phonology has focused a lot on the class
of tier-based strictly k-local (TSL-k) string lan-
guages (Heinz et al., 2011; De Santo and Graf,
2019; Lambert and Rogers, 2020), and while this
class has also been extended to trees recently, no
fully rigorous definition has been provided so far.
We do so here for TSL-2 tree languages and dis-
cuss how this notion relates to movement in MGs
(Sec. 3.1), after which we add persistent features
into the mix (Sec. 3.2).

3.1 The TSL-nature of standard MGs

Standard MGs cannot be captured in terms of TSL,
they have to be converted into single movement
normal form (SMNF) first. An MG is in SMNF iff
every lexical item has at most one licensee feature
and at most one licensor feature. Graf et al. (2016)
show how this is done, and that it has no effect on
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∞@m(x)
def
= the m-th feature of x is persistent (13)

eccn@m(x, y)
def
=

∨

f∈Move
1≤i<∆

(
f+
@m(x) ∧ f−n@i(y) ∧∞@i(y)∧

∃z
[ ∨

1≤j<∆

(
occn@j(z, y) ∧ x J+

m,j z∧

¬∃z′, y′
[ ∨

1≤k,u<∆

((
occn+1@u(z′, y) ∨ (occk@u(z′, y′) ∧ f+

@u(z′))
)
∧

x J+
m,u z

′ ∧ z′ J+
u,j z

)])])

(14)

∀x
[ ∧

f∈Move
1≤m<∆

(
f+
@m(x) ∧ ¬∞@m(x)→ ∃!1y

[ ∨

1≤i<∆

occi@m(x, y) ∨ ecci@m(x, y)
])]

(non-persistent licensor SMC)

∀x
[ ∧

f∈Move
1≤m<∆

(
f+
@m(x) ∧∞@m(x)→ ∃y

[ ∨

1≤i<∆

occi@m(x, y) ∨ ecci@m(x, y)
])]

(persistent licensor SMC)

Figure 4: First-order constraints on dependency trees for MGs with standard and persistent features

MGs’ weak or strong generative capacity (modulo
the presence/absence of unpronounced material).
The set of well-formed dependency trees of a stan-
dard MG in SMNF is tier-based strictly local (TSL)
in a specific sense.
Definition 1 (TSL-2 over trees). Given some al-
phabet Σ, a tree tier alphabet is some fixed subset
T of Σ. For every tree t over Σ and node n in t
with label l, T (n) is true iff l ∈ T . We define the
tier mother-of relation /T as follows:

x /T y
def
= T (x) ∧ T (y) ∧ x /+ y∧

¬∃z[T (z) ∧ x /+ z ∧ z /+ y]

In addition, the tier sibling precedence relation ≺T

is given by:

x ≺T y
def
= ∃z[z /T x ∧ z /T y] ∧ ∃z, z′[

(z ≈ x∨ z /+ x)∧ (z′ ≈ y ∨ z′ /+ y)∧ z ≺ z′]

Then T (t), T -tier projected from t, consists of all
nodes in t with a label in T , ordered by /T and
≺T . In addition, if a node n has no mother on
T (t), then it is considered a /T -daughter of the tier
root marker o. If n has no /T -daughter, then it is
considered a /T -mother of the bottom marker n.

An SL-2 function S maps members of Σ ∪ {o}
into the powerset of (Σ ∪ {n})∗. A tier-based

ε :: V+nom+T−

who :: D−nom−wh− ε :: V+nom+T−

John :: D−nom−

Figure 5: nom-tier of the MG dependency tree in
Fig. 1; the root marker o and the bottom markers n
are omitted.

strictly 2-local tree grammar over X-strings (TSL-
2[X]) is a triple G := 〈Σ, T, S〉 such that every set
in the range of S is a string language belonging to
class X . The tree language L(G) generated by G
contains tree t over Σ iff it holds for every node n
of T (t) with label l (including o) that n’s string of
/T -daughters is a member of S(l). y
As a concrete example, the dependency tree in
Fig. 1 would yield the tier in Fig. 5 if T contains all
and only those lexical items that carry an instance
of nom− or nom+.

