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Abstract

Character-aware neural language models can
capture the relationship between words by ex-
ploiting character-level information and are
particularly effective for languages with rich
morphology. However, these models are usu-
ally biased towards information from surface
forms. To alleviate this problem, we pro-
pose a simple and effective method to improve
a character-aware neural language model by
forcing a character encoder to produce word-
based embeddings under Skip-gram architec-
ture in a warm-up step without extra train-
ing data. We empirically show that the re-
sulting character-aware neural language model
achieves obvious improvements of perplexity
scores on typologically diverse languages, that
contain many low-frequency or unseen words.

1 Introduction

Neural language models (NLM) usually maintain
a fixed vocabulary and map each word to a contin-
uous representation. These models cannot handle
new words and are not effective for languages with
rich morphology. One solution is to use smaller
units, such as bytes, characters, or word pieces
learned from word tokens (Wu et al., 2016; Sen-
nrich et al., 2016). However, this approach has
to process longer sequences than word-level alter-
natives and may increase modeling and computa-
tional challenges (Cherry et al., 2018). This pa-
per focuses on another way based on word-level
models in which a character encoder is used on
top of characters of each word to calculate the
word representation. They are often referred to
as character-aware NLMs (CNLMs) (Ling et al.,
2015; Kim et al., 2016; Vania and Lopez, 2017;
Gerz et al., 2018; Assylbekov and Takhanov, 2018;
Feng et al., 2019). However, the character encoders
in CNLMs often show over-representation of or-
thography rather than semantic meaning in the re-

sulting word embedding despite the fact that train-
ing word-based NLMs usually helps learn such
semantic meaning (Kim et al., 2016; Vania and
Lopez, 2017; Assylbekov and Takhanov, 2018).
For example, in CNLMs, the nearest neighbors of
the word ‘his’ with cosine similarity are ‘hhs’ and
‘this’ while ‘my’ is far from the nearest neighbors.

To alleviate the over-representation issue in
CNLMs, we propose to directly force the charac-
ter encoder to produce the word-based embedding
in a warm-up step before the training of CNLMs
starts. Specifically, the character encoder encodes
an input word, and the encoded embedding will
be forced to be close to the embeddings of its sur-
rounding words and far from the word embeddings
of negative samples. Unlike the dynamically con-
structed embedding of the input word, the embed-
dings of surrounding words and negative samples
are word-based, and thus these embeddings will not
be biased to surface forms. The above method is
similar to the architecture of the Skip-gram model
(Mikolov et al., 2013) with the difference that we
use a complex character encoder which is shown to
be powerful for languages with rich morphology.

In our experiments1, we choose the widely used
long-short term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and the recent state-of-the-
art AWD-LSTM-LM (Merity et al., 2018) for lan-
guage modeling. For the character encoder, we
experiment with bidirectional LSTM (BiLSTM)
over character trigrams as this variant has shown
better performance than other character encoders
on 10 languages (Vania and Lopez, 2017). We
evaluate our method in two types of datasets. One
contains 14 typologically diverse languages with a
large number of low-frequency words and unseen
words in the test set. Thus, we can test our method
in a real LM setup. Another one contains 5 lan-

1Our code can be obtained from https://github.
com/yukunfeng/warmup_char_lm

https://github.com/yukunfeng/warmup_char_lm
https://github.com/yukunfeng/warmup_char_lm
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guages, where the new words in the test set have
been replaced to <UNK>. It is commonly used
for evaluating CNLMs in this field.

Our experiments empirically show our method
can achieve obviously improved perplexity scores
on a wide range of languages. Finally, we analyze
the learned word embedding with our character
encoder on English word similarity tasks.

2 Related Work

A lot of work has tried to improve CNLMs in
recent years, such as analyzing performance of
CNLMs with different character encoders and char-
acter units (Vania and Lopez, 2017), reusing sub-
word embeddings in CNLMs (Assylbekov and
Takhanov, 2018), injecting subword-level informa-
tion into softmax (Gerz et al., 2018), and com-
bining word- and character-level information in
CNLMs (Miyamoto and Cho, 2016; Verwimp et al.,
2017; Kang et al., 2011; Feng et al., 2019).

