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Abstract
Modern approaches to Constituency
Parsing are mono-lingual supervised

approaches which require large amount
of labelled data to be trained on, thus
limiting their utility to only a handful
of high-resource languages. To address
this issue of data-sparsity for low-resource
languages we propose Universal Re-
current Neural Network Grammars
(UniRNNG) which is a multi-lingual
variant of the popular Recurrent Neural
Network  Grammars (RNNG) model
for constituency parsing. UniRNNG
involves Cross-lingual Transfer Learning
for Constituency Parsing task. The
architecture of UniRNNG is inspired by
Principle and Parameter theory proposed
by Noam Chomsky. UniRNNG utilises the
linguistic typology knowledge available as
feature-values within WALS database, to
generalize over multiple languages. Once
trained on sufficiently diverse polyglot
corpus UniRNNG can be applied to
any natural language thus making it
Language-agnostic constituency parser.
Experiments reveal that our proposed
UniRNNG outperform state-of-the-art
baseline approaches for most of the target
languages, for which these are tested.

Keywords: Constituency Parsing, Cross-
lingual Transfer-learning

1 Introduction

Noam Chomsky proposed the hypothesis of
Universal Grammar (UG) (Chomsky,
1986; Cook and Newson, 2014) which states
that all human languages, while being su-
perficially as diverse as they are, share some
fundamental similarities. Thus he argues that
deep down the specific grammars of various
natural languages, there exists a Universal
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Grammar. Since then many linguists (Baker,
2008; Fodor and Sakas, 2004; Tomasello,
2005; Pinker, 1995; Fodor, 2001) attempted
to outline the principles and parameters of
this Universal Grammar manually, but with
very limited success. If it is nearly impossible
to identify and outline UG manually due
to its anticipated large size and complexity
(Roberts and Holmberg, 2005; Kayne, 2012;
Cinque and Rizzi, 2010; Shlonsky, 2010),
we can use a neural network to learn these
automatically.

Recently Recurrent Neural Network based
models for parsing (eg: Recurrent Neural
Network Grammars (RNNG)(Dyer et al.,
2016)) are proven to do excellent job in
automatically learning and encoding (as
model-parameters) the grammar of any
language directly from its tree-bank corpus.
This inspires us to make following assumption:

A Recurrent Neural Network based
multi-lingual parser trained on a di-
verse polyglot treebank corpus would
learn and encode the Universal Gram-
mar as its model-parameters.

Based on this assumption, we propose
Universal Recurrent Neural Network
Grammar (UniRNNG) which is a multi-
lingual variant of Dyer’s RNNG model (Dyer
et al., 2016). The architecture of UniRNNG
is indeed inspired by the Principle and Param-
eter framework (Chomsky, 1993) advocated
by linguists Noam Chomsky and Howard
Lasnik.  Hence unlike Dyer’s RNNG, our
proposed model comprises of two sets of
model-parameters « and 8. « would encode
Universal Principles which are shared by all
the languages and 8 would encode Parameters
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which are tuned to specific language of the
sentence being parsed during run-time.

Our proposed model involves Cross-lingual
Transfer Learning (CLT) from a polyglot
corpus of high-resource source-languages to
a low-resource target language. CLT has
extensively been applied to numerous NLP-
tasks including Dependency Parsing (Daniel
et al.,, 2017a; Zeman et al., 2018a), Natural
Language Inference (Conneau et al., 2018;
Singh et al., 2019; Huang et al., 2019; Doval
et al., 2019), Question Answering (Liu et al.,
2019; Lee and Lee, 2019; Lewis et al., 2019),
Text-classification (Bel et al., 2003; Shi et al.,
2010; Mihalcea et al., 2007; Prettenhofer and
Stein, 2010; Xu et al., 2016; Chen et al.,
2018) etc. However, as far as we are aware,
this is the first paper which evaluates the
performance of CLT on Constituency Parsing
task.

In order to generalize a mono-lingual con-
stituency parsing model to multi-lingual
settings, we utilize the knowledge of Lan-
guage typology which is available as various
typological feature-values in World Atlas of
Language System (WALS) (Haspelmath,
2009) database.

It is observed that CLT based approaches
do not perform well if the source and target
languages are typologically very distinct
(Ruder et al., 2019a). But since UniRNNG
explicitly models over the typological features
(as inputs) and is trained on a sufficiently
diverse polyglot corpus, it is comparatively
more robust to the typological differences
between source and target languages. In other
words, once being trained on sufficiently large
and typologically diverse corpus it can be
applied to any natural-language thus making
it Language-Agnostic.

Section 2 provides a brief description of
Recurrant Neural Network Grammar (RNNG)
proposed by Dyer’ et. al as background work.
In section 3 we outline the architecture and
intuition behind our proposed UniRNNG.
Sections 4 and 5 describe the experiments
performed and results obtained during the
evaluation of proposed model.

2 Background

2.1 Cross-lingual Parsing

Cross-lingual Model-transfer approaches to
Dependency Parsing such as (Daniel et al.,
2017a; Zeman et al., 2018a; Duong et al., 2015;
Guo et al., 2016; Vilares et al., 2015; Falen-
ska and Cetinoglu, 2017; Mulcaire et al., 2019;
Vania et al., 2019; Shareghi et al., 2019) in-
volve training a model on high-resource lan-
guages and subsequently adapting it to low-
resource languages. Participants of CoNLL
2017 shared-task (Daniel et al., 2017b) and
CoNLL 2018 shared task (Zeman et al.,
2018b) also provide numerous approaches to
dependency parsing of low-resource languages.
Some approaches such as (Naseem et al., 2012;
Téckstrom et al., 2013; Barzilay and Zhang,
2015; Wang and Eisner, 2016a; Rasooli and
Collins, 2017; Ammar, 2016; Wang and Eisner,
2016b) used typological information to facili-
tate cross-lingual transfer. However all these
approach utilise cross-lingual transfer learn-
ing for depndency-parsing task while our ap-
proach is for the cross-lingual Constituency-
parsing/Phrase-parsing.

2.2 Recurrent Neural Network
Grammar

RNNGs is a transition based approach to con-
stituency parsing. Transition based parsing
approaches reformulate the parsing problem as
the task of prediction of best possible action-
sequence.

A typical transition-based parser (Jurafsky
and Martin, 2019) consists of a Stack S which
stores the incomplete parse-tree, Buffer B
which stores the sentence tokens and the set
of all possible actions A. At every time-step t,
the algorithm chooses the best action a; € A,
given the current state of stack Sy, buffer By
and history of actions a<;. Depending upon
the chosen action as, the Stack and Buffer are
updated accordingly. The process is continued
until the Buffer becomes empty and Stack con-
sists of completed parse-tree.

(Dyer et al., 2016) proposed two variants of
RNNGs namely Discriminative and Genera-
tive model. The Discriminative model com-
putes most probable parse-tree y given the cor-
responding sentence x whereas the Generative
RNNG is a language-model that generates sen-
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Action Description
NT(X) Opens a non-terminal node "X’ and puts it on top of Stack. eg: NT(VP)==>(VP
SHIFT Removes topmost token from the Buffer B and pushes onto Stack
REDUCE | Repeatedly pops completed sub-trees or terminal symbols from the stack until an
open non-terminal is encountered, and then this open NT is popped and used as
the label of a new constituent that has the popped sub-trees as its children. This
new completed constituent is pushed onto the stack as a single composite item.
Table 1: Action Set for Discriminative RNNG (Dyer et al., 2016)
a. RNNG b. UniRNNG
W, c r. b b
Tanh M Softmax T Softmax
—_—— Feed-forward network S, Stack RED a model-parameters
L] Concatenation = Buffer GREEN B model-parameters
Pre Probabilities of all a., Action-history z Typology Vector

actionsattime t

Figure 1: a. Recurrent Neural Network Grammar (RNNG) architecture. b.Universal Recurrent Neural

Network Grammar (UniRNNG) architecture.

tence z and y simultaneously. Our proposed
UniRNNG is a multi-lingual variant of the
Discrimantive RNNG.

2.2.1 Discrimative RNNG

Table 1 describes the actions within action-set
A for the Discriminative RNNG (DiscRNNG).
At any time-step t, RNNGs use a stack-LSTM
(Dyer et al., 2015) to encode the current state
of Stack Sy and use simple RNN to encode the
current state of Buffer B; and action-history
a<¢. Given S, By and a<¢, the probability
vector P, comprising probabilities of all actions
within A being the appropriate action to be
taken at time-step t is computed by applying
equation 1.

P = softmax(rTu; + b) (1)

Vector wu; is vector representing the entire
model-state at time t. u; is computed by ap-

plying equation 2.
up = tanh(W[S; By act] + ¢) (2)

Figure la depicts the neural-architecture for
the entire action-prediction process at any
time-step t by the RNNGs.

Given a sentence (token-sequence) z° and its
respective parse-tree yi as a training example,
the action-sequence that generated y* from
can be extracted by depth-first, left-to-right
traversal of 3’. The model-parameters are
learnt by maximizing the likelihood of this ex-
tracted action-sequence for each training ex-
ample.

3 UniRNNG Model

This section describes our proposed Univer-
sal Recurrent Neural Network Gram-
mar (UniRNNG). As being a multi-lingual
variant of DiscRNNG (section 2.2.1), the
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UniRNNG is also a transition based parser
consisting of a Stack S, Buffer B and action-
set A. At any time-step, the Stack stores in-
complete parse-tree and Buffer stores token-
sequence. At each time-step t, model pre-
dicts best action a; € A given current state
of Stack (S;), Buffer (B;) and Action-history
(a<t). Subsequently Stack and Buffer are up-
dated as S;11 and Biy1, according to action
Q.

3.1 Architecture

Figure 1b depicts the architecture of the
UniRNNG. At each time-step t the pro-
posed model computes the Stack-encoding Sy,
Buffer encoding B; and action-sequence encod-
ing a<; using stack-LSTM and RNN respec-
tively, in similar way as DiscRNNG. (Section
2.2.1). However for UniRNNG Cross-lingual
Word-Embeddings are used instead of Word-
Identifier vectors during encoding of Stack and
Buffer.
Once having computed S;, B; and a<
the model computes two distinct vector-
representations of the entire model-state at
time t namely a-vector (u®;) and [-vector
(uPy), unlike DiscRNNG which computes sin-
gle representation u; (equation 2). The u®
and u?, are computed through equations 3 and
4.

u®y = tanh(W[Sy; Bi;act] + %) (3)

u?, = t(mh(WB [St; By;acy] + cﬁ) (4)

A typology aware version of B-vector ﬁf is com-

puted by applying equation 5 (computation
simply involves concatenation and dimension
reduction through feed-forward network).

Al = tanh(WuPy; Z) + ¢) (5)

Here Z € R4l is a Linguistic-typology vec-
tor. Each value within Z represents a single
typology-feature from WALS (Haspelmath,
2009) database having specific value as inte-
ger for the language being parsed. Both u?;
and @, have same dimensions i.e. RY. Fi-
nal state-representation at time ¢ is given as
concatenation of a-vector (u®;) and typology
aware version of B-vector (ﬁtﬁ) as equation 6.
Missing features for any language is assigned
zero indicating no dominant value for it.

e = [u®s; @7 (6)

To summarize UniRNNG is very similar to
Dyer’s DiscRNNG 2.2.1 with following mod-
ifications.

1. Cross-lingual Word-embeddings are used
instead of unique word-identifiers

2. At each time-step t, two distinct
model-state representations are computed

namely «a-vector u®; and [-vector ub,.

3. Final model-state representation wu; is
computed as concatenation of «-vector
and typology aware version of [-vector.
This is unlike original DiscRNNG where
uz is computed directly from S;, B; and

A<t

4. Model is trained on a typologically diverse
polyglot corpus.

The proposed architecture is inspired by the
Principle and Parameter framework (Chom-
sky, 1993) framework proposed by linguists
Noam Chomsky and Howard Lasnik. (Chom-
sky, 1993). The central idea behind the PP
framework is that a person’s syntactic knowl-
edge can be modelled with two formal at-
tributes namely a finite set of fundamental
Principles that are shared by all languages
(e.g.: A sentence must always have a subject)
and a finite set of Parameters whose values
characterize syntactic variability amongst var-
ious languages (eg: Subject-Verb-Object (S-V-
O) order within a sentence).

Inspired by this PP theory, our proposed
UniRNNG architecture comprises of distinct «
(W,c*) and 8 (W5 cP) parameters to encode
the universal and language specific features.

4 Experiments

This section describes the experiments con-
ducted to evaluate the performance of pro-
posed UniRNNG. Each experiment com-
prises of a set of source languages L and a
single target language [;.

4.1 Experimental Settings

We evaluated the performance of UniRNNG
under two experimental setups namely Few-
shot learning and Zero-shot learning setups.

Few-shot Learning (Wang et al., 2019) is ap-
plied when only few training examples are
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Language Tree-bank Family
English Penn tree-bank (Marcus et al., 1993) Germanic
Swedish (sd) Talbanken05 (Nivre et al., 2006) Germanic
French (fr) FrenchTreebank (Abeillé et al., 2003) Romance
Spanish (es) Spanish UAM Treebank (Moreno et al., 1999) Romance
Japanese (jp) Tiba-J/S (Kawata and Bartels, 2000) Altic
Arabic (ab) Arabic PENN Treebank (Bies and Maamouri, 2003) | Afro-asiatic
Hungarian (hg) Hungarian Szeged Treebank (Treebank) Uralic

Table 2: List of source languages and their corpra used during experimentation. corpra are used to train

both Word-Embeddings and Parsers

Language Tree-bank Family
German (de) Negra Treebank (Skut et al., 1997) Germanic
Danish (da) Arboretum Treebank (Bick, 2003) Germanic
Italian (it) ISST Treebank (Montemagni et al., 2003) Romance
Catalan (ct) Catalan AnCora Treebank (Taulé et al., 2008) Romance
Korean (kr) Korean Penn Treebank (Han et al., 2002) Altic
Heberew (hb) (Sima  an et al., 2001) Afro-asiatic
Estonian (est) Estonian Arborest Treebank (Bick et al.) Uralic
Hindi (hi)* Hindi-Urdu Treebank (Bhat et al., 2017) Indo-aryan
Vietnamese (vt)* | Vietnamese Treebank (Nguyen et al., 2009) | Austroasiatic

Table 3: List of target languages and their corpra used during experimentation. corpra are used to train
both Word-Embeddings and Parsers. * these languages are used only in zero-shot settings

available in the target language. In this
setup, the cross-lingual models (baseline and
UniRNNG) are trained on a mixed corpus
comprising of source-language sentences (cov-
ering over 80% corpus) and few available tar-
get language sentences. Hence for Few-shot
Learning setup l; € Lg.

Zero-shot Learning (Socher et al., 2013) is ap-
plied when no labelled dataset is available in
the target language. Hence l; ¢ L.

4.2 Baselines

This section describes the baselines used to
compare the performance of our proposed
UniRNNG.

4.2.1 Mono-lingual Models trained on
Sparse Dataset

We used this baseline to compare the per-
formance of our proposed UniRNNG only
in the Few-shot learning settings. As our
UniRNNG model is intended to be applied
for low-resource languages, we compare the
performance of it with that of the state-
of-the-art mono-lingual models trained on
sparse dataset. We experiment with three

mono-lingual constituency parsers namely Dis-
cRNNG 2.2.1, (Kuncoro et al., 2016) and
Transformer (Vaswani et al., 2017).

These models provide over 95% F-Score when
trained with sufficiently large dataset. But
they would not show such high performance
when trained on sparse dataset.

4.2.2 Unsupervised Recurrant Neural
Network Grammar (URNNG)

Its a state of the art approach to unsupervised
constituency parsing. We used this baseline
to compare the performance of our proposed
UniRNNG only in the Zero-shot learning set-
tings.

4.2.3 Cross-lingual RNNG Parser
trained on single source
language (CL-RNNG-Mono)

Its the Dyer’s RNNG model (Dyer et al., 2016)
with only two modifications. Firstly the Cross-
lingual Word Embeddings (Ruder et al., 2019b)
are used rather than unique word-identifier
vectors as used by Dyer et. al. Secondly
the model is trained on a single source lan-
guage FEnglish (UniRNNGs are trained on poly-
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Hyper- Value

parameter

WE dims 768

St,Bt,(I<t dims 450

uﬁt, u%; dims 450

Dropout prob. 0.01

Bach-size 32

Number of steps | Size of training cor-
per epoch pus / 32

Epochs 150

BERT Model bert multi cased L-

12._H-768 A-12

Table 4: Hyper-parameters

glot corpus) and tested on multiple target lan-
guage. Within Few-shot learning, the training
corpus also include small number of labelled
target language sentences.

4.2.4 Cross-lingual RNNG Parser
trained of multiple source
languages (CL-RNNG-Poly)

It is the same model as described in 4.2.3, but

trained on a mixed polyglot corpus of high-

resource source languages.(CL-RNNG-Mono
is trained on a single source language English).

Similar to 4.2.3, a small number of labelled

target-language [; sentences are included as

part of the training corpus within the Few-shot
settings.

4.3 Dataset

Tables 2 and 3 list all the Source and Tar-
get languages as well as their tree-bank cor-
pra used during experimentation. We evalu-
ated our proposed UniRNNG model and all
the baseline models on each of the target lan-
guages listed in Table 3 independently.

As already explained in section 4.1, the
CL-RNNG-Mono parsers (4.2.3) are always
trained on the single source-language FEn-
glish, whereas the CL-RNNG-Poly and the
UniRNNG Parsers are always trained on a
mixed polyglot corpus (in both few-shot and
zero-shot setups). For each experiment, the
source-language training corpus size is always
fixed to 700,000 tokens to ensure controlled
experiment-settings.

We created the source-language training-
corpus for CL-RNNG-Mono parsers by ran-
domly sampling sentences from the English-

at a time), until the
token-size becomes approximately equal to
700,000. On the other hand, to create
the source-language training-corpus for CL-
RNNG-Poly and UniRNNG models, we ran-
domly sampled sentences from each of the
seven source-language corpra listed in table
2 until the token-size becomes approximately
equal 100,000, concatenated all these sam-
pled datasets and randomly shuffled the or-
der. Hence all the seven source-languages
listed in table 2 are equally represented in
the training-corpus for CL-RNNG-Poly and
UniRNNG models.

PTB corpus (one

4.3.1 Short tree-bank corpra

As explained in section 4.1, within Few-
shot learning settings, only sparse target-
language dataset should be used to train both
UniRNNG and Baselines. Hence we extracted
a small subset of entire large treebank corpus
for each target language listed in table 3.

We extracted this subset by randomly sam-
pling sentences from the target-language tree-
bank corpus until the token-size becomes ap-
proximately equal to 3000. This is inspired
by (Ammar et al., 2016) who used same yard-
stick to evaluate their Multi-lingual Depen-
dency Parser (MALOPA). This small target-
language language corpus is added to the
source-language training corpus for each exper-
iment, within Few-shot Learning setup.

4.4 Universal Annotation

There are numerous tree-bank corpra for a di-
verse range of languages being developed dur-
ing the years (some listed in Tables 2 and
3). But unlike Dependency Parsing tree-banks
which are mostly annotated with the UD An-
notations (McDonald et al., 2013) (for most
languages), in case of Constituency Parsing
various existing tree-bank corpra have their
own independent tag annotations, thus mak-
ing the application of multi-lingual approaches
to it as impossible.

However, (Han et al., 2014) proposed a Univer-
sal Phrase tag-set with 9 common Phrase-tags.
Furthermore, (Han et al., 2014) also provides
a mapping table to map tags of popular con-
stituency tree-banks (including all treebanks
used by us in our experiments) to these Un-
versal Phrase Tags.



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

We used this mapping table to replace all
tags within all tree-banks listed in Tables 2
and 3, with the universal tags. Subsequently
we trained and evaluated all approaches (in-
cluding baseline mono-lingual approaches) on
these Universally Tagged tree-bank versions.

4.5 Cross-Lingual Word Embedding

As our model is a polyglot, we use Cross-
lingual Word-embeddings during the encoding
of Stack and Buffer state at any time-step t.
We use a simple Linear transformation based
approach (Ruder et al., 2019b) to compute
such Cross-lingual Word-embeddings.

Given two languages [1 and ls, the simple Lin-
ear Transformation based approach first trains
the mono-lingual WE for both [; and Iy inde-
pendently. Subsequently it uses a bi-lingual
lexicon to learn a transformation matrix W2
to project embeddings of words of I to the
embedding-space of Iy (considering Iy as refer-
ence language).

To ensure that all WE are within same space,
we use English as reference language. Mono-
lingual WE of any other language [ are thus
transformed into the English space by learn-
ing the transformation matrix W€ from word-
pairs extracted from FEnglish-I bi-lingual lexi-
con.

We experiment with five common Word-
embeddings namely Skip-gram  Word2vec
(Mikolov et al., 2013), Fast-text (Grave et al.,
2018), Glove (Pennington et al., 2014), ELMo
(Peters et al., 2018) and BERT (section 4.5.1).
We use bi-lingual seed dictionaries provided by
WOLD (Haspelmath and Uri Tadmor, 2009),
ASJP (Wichmann and Brown, 2016) and IDS
(Key and Comrie, 2015) which are elaborate
multi-lingual lexical semantic databases.

4.5.1 BERT Word Embeddings

We computed language-independent BERT-
Embeddings to be fed into UniRNNG us-
ing pre-trained Multilingual BERT (mBERT)
(Wu and Dredze, 2019) model. mBERT is a
multilingual variant of original BERT model
(Devlin et al., 2018) trained on text from
Wikipedia in 104 languages.

The Embeddings are calculated in same way
as in (Kondratyuk and Straka, 2019). Given
a sentence S, we tokenised the whole sentence
using WordPiece tokeniser (Wu et al., 2016).

Subsequently we fed this token-sequence into
pre-trained mBERT provided by (Turc et al.,
2019). Embedding of any word w € S i.e. e,
is computed by taking average of mBERT out-
puts of all Wordpiece tokens corresponding to
word w.

Thus, mBERT based Word-embeddings do not

require any Linear transformation.

4.6 Typology and Hyper-parameters

Table 4 outlines hyper-permeters used during
experiments. These values are obtained by
minimizing the training loss on Development
dataset (Dev set) for Penn Treebank Corpus
(Marcus et al., 1993).

Typology vector Z includes feature-values of
all word-order and constituency features in
WALS (Haspelmath, 2009) database exclud-
ing trivially redundant features as excluded by
(Takamura et al., 2016).

5 Results and Inference

Tables 5 outlines results obtained from ex-
periments conducted within the Few-shot
Learning settings. Best results for CL-
RNNG-Mono, CL-RNNG-Poly and proposed
UniRNNG models are obtained with BERT
Embedding. Table 6 outlines results obtained
for experiments conducted under Zero-shot
learning settings. As we obtained best results
with BERT Embeddings within few-shot
settings, we experimented with only BERT-
embeddings 4.5.1 in Zero-shot settings indeed.
As CL-RNNG-Mono is trained on the single
source language English, it is expected to
perform comparatively better on the target
languages which are typologically closer to
English and poorer on the target languages
which are typologically apart from English.
On the other hand, CL-RNNG-Poly and
UniRNNG are expected to perform almost
uniformly on all the target languages as these
are trained on typologically diverse polyglot
corpra. These expected trends are in-fact
observed in both Few-shot and Zero-shot
learning settings as evident in Tables 5 and 6.
Hence for languages Danish (da) and German
(de), CI-RNNG-Mono outperformed both
CL-RNNG-Poly and UniRNNG as these
languages belong to the same language-family
as English namely Germanic and are indeed
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Model de da it ct kr hb est
Transformers (Vaswani et al., 2017) | 34.34 | 33.08 | 34.71 | 33.74 | 35.58 | 35.60 | 35.57
DiscRNNG 2.2.1 34.49 | 33.52 | 35.01 | 34.15 | 36.02 | 35.74 | 35.94
(Kuncoro et al., 2016) 34.98 | 33.68 | 35.53 | 34.46 | 36.3 | 36.42 | 36.23
CL-RNNG-Mono+Skip-Gram 65.63 | 70.85 | 54.59 | 58.05 | 22.95 | 30.44 | 53.43
CL-RNNG-Mono+Fast-text 67.13 | 72.55 | 56.39 | 60.35 | 24.75 | 31.94 | 55.83
CL-RNNG-Mono+Glove 68.73 | 74.15 | 57.29 | 61.15 | 25.45 | 33.84 | 55.93
CL-RNNG-Mono+ELMo 69.13 | 74.75 | 58.49 | 61.64 | 26.65 | 33.94 | 56.73
CL-RNNG-Mono+BERT 71.03 | 77.35 | 60.39 | 63.05 | 27.75 | 39.84 | 59.93
CL-RNNG-Poly+SkipGram 61.94 | 62.89 | 64.0 | 64.53 | 61.88 | 63.19 | 62.76
CL-RNNG-Poly+Fast-text 63.57 | 64.51 | 65.78 | 66.53 | 64.3 | 64.84 | 65.55
CL-RNNG-Poly+Glove 65.1 | 66.17 | 66.5 | 67.4 | 64.72 | 66.59 | 65.51
CL-RNNG-Poly+ELMo 65.48 | 66.86 | 67.61 | 68.16 | 65.89 | 66.64 | 66.01
CL-RNNG-Poly+BERT 67.48 | 69.41 | 69.55 | 70.46 | 69.18 | 69.88 | 69.19
UniRNNG+SkipGram 64.92 | 65.95 | 66.79 | 67.35 | 65.05 | 66.24 | 65.83
UniRNNG+Fast-text 66.42 | 67.65 | 68.59 | 69.64 | 67.05 | 67.74 | 68.23
UniRNNG+Glove 68.03 | 69.25 | 69.49 | 70.45 | 67.55 | 69.64 | 68.33
UniRNNG+ELMo 68.42 | 69.85 | 70.69 | 70.94 | 68.75 | 69.74 | 69.13
UniRNNG+BERT 70.33 | 72.44 | 72.59 | 73.35 | 71.85 | 72.64 | 72.33

Table 5: F1 Score in Few-shot learning settings.

proposed UniRNNG

Top: Results for supervised approaches trained on
sparse dataset. Middle: Results for baseline Cross-lingual Transfer Parser (CLT-P). Bottom: Results for

Model de da it ct kr hb est hi vt

URNNG (Kim et al., 2019) | 11.84 11.58 10.53 12.43 9.97 10.46 8.52 | 9.36  3.12
CL-RNNG-Mono+BERT | 68.13 70.94 61.99 56.85 20.91 27.82 52.61 | 48.66 37.61
CL-RNNG-Poly+BERT 64.43 64.13 64.5 66.37 63.32 64.99 63.5 | 56.2 57.21
UniRNNG-+BERT 67.62 67.03 67.19 69.14 66.25 68.14 66.63 | 59.23 60.11

Table 6: F1 Score in Few-shot learning settings.

typologically very close to English. Whereas,
on the other five target languages which are
typologically and genealogically distinct from
the source language English namely Italian
(it), Catalan (ct), Estonian (est), Heberew
(hb) and Korean (kr), it under-performed
CL-RNNG-Poly.

Based on these observed trends we can infer
that the polyglot training training increases
the Cross-lingual transferring ability of the
RNNG based Constituency Parser to a typo-
logically distinct and unseen target language
as it allows the model to better generalize
over a diverse set of languages.

In both Few-shot and Zero-shot settings,
UniRNNGs significant outperformed CL-
RNNG-Poly on all the seven target languages
namely Danish (da), German (de), Italian
(it), Catalan (ct), Estonian (est), Heberew
(hb) and Korean (kr) as evident in Tables

5 and 6. Hence it can be inferred inducing
linguistic typology indeed leads to further
improvement in Cross-lingual transferring
ability of the RNNG based Constituency
Parser to a typologically distinct and unseen
target language.

Furthermore, in zero-shot learning settings,
we evaluated our models on two additional tar-
get languages namely Hindi and Vietnamese
(rightmost column in table 6). Languages
Hindi and Vietnamese belong to linguistic
families Indo-aryan and Austro-asiatic respec-
tively. None of the source languages listed
in Table 2 belong to these linguistic families.
Thus languages Hindi and Vietnamese are
typologically very distant form all the source
languages in the polyglot training corpus of
UniRNNGs. Hence scores obtained on these
languages indicate true Language Agnostic
nature of UniRINING architecture.
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Although the performance of UniRNNG
for these two languages is comparatively
lower than its performance on other target
languages listed in table 3, yet this improved
performance as compared to CL-RNNG-Mono
and CL-RNNG-Poly provide even stronger
evidence that UniRNNG architecture is
more robust to typologically distinct unseen
target languages than CL-RNNG-Poly. In
other words, once trained on significantly
diverse polyglot corpus, UniRNNG is
Language-Agnostic.

6 Conclusion

In this work, we proposed and evaluated
Universal Recurrent Neural Network Gram-
mar (UniRNNG) which is a multilingual vari-
ant of Dyer’s RNNG model. The architec-
ture of UniRNNG is inspired by Principles
and Parameters theory proposed by linguist
Noam Chomsky. We evaluated the perfor-
mance of UniRNNG in both Few-shot and
Zero-shot learning settings. Results show that
the UniRNNGs outperformed all baseline ap-
proaches for most of the target languages for
which these are tested. As far as we are aware,
this is the first paper which evaluated the per-
formance of Cross-lingual Transfer Parsing for
Constituency Parsing task.

Future work, would involve exploring the
changes in performances of baseline and
UniRNNG models with the varying degree of
diversity in the training corpus.
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