The dependency trees of standard MGs in SMNF
are the intersection of multiple TSL tree languages
(cf. Graf, 2018). One tier is needed to enforce the
constraints (Final) and (Merge). This tier is trivial
in the sense that it is identical to the original tree.

Definition 2 (Merge language). Let M be some
MG. We define a TSL-2[TSL] grammar G :=
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〈M,M,S〉, where S is given by two cases. The
image of o under S is the set of all lexical items in
M whose category feature is C−. For each lexical
item l ∈M such that l contains exactly n selector
features F+

1 · · ·F+
n , S(l) is the set of all strings

w over M of length n such that it holds for all
1 ≤ i ≤ n that the i-th symbol in w−1 (the reverse
of w) has category feature F−i . We call L(G) the
Merge language of G (denoted MergeG). y

In addition, each movement feature, e.g. wh or
nom, also defines its own TSL tree language (as-
suming the MG is in SMNF).

Definition 3 (Move language). Let M be some
MG in SMNF. For each f ∈ Move, we define a
TSL-2[TSL-2] grammar Gf := 〈M,Tf , Sf 〉. We
use f− as shorthand for any l ∈M that carries f−,
and ¬f− for any l ∈ M ∪ {o,n} that does not
carry f−. Then the SL-2 function Sf is given by
two cases:

Sf (l) :=

{
(¬f−)∗f−(¬f−)∗ if l carries f+,
(¬f−)∗ otherwise.

We call L(Gf ) the f -Move language ofG (denoted
MovefG). The Move language of G (MoveG) is the
intersection of all MovefG for f ∈ Move . y

Each MovefG ensures that every lexical item carry-
ing f+ has exactly one daughter carrying f−, and
every lexical item carrying f− has a mother carry-
ing f+. Hence MoveG ensures a strict one-to-one
matching between all licensor and licensee fea-
tures.

Theorem 1. For every MG G in SMNF, the inter-
section of MergeG and MoveG contains all and
only those trees that are models of all four con-
straints in Fig. 3.

Due to space constraints, we do not give a formal
proof of this result here. The reader is referred to
Graf (2018) for the general intuition.

3.2 Adding persistence is easy/impossible

When we modified the first-order definition of
MGs, we saw that persistent licensor features are
easier to add than persistent licensee features. The
former only require weakening “exactly one” to
“at least one”, whereas the latter involve the fairly
complex notion of extended occurrences. The same
split arises under the TSL view of MGs (in SMNF),
and it is in fact even more pronounced. Whereas

persistent licensor features are easy to add, persis-
tent licensee features are impossible to capture with
TSL-2[TSL] (or any TSL-2[X], in fact).

As before, we consider persistent licensor fea-
tures first. All we have to do is to amend Sf (n)
in Def. 3 with a third case: if n carries persistent
f+
∞, then Sf (n) :=

(
(¬f−)∗f−(¬f−)∗

)+. This en-
sures that every persistent f+ has at least one mover
among its daughters on the tier, but possibly more.
In other words, the persistent f+ can check any
number of f− from distinct lexical items, but it
must check at least one.

Note that (¬f−)∗f−(¬f−)∗ and(
(¬f−)∗f−(¬f−)∗

)+ are both TSL-2 string
languages, so there is no discernible complexity
difference between standard licensor features and
persistent licensor features. In terms of subregular
complexity, there is no reason to exclude persistent
licensor features from MGs — the computational
machinery that is needed for standard MGs in
SMNF already provides everything that is needed
to handle persistent licensor features.

Persistent licensee features, on the other hand,
cannot be defined in tree TSL-2 at all. Consider the
four example tiers below, where∞ is persistent f−

and ¬∞ is non-persistent f−:

f+

∞

f+

¬∞

f+

f+

∞

f+

f+

¬∞
The first three tiers should be well-formed as each
f+ is an occurrence or extended occurrence — that
is to say, each f+ gets checked. The fourth tier, on
the other hand, should be ill-formed because the
higher f+ cannot checked once the non-persistent
f− has been checked by the lower f+. But there
is no TSL-2 tree language that includes the first
three tiers while excluding the latter. In order for
the latter to be illicit, one of the following must be
ruled out: f+ as the daughter string of o, f+ as the
daughter string of f+, or ¬∞ as the daughter string
of f+. Ruling out one of those options would nec-
essarily render one of the well-formed tiers illicit.
This argument is a tree analogue of the fact that
TSL string languages must have tier languages that
are suffix substitution closed (De Santo and Graf,
2019).

In order to avoid the issue, we need a more pow-
erful notion of TSL where the function S deter-
mines the set of licit daughter configurations for a
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node n based on the whole tier context of n, rather
than just the label of n. In the specific case at
hand, S(n) must be sensitive to the label of the tier
mother of n, too: if an f+ has an f+ mother, its
daughter string cannot contain a non-persistent f−,
while persistent f− or no f− at all would both be
fine (the latter case allows for unbounded recursion,
but as long as f+ cannot be the tier mother of n we
are guaranteed to encounter a persistent f− eventu-
ally). There are many different ways this could be
formalized, yielding vastly different classes of tree
languages, and we see no reason to pick a particular
option at this point. The important point is that the
standard notion of TSL tree languages that suffices
for movement in SMNF MGs is also enough for
persistent licensor features, but not for persistent
licensee features.

There is one interesting caveat, though: In
an MG where all licensee features are persistent,
movement is again TSL-2. In this case, the only
constraints on nodes carrying f+ is that their string
of daughters must not contain more than one f−

carrier and the string must not be n. For persistent
licensor features, the first half of the constraint can
also be dropped, leaving us with the simple require-
ment that their string of tier daughters must not be
n. This indirectly ensures that the leafs of a move-
ment tier must still be lexical items carrying f−. In
a certain sense, then, the problem with persistent
licensee features is not so much the persistence as
such, but that the availability of persistent as well
as non-persistent licensee features introduces an
ambiguity that cannot be resolved by considering
only a node and its string of tier daughters. One can
either provide a sufficiently large context for dis-
ambiguation, or avoid the ambiguity by allowing
for only one type of licensee feature.

As far as we can tell, many syntactic analyses are
incompatible with MGs where all licensee features
are persistent, so we maintain our original claim
that persistent licensee features pose a qualitatively
different, more complex challenge than persistent
licensor features.

4 Conclusion

We have given a rigorous first-order definition of
MGs with persistent features, and based on this
we have argued that not all persistent features are
alike. There is a complexity difference between
persistent licensor features on the one hand and
persistent licensee features on the other. Persistent

licensor features are unremarkable from the subreg-
ular perspective of TSL. This shows that MGs can
be expanded to handle phenomena such as multiple
wh-movement while preserving the core properties
of their abstract tree languages. Persistent licensee
features, on the other hand, introduce additional
complexity, which favors the approach of Kobele
(2006), where successive cyclic movement is not
feature triggered and is instead a by-product of the
spell-out mapping from the abstract trees to phrase
structure trees.

This paper has focused on the impact of persis-
tent features on the abstract tree language, leaving
open how they affect the spell-out mapping. If
two lexical items of l and l′ share the same occur-
rence, then it is not clear how the subtrees of l and
l′ should be linearized with respect to each other.
The feature calculus no longer provides all the nec-
essary information. However, the MG dependency
tree might. For instance, the linearization could
reflect the lexicographic order of l and l′ in the
dependency tree, or it might be based on morpho-
logical cases (e.g. nominative preceding accusative,
which precedes dative). These options are easily
defined in first-order logic, which entails that they
all preserve the weak generative capacity of MGs.
But it is unclear which option is the empirically
correct choice. Since subregular tree transductions
are still severely understudied, it is unclear how
these different options might change the subregu-
lar complexity of the mapping, and more work is
needed in this area.
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