As for alleviating the over-representation issue
mentioned above, Kim et al. (2016) used a high-
way network on top of their character encoder and
found their highway network can encode seman-
tic features that are not discernible from orthog-
raphy alone. Assylbekov and Takhanov (2018)
used syllables and morphemes in a word to con-
struct word embeddings and showed syllable- or
morpheme-based CNLMs are less biased towards
surface forms than a standard CNLM. However,
this approach relies on extra toolkits to extract syl-
lables or morphemes. To our knowledge, there is
not much work particularly paying attention to this
issue in CNLMs. It is discussed only in a section
in the above mentioned work, and the experiment
is limited to several languages. Furthermore, the
analysis of character encoders is done by manually
selecting several words with their nearest neigh-
bors based on cosine similarity, while we formally
verify that the character encoder captures more se-
mantic features on 5 English word similarity tasks.
Our method is simple and different from the high-
way network used by Kim et al. (2016). We do not
need to change the existing architecture of CNLMs.

Another related work to ours is word represen-
tation learning as we utilize the Skip-gram archi-
tecture. One goal of this field is to learn word
embeddings on large-scale corpus and use them
on downstream tasks, which is different from ours.
Our method works without extra training data, and
we do not aim at transfer learning with other train-

ing data like a standard Skip-gram model.

3 Model Description

The whole architecture is shown in Figure 1. We
use BiLSTM over character trigrams as our char-
acter encoder since this variant performed best on
most datasets (Vania and Lopez, 2017). Given a
word wt, we denote its embedding as xt ∈ Rd,
where d is the embedding size. We compute the
representation of wt in BiLSTM as follows:

xt = Wfh
fw +Wbh

bw + b, (1)

where hfw, hbw ∈ Rd are the last states of the
forward and backward LSTMs, respectively. Wf ,
Wb ∈ Rd×d and b ∈ Rd are trainable parameters.

We adopt the basic architecture of Skip-gram
model for warming up our character encoder.
Given an input word wt which will be encoded
by our character encoder, we then use the encoded
embedding to predict a set of output words that
surround the input word in a given window. For
example, when the window size is 2, the output
words are wt−2, wt−1, wt+1, wt+2. We use ot to
denote the embedding of an output word for wt.
The input word embedding xt of wt is computed
with Eq. 1. Note that ot is word-based and thus
will be not biased to its surface form, which is dif-
ferent from xt. Given a single training example
(wt, wt+j), we maximize the objective function:

logσ(xT
t ot+j) +

k∑
i=1

logσ(−xT
t ot+i), (2)

where k is the size of the negative samples, and σ
is the sigmoid function.

After warming up, we use the trained character
encoder to initialize the one in our CNLM and then
train our CNLM with a standard LM loss.

4 Experiments

4.1 Datasets
We can find common language modeling datasets
for evaluating CNLMs in the work of Botha and
Blunsom (2014). While these datasets contain
languages with rich morphology, they have only
5 different languages. The most large-scale lan-
guage modeling datasets are from the work of Gerz
et al. (2018), who released 50 language modeling
datasets covering typologically diverse languages.
The difference of the newly released datasets from
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Figure 1: Our character-aware language model with Skip-gram architecture for warming up to avoid being too
biased to surface forms for the character encoder. The example sentence is “these cats are cute” with “cats” as the
current input word.

the previously common datasets is that many un-
seen words are kept in the test set. Thus, on the
datasets, we can test our methods in a real LM
setup. These languages were selected to represent
a wide spectrum of different morphological sys-
tems and have a large number of low-frequency or
unseen words. Thus, these datasets are desirable
for checking the performance of CNLMs. Due to
the large number of experiments, we chose datasets
of only 14 languages from these datasets and tried
to cover different language typologies as well as
different type/token ratios (TTRs). The statistics of
our chosen datasets are shown in Table 1.

To compare with other models, we also set
up above mentioned 5 common non-English LM
datasets with rich morphology from the 2013
ACL Workshop on Machine Translation, which
have been commonly used for evaluating CNLMs
(Botha and Blunsom, 2014; Kim et al., 2016; Bo-
janowski et al., 2017; Assylbekov and Takhanov,
2018; Feng et al., 2019). Note that the new words
in the test set have been replaced with special
<UNK>, which is not a practical setting. The
data statistics is in Table 2.

4.2 Models

The hyperparameters of our LSTM language model
are shown in Table 3. The learning rate was
decreased if no improvement is observed in the
validation set. We trained the Skip-gram ar-
chitecture in warm-up step for 7 epochs with
5 negative samples for all datasets. We de-
fine Char-BiLSTM-LSTM as our CNLM, and
Warmed-Char-BiLSTM-LSTM as our CNLM

with a warmed character encoder.
To check our idea with a stronger baseline, we

used the recent state-of-the-art AWD-LSTM-LM
codebase2(Merity et al., 2018). We replaced the
word embedding layer of this model with our BiL-
STM character encoder. We refer to it as Char-
BiLSTM-AWD-LSTM and the warmed one as
Warmed-Char-BiLSTM-AWD-LSTM. Due to time
constraints, we set the training epoch on all datasets
to 200. We refer to the original AWD-LSTM which
is word-level as Word-AWD-LSTM. For the other
parameters, we followed the setting in the source
code. We make sure that all models under our cho-
sen epochs are trained to convergence so that the
gain from our method is not due to longer training
in warm-up.

4.3 Results on 14 Languages
The results on 14 languages are shown in Ta-
ble 4. Our Char-BiLSTM-LSTM baseline out-
performs Char-CNN-LSTM from (Gerz et al.,
2018) on all datasets. It is also shown that as
the TTR increases, Char-BiLSTM-AWD-LSTM
achieves a better result than Word-AWD-LSTM.
One reason may be that higher TTR languages
have more low-frequency words and unseen to-
kens, as shown in Table 1. Thus, utilizing char-
acter information is important in these languages.
Our proposed Warmed-Char-BiLSTM-LSTM and
Warmed-Char-BiLSTM-AWD-LSTM achieves fur-
ther obvious improvements compared with Char-
BiLSTM-LSTM and Char-BiLSTM-AWD-LSTM
respectively on most datasets without extra training

2https://github.com/salesforce/
awd-lstm-lm

https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
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Dataset Typology TTR
Train
Vocab

#Train
tokens

#Test
tokens

Freq<=15
(Train)

#Unseen
tokens

zh (Chinese) Isolating 0.06 43672 746K 56.8K 16% 2132
ja (Japanese) Agglutinative 0.06 44863 729K 54.6K 15% 2558
pt (Portuguese) Fusional 0.07 56167 780K 59.3K 17% 2947
en (English) Fusional 0.07 55521 783K 59.5K 17% 3618
es (Spanish) Fusional 0.08 60196 781K 57.2K 18% 3486
he (Hebrew) Introflexive 0.12 83217 717K 54.6K 27% 4855
de (German) Fusional 0.12 80741 682K 51.3K 24% 5451
ar (Arabic) Introflexive 0.12 89089 722K 54.7K 26% 6076
cs (Czech) Fusional 0.14 86783 641K 49.6K 30% 5436
ru (Russian) Fusional 0.15 98097 666K 48.4K 32% 4881
et (Estonian) Agglutinative 0.17 94184 556K 38.6K 34% 4960
fi (Finnish) Agglutinative 0.2 115579 585K 44.8K 38% 7899
ko (Korean) Agglutinative 0.22 143794 648K 50.6K 42% 9745
kn (Kannada) Agglutinative 0.22 94660 434K 29.4K 41% 5214

Table 1: The statistics of our language modeling datasets. TTR represents the type/token ratio.

Vocab size #Train token
Czech (CS) 46K 1M

German (DE) 37K 1M
Spanish (ES) 27K 1M
French (FR) 25K 1M

Russian (RU) 86K 1M

Table 2: The statistics of our 5 language modeling
datasets.

data. This indicates that our method is effective on
typologically diverse languages and for different
CNLMs. In addition to obtaining large improve-
ments, our method does not change the speed of
CNLMs as it adds only one extra warm-up phase.

4.4 Results on 5 Common Datasets

The results on common datasets are shown in Ta-
ble 5. Most work aims at improving CNLMs at
different aspects and the gain comes from differ-
ent new information. For example, the gain of
CNLM from Feng et al. (2019) comes from inject-
ing word-level information into CNLM, and As-
sylbekov and Takhanov (2018) improved CNLMs
by using morphemes and reusing weights. Bo-
janowski et al. (2017) used conventional word-
level LSTM-LM instead of CNLM, and their goal
is not to improve CNLMs. The gain from their
model comes from transferring word embeddings
learned through Skip-gram that considers character-
level information to word-level LSTM-LM without
character-level information. That is, their method

Embedding size d 650
LSTM layers 2
LSTM sequence length 35
Param. init: rand uniform
Dropout 0.5
Epochs 40
Optimizer SGD
Learning rate 20
Learning rate decay 4
Gradient clipping 0.25
Batch size 20

Table 3: Hyperparameters of our model. We use d for
the size of the character/word embeddings and for the
number of hidden units of LSTM and Bi-LSTM.

used new information for their LSTM-LM while
in our method there is no extra new information.
As shown in Table 5, our baseline model is strong
compared with most models, and our method can
further improve it without extra new information.

5 Analysis

5.1 Analysis of Character Encoder

Unlike prior work which analyzes their character
encoder by manually selecting several words and
their nearest neighbors based on cosine similarity,
we formally verify whether our method helps the
character encoder capture more semantic features
on English word similarity tasks. We chose the
English dataset ‘en’ shown in Table 1 as our train-
ing set. Specifically, after finishing the training of
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Dataset zh ja pt en es he de ar cs ru et fi ko kn
TTR 0.06 0.06 0.07 0.07 0.08 0.12 0.12 0.12 0.14 0.15 0.17 0.2 0.22 0.22

Char-CNN-LSTM
(Gerz et al., 2018)

797 136 214 371 275 1519 602 1659 1252 812 1478 2236 4778 2558

Char-BiLSTM-LSTM 578 107 178 302 230 1170 483 1337 973 620 967 1648 3247 1543
Warmed-Char-
BiLSTM-LSTM

480 99 162 278 208 1005 439 1158 843 503 877 1435 2472 1314

Word-AWD-LSTM 481 98 165 289 234 1351 575 1424 1140 760 1359 2116 3909 2308
Char-BiLSTM-AWD-LSTM 497 99 156 263 205 1042 464 1062 743 499 805 1262 2472 1724
Warmed-Char-BiLSTM-
AWD-LSTM

414 87 136 236 183 878 408 971 718 485 768 1278 2082 1271

Table 4: Perplexity results for our models and several baselines.

CS DE ES FR RU

MLBL (Botha and Blunsom, 2014) 465 296 200 225 304
MorphSum (Kim et al., 2016) 398 263 177 196 271
CharCNN (Kim et al., 2016) 371 239 165 184 261
SkipGram initialization (Bojanowski et al., 2017) 312 206 145 159 206
MorphSum+RE+RW (Assylbekov and Takhanov, 2018) 338 222 157 172 210
Word-Char-LSTM (Feng et al., 2019) 287 192 135 152 201

Char-BiLSTM-LSTM 311 198 144 164 223
Warmed-Char-BiLSTM-LSTM 290 190 134 150 203

Table 5: Perplexity of our models and previous work.

our CNLