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Abstract

We investigate how sentence-level transform-
ers can be modified into effective sequence la-
belers at the token level without any direct su-
pervision. Existing approaches to zero-shot se-
quence labeling do not perform well when ap-
plied on transformer-based architectures. As
transformers contain multiple layers of multi-
head self-attention, information in the sen-
tence gets distributed between many tokens,
negatively affecting zero-shot token-level per-
formance. We find that a soft attention mod-
ule which explicitly encourages sharpness of
attention weights can significantly outperform
existing methods.

1 Introduction

Sequence labeling and sentence classification can
represent facets of the same task at different gran-
ularities; for example, detecting grammar errors
and predicting the grammaticality of sentences.
Transformer-based architectures such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) have been shown to achieve state-of-the-art
results on both sequence labeling (Bell et al., 2019)
and sentence classification (Sun et al., 2019) prob-
lems. However, such tasks are typically treated in
isolation rather than within a unified approach.

In this paper, we investigate methods for in-
ferring token-level predictions from transformer
models trained only on sentence-level annotations.
The ability to classify individual tokens without
direct supervision opens possibilities for training
sequence labeling models on tasks and datasets
where only sentence-level or document-level an-
notation is available. In addition, attention-based
architectures allow us to directly investigate what
the model is learning and to quantitatively measure
whether its rationales (supporting evidence) for par-
ticular input sentences match human expectations.
While evaluating the faithfulness (Herman, 2017)

of a model’s rationale is still an open research ques-
tion and up for debate (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019; DeYoung et al., 2020;
Jacovi and Goldberg, 2020; Atanasova et al., 2020),
the methods explored here allow for measuring
the plausibility (agreeability to human annotators;
DeYoung et al. (2020)) of transformer-based mod-
els using existing sequence labeling datasets.

We evaluate and compare different methods for
adapting pre-trained transformer models into zero-
shot sequence labelers, trained using only gold
sentence-level signal. Our experiments show that
applying existing approaches (Rei and Søgaard,
2018) to transformer architectures is not straight-
forward – transformers already contain several lay-
ers of multi-head attention, distributing sentence-
level information across many tokens, whereas
the existing methods rely on all the information
going through one central attention module. Ap-
proaches such as LIME (Ribeiro et al., 2016) for
scoring word importance also struggle to infer cor-
rect token-level annotations in a zero-shot manner
(e.g., it achieves only 2% F-score on one of our
datasets). We find that a modified attention func-
tion is needed to allow transformers to better focus
on individual important tokens and achieve a new
state-of-the-art on zero-shot sequence labeling.

The contributions of this paper are fourfold:

• We present the first experiments utilizing (pre-
trained) sentence-level transformers as zero-
shot sequence labelers;

• We perform a systematic comparison of alter-
native methods for zero-shot sequence label-
ing on different datasets;

• We propose a novel modification of the at-
tention function that significantly improves
zero-shot sequence-labeling performance of
transformers over the previous state of the art,
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while achieving on-par or better results on
sentence classification;

• We make our source code and models publicly
available to facilitate further research in the
field.1

2 Methods

We evaluate four different methods for turning
sentence-level transformer models into zero-shot
sequence labelers.

2.1 LIME

LIME (Ribeiro et al., 2016) generates local word-
level importance scores through a meta-model that
is trained on perturbed data generated by randomly
masking out words in the input sentence. It was
originally investigated in the context of Support
Vector Machine (Hearst et al., 1998) text classifiers
with unigram features.

We apply LIME to a RoBERTa model supervised
as a sentence classifier and investigate whether its
scores can be used for sequence labeling. We use
RoBERTa’s MASK token to mask out individual
words and allow LIME to generate 5000 masked
samples per sentence. The resulting explanation
weights are then used as classification scores for
each word, with the decision threshold fine-tuned
based on the development set performance.

Thorne et al. (2019) found LIME to outperform
attention-based approaches on the task of explain-
ing NLI models. LIME was used to probe a LSTM-
based sentence-pair classifier (Lan and Xu, 2018)
by removing tokens from the premise and hypoth-
esis sentences separately. The generated scores
were used to perform binary classification of to-
kens, with the threshold based on F1 performance
on the development set. The token-level predic-
tions were evaluated against human explanations
of the entailment relation using the e-SNLI dataset
(Camburu et al., 2018). LIME was found to outper-
form other methods, however, it was also 1000×
slower than attention-based methods at generating
these explanations.

2.2 Attention heads

The attention heads in a trained transformer model
are designed to identify and combine useful infor-
mation for a particular task. Clark et al. (2019)

1https://github.com/bujol12/
bert-seq-interpretability

found that specific heads can specialize on differ-
ent linguistic properties such as syntax and corefer-
ence. However, transformer models contain many
layers with multiple attention heads, distributing
the text representation and making it more difficult
to identify token importance for the overall task.

Given a particular head, we can obtain an im-
portance score for each token by averaging the
attention scores from all the tokens that attend to it.
In order to investigate the best possible setting, we
report results for the attention head that achieves
the highest token-level Mean Average Precision
score on the development set.

2.3 Soft attention
Rei and Søgaard (2018) described a method for
predicting token-level labels based on a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
architecture supervised at the sentence-level only.
A dedicated attention module was integrated for
building sentence representations, with its atten-
tion weights also acting as token-level importance
scores. The architecture was found to outperform a
gradient-based approach on the tasks of zero-shot
sequence labeling for error detection, uncertainty
detection, and sentiment analysis.

In order to obtain a single raw attention value ẽi
for each token, biLSTM output vectors were passed
through a feedforward layer:

ei = tanh(Wehi + be) ẽi =Wẽei + bẽ (1)

where ei is the attention vector for token ti; hi
is the biLSTM output for ti; and ẽi is the single
raw attention value. We, be, Wẽ, bẽ are trainable
parameters.

Instead of softmax or sparsemax (Martins and
Astudillo, 2016), which would restrict the distribu-
tion of the scores, a soft attention based on sigmoid
activation was used to obtain importance scores:

ãi = σ(ẽi) ai =
ãi∑N
k=1 ãk

(2)

where N is the number of tokens and σ is the logis-
tic function. ãi shows the importance of a particular
token and is in the range 0 ≤ ãi ≤ 1, independent
of any other scores in the sentence; therefore, it
can be directly used for sequence labeling with a
natural threshold of 0.5. ai contains the same in-
formation but is normalized to sum up to 1 over
the whole sentence, making it suitable for attention
weights when building the sentence representation.

https://github.com/bujol12/bert-seq-interpretability
https://github.com/bujol12/bert-seq-interpretability
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As ai and ãi are directly tied, training the former
through the sentence classification objective will
also train the latter for the sequence labeling task.

The attention values were then used to obtain the
sentence representation c by acting as weights for
the biLSTM token outputs:

c =
N∑
i=0

aihi (3)

Finally, the sentence representation c was passed
through the final feedforward layer, followed by
a sigmoid to obtain the predicted score y for the
sentence:

d = tanh(Wdc+ bd) y = σ(Wyd+ by) (4)

where d is the sentence vector, c is the sentence
representation, and y is the sentence prediction
score. Wd, bd, Wy, by are all trainable parameters.

We adapt this approach to the transformer mod-
els by attaching a separate soft attention module on
top of the token-level output representations. This
effectively ignores the CLS token, which is com-
monly used for sentence classification, and instead
builds a new sentence representation from the to-
ken representations, which replace the previously
used biLSTM outputs:

ei = tanh(WeTi + be) c =

N∑
i=0

aiTi (5)

where Ti is the contextualized embedding for token
ti. A diagram of the model architecture is included
in Appendix F.

Commonly used tokenizers for transformer mod-
els split words into subwords, while sequence la-
beling datasets are annotated at the word level. We
find that taking the maximum attention value over
all the subwords as the word-level importance score
produces good results on the development sets.
For a word wi split into tokens [tj , ..., tm], where
j,m ∈ [1, N ], the resulting final word importance
score ri is then given by:

ri = max({ãj , ãj+1, ..., ãm}) (6)

During training, we optimize sentence-level bi-
nary cross-entropy as the main objective function:

L1 =

∑
j CrossEntropy(y

(j), ỹ(j))

|y|
(7)

where y(j) and ỹ(j) are the predicted sentence clas-
sification logits and the gold label for the jth sen-
tence respectively. We also adopt the additional
loss functions from Rei and Søgaard (2018), which
encourage the attention weights to behave more
like token-level classifiers:

L2 =

∑
j(minj(ãi)− 0)2

|y|
(8)

L3 =

∑
j(maxj(ãi)− ỹ(j))2

|y|
(9)

Eq. 8 optimizes the minimum unnormalized atten-
tion to be 0 and therefore incentivizes the model
to only focus on some, but not all words; Eq. 9
ensures that some attention weights are close to
1 if the overall sentence is classified as positive.
We then jointly optimize these three loss functions
using a hyperparameter γ: L = L1 + γ(L2 + L3).

2.4 Weighted soft attention
Our experiments show that, when combined
with transformer-based models, the soft attention
method tends to spread out the attention too widely.
Instead of focusing on specific important words,
the model broadly attends to the whole sentence.
Figures 3 and 4 in Appendix A present examples
demonstrating such behaviour. As transformers
contain several layers of attention, with multiple
heads in each layer, the information in the sentence
gets distributed across all tokens before it reaches
the soft attention module at the top.

To improve this behaviour and incentivize the
model to direct information through a smaller and
more focused set of tokens, we experiment with a
weighted soft attention:

ai =
ãβi∑N
k=1 ã

β
k

(10)

where β is a hyperparamete and where values β >
1 make the weight distribution sharper, allowing
the model to focus on a smaller number of tokens.
We experiment with values of β ∈ {1, 2, 3, 4} on
the development sets and find β = 2 to signifi-
cantly improve token labeling performance without
negatively affecting sentence classification results.

3 Datasets

We investigate the performance of these methods
as zero-shot sequence labelers using three differ-
ent datasets. Gold token-level annotation in these
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FCE BEA 2019 CoNLL 2010
Sent F1 F1 MAP Sent F1 F1 MAP Sent F1 F1 MAP

Random baseline - 23.19 33.95 - 16.73 27.01 - 1.63 14.15
RoBERTa 84.51 - - 83.66 - - 86.66 - -

Rei and Søgaard (2018) 84.75 28.73 48.56 81.27 18.53 31.69 84.16 72.42 87.82
LIME 84.51 24.60 37.90 83.66 2.09 31.41 86.66 57.14 78.44

Attention heads 84.51 24.34 48.04 83.66 19.69 40.55 86.66 25.64 79.82
Soft attention 85.62 32.16 48.90 83.41 22.92 35.79 86.25 8.45 20.04

Weighted soft attention 85.62 33.31 53.91 83.68 24.35 41.07 87.20 67.28 91.18

Table 1: Results on FCE, BEA 2019 and CoNLL 2010. Sent F1 refers to F-measure on the sentence classification
task; F1 refers to token-level classification performance; MAP is the token-level Mean Average Precision.

datasets is used for evaluation; however, the models
are trained using sentence-level labels only.

The CoNLL 2010 shared task (Farkas et al.,
2010)2 focuses on the detection of uncertainty cues
in natural language text. The dataset contains
19, 542 examples with both sentence-level uncer-
tainty labels and annotated keywords indicating
uncertainty. We use the train/test data from the task
and randomly choose 10% of the training set for
development.

We also evaluate on the task of grammatical er-
ror detection (GED) – identifying which sentences
are grammatically incorrect (i.e., contain at least
one grammatical error). The First Certificate in
English dataset FCE (Yannakoudakis et al., 2011)
consists of essays written by non-native learners of
English, annotated for grammatical errors. We use
the train/dev/test splits released by Rei and Yan-
nakoudakis (2016) for sequence labeling, with a
total of 33, 673 sentences.

In addition, we evaluate on the Write & Im-
prove (Yannakoudakis et al., 2018) and LOCNESS
(Granger, 1998) GED dataset3 (38, 692 sentences)
released as part of the BEA 2019 shared task
(Bryant et al., 2019). It contains English essays
written in response to varied topics and by English
learners from different proficiency levels, as well
as native English speakers. As the gold test set
labels are not publicly available, we evaluate on the
released development set and use 10% of the train-
ing data for tuning4. For both GED datasets, we
train the model to detect grammatically incorrect
sentences and evaluate how well the methods can
identify individual tokens that have been annotated
as errors.

2https://rgai.sed.hu/node/118
3https://www.cl.cam.ac.uk/research/nl/

bea2019st/
4https://github.com/bujol12/

bert-seq-interpretability/blob/master/
dev_indices_train_ABC.txt

4 Experimental setup

We use the pre-trained RoBERTa-base (Liu et al.,
2019) model, made available by HuggingFace
(Wolf et al., 2020), as our transformer architec-
ture. Following Mosbach et al. (2021), transformer
models are fine-tuned for 20 epochs, and the best
performing checkpoint is then chosen based on
sentence-level performance on the development set.
Each experiment is repeated with 5 different ran-
dom seeds and the averaged results are reported.
The average duration of training on Nvidia GeForce
RTX 2080Ti was 1 hour. Significance testing is per-
formed with a two-tailed paired t-test and a = 0.05.
Hyperparameteres are tuned on the development
set and presented in Appendices B and C.

The LIME and attention head methods provide
only a score without a natural decision bound-
ary for classification. Therefore, we choose their
thresholds based on the token-level F1-score on
the development set. In contrast, the soft attention
and weighted soft attention methods do not require
such additional tuning that uses token-level labels.

5 Results

The results are presented in Table 1. Each model is
trained as a sentence classifier and then evaluated
as a token labeler. The challenge of the zero-shot
sequence-labeling setting lies in the fact that the
models are trained without utilizing any gold token-
level signal; nevertheless, some methods perform
considerably better than others. For reference, we
also include a random baseline, which samples
token-level scores from the standard uniform distri-
bution; a RoBERTa model supervised as a sentence
classifier only; and the model from Rei and Søgaard
(2018) based on BiLSTMs.

We report the F1-measure on the token level
along with Mean Average Precision (MAP) for re-
turning positive tokens. The MAP metric views the
task as a ranking problem and therefore removes

https://rgai.sed.hu/node/118
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://github.com/bujol12/bert-seq-interpretability/blob/master/dev_indices_train_ABC.txt
https://github.com/bujol12/bert-seq-interpretability/blob/master/dev_indices_train_ABC.txt
https://github.com/bujol12/bert-seq-interpretability/blob/master/dev_indices_train_ABC.txt
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Figure 1: Example word-level importance scores ri
(Eq. 6) of different methods applied to an excerpt
from the CoNLL10 dataset. HEAD corresponds to
attention heads; SA to soft attention; and W-SA to
weighted soft attention. We can observe how W-SA
is the only method that correctly assigns substantially
higher weights to the ‘may’ and ‘seems’ uncertainty
cues.

the dependence on specific classification thresholds.
In addition, we report the F1-measure on the main
sentence-level task to ensure the proposed methods
do not have adverse effects on sentence classifica-
tion performance. Precision and recall values are
included in Appendix E.

LIME has relatively low performance on FCE
and BEA 2019, while it achieves somewhat higher
results on CoNLL 2010. Comparing the MAP
scores, the attention head method performs sub-
stantially better, especially considering that it is
much more lightweight and requires no additional
computation. Nevertheless, both of these methods
rely on using some annotated examples to tune
their classification threshold, which precludes their
application in a truly zero-shot setting.

Combining the soft attention mechanism with
the transformer architecture provides some im-
provements over the previous methods, while also
improving over Rei and Søgaard (2018). A notable
exception is the CoNLL 2010 dataset where this
method achieves only 8% F1 and 20% MAP. Error
analysis revealed that this is due to the transformer
representations spreading attention scores evenly
between a large number of tokens, as observed in
Figure 1. Uncertainty cues in CoNLL 2010 can
span across whole sentences (e.g., ‘Either ... or

...’), with such examples encouraging the model to
distribute information even further.

The weighted soft attention modification ad-
dresses this issue and considerably improves perfor-
mance across all metrics on all datasets. Compared
to the non-weighted version of the soft attention
method, applying the extra weights leads to a sig-
nificant improvement in terms of MAP, with a mini-
mum of 5.01% absolute gain on FCE. The improve-
ments are also statistically significant compared to
the current state of the art (Rei and Søgaard, 2018):
5.35% absolute improvement on FCE; 9.38% on
BEA 2019; and 3.36% on CoNLL 2010. While
the F1 on CoNLL 2010 is slightly lower, the MAP
score is higher, indicating that the model has dif-
ficulty finding an optimal decision boundary, but
nevertheless provides a better ranking. In future
work, the weighted soft attention method for trans-
formers could potentially be combined with token
supervision in order to train robust multi-level mod-
els (Barrett et al., 2018; Rei and Søgaard, 2019).

6 Conclusion

We investigated methods for inferring token-
level predictions from transformer models trained
only on sentence-level annotations. Experiments
showed that previous approaches designed for
LSTM architectures do not perform as well when
applied to transformers. As transformer models
already contain multiple layers of multi-head at-
tention, the input representations get distributed
between many tokens, making it more difficult to
identify the importance of each individual token.
LIME was not able to accurately identify target
tokens, while the soft attention method primarily
assigned equal attention scores across most words
in a sentence. Directly using the scores from the
existing attention heads performed better than ex-
pected, but required some annotated data for tuning
the decision threshold. Modifying the soft attention
module with an explicit sharpness constraint on
the weights was found to encourage more distinct
predictions, significantly improving token-level re-
sults.
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A Example word-level predictions

We present samples of word-level predictions
(word-level importance scores ri, Eq. 6) to illus-
trate differences between methods. In the figures
that follow, HEAD refers to attention heads, SA to
soft attention, and W-SA to weighted soft attention.

Figure 2: CoNLL 2010 negative sentence (without un-
certainty cues). We can clearly see that most methods
correctly put weights close to 0 for all words, except
from HEAD, which focuses on ‘shown’ and ‘.’. We
surmise this is due to the fact that, for HEAD, weights
over the whole sentence have to sum up to 1.

Figure 3: CoNLL 2010 positive sentence (with uncer-
tainty cues). We can observe that HEAD correctly iden-
tifies both of the uncertainty cues: ‘may’ and ‘seems’;
however the weight for ‘may’ is quite low. Similarly,
LIME identifies both tokens, but the weight for ‘seems’
is particularly low (lower than for ‘to’). SA simply as-
signs high weights to all words. W-SA focuses primar-
ily on the two uncertainty cue words; however, it also
incorrectly focuses on ‘not’.
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Figure 4: FCE positive sentence (contains grammatical
errors). We can see that both LIME and HEAD strug-
gle to assign informative and/or useful weights to the
words. All SA weights are relatively high, with small
variations in value. We can see that squaring (W-SA)
leads to more well-defined weights over the whole sen-
tence, with high weights mainly observed in the second
part of the sentence, which is the one that contains in-
correct words. However, on this dataset, even W-SA
struggles to correctly identify which words precisely
are incorrect.

B Hyperparameters

Name Value
γ 0.1
max seq length 128
per device train batch size 16
per device eval batch size 64
warmup ratio 0.1
learning rate 2e-5
weight decay 0.1
adam epsilon 1e-7
hidden layer dropout 0.1
soft attention layer size 100
soft attention hidden size 300
initializer glorot

Table 2: Model hyperparameters.

C Word-level prediction thresholds

Dataset Method Threshold
CoNLL 2010 LIME 0.200

Random baseline 0.500
Attention heads 0.320

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500
FCE LIME 0.001

Random baseline 0.500
Attention heads 0.080

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500
BEA 2019 LIME 0.010

Random baseline 0.500
Attention heads 0.080

Rei and Søgaard (2018) 0.500
Soft attention 0.500

Weighted soft attention 0.500

Table 3: Word-level thresholds above which a word is
classified as positive.

D Validation set results

Dataset Method Sent F1

CoNLL 2010 LIME 91.77
RoBERTa 91.77

Attention heads 91.77
Soft attention 92.12

Weighted soft attention 91.82
FCE LIME 84.49

RoBERTa 84.49
Attention heads 84.49
Soft attention 84.82

Weighted soft attention 85.56
BEA 2019 LIME 83.65

RoBERTa 83.65
Attention heads 83.65
Soft attention 83.47

Weighted soft attention 83.64

Table 4: Mean sentence-level F1 score on the develop-
ment set, averaged over 5 runs.
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E Full test set results

FCE
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 84.51 84.25 84.93

Rei and Søgaard (2018) 84.75 - -
LIME 84.51 84.25 84.93

Attention heads 84.51 84.25 84.93
Soft attention 85.62 86.92 84.42

Weighted soft attention 85.62 86.88 84.45

Table 5: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

BEA 2019
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 83.66 82.29 85.15

Rei and Søgaard (2018) 81.27 - -
LIME 83.66 82.29 85.15

Attention heads 83.66 82.29 85.15
Soft attention 83.41 81.47 85.54

Weighted soft attention 83.68 79.95 87.91

Table 6: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

CoNLL 2010
Sent F1 Sent P Sent R

Random baseline - - -
RoBERTa 86.66 84.90 88.63

Rei and Søgaard (2018) 84.16 - -
LIME 86.66 84.90 88.63

Attention heads 86.66 84.90 88.63
Soft attention 86.25 85.75 86.89

Weighted soft attention 87.20 89.17 85.37

Table 7: Sentence-level results: P, R and F1 refer to
Precision, Recall and F-measure respectively on the
positive class.

FCE
P R F1 MAP

Random baseline 15.11 49.81 23.19 33.95
RoBERTa - - - -

Rei and Søgaard (2018) 29.16 29.04 28.73 48.56
LIME 19.06 34.70 24.60 37.90

Attention heads 26.67 22.38 24.34 48.04
Soft attention 19.84 85.38 32.16 48.90

Weighted soft attention 20.76 85.36 33.31 53.91

Table 8: Token-level results: P, R and F1 refer to Preci-
sion, Recall and F-measure respectively on the positive
class. MAP is the Mean Average Precision at the token-
level.

BEA 2019
P R F1 MAP

Random baseline 10.05 50.00 16.73 27.01
RoBERTa - - - -

Rei and Søgaard (2018) 10.93 61.63 18.53 31.69
LIME 13.49 1.13 2.09 31.41

Attention heads 18.48 21.07 19.69 40.55
Soft attention 13.20 87.19 22.92 35.79

Weighted soft attention 14.20 85.49 24.35 41.07

Table 9: Token-level results: P, R and F1 refer to Preci-
sion, Recall and F-measure respectively on the positive
class. MAP is the Mean Average Precision at the token-
level.

CoNLL 2010
P R F1 MAP

Random baseline 0.83 49.70 1.63 14.15
RoBERTa - - - -

Rei and Søgaard (2018) 78.99 67.06 72.42 87.82
LIME 63.25 52.11 57.14 78.44

Attention heads 22.33 30.11 25.64 79.82
Soft attention 4.48 86.14 8.45 20.04

Weighted soft attention 58.80 78.89 67.28 91.18

Table 10: Token-level results: P, R and F1 refer to Pre-
cision, Recall and F-measure respectively on the posi-
tive class. MAP is the Mean Average Precision at the
token-level.
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F Weighted soft attention architecture

Figure 5: Architecture of our proposed weighted soft attention model. [t1, t2, ..., tn] represent the tokenized input
sentence, while [T1, T2, ..., Tn] are the resulting contextual embeddings. [e1, e2, ..., en] are attention vectors, and
[a1, a2, ..., an] are normalized attention weights. d represents the output vector and y the final output logits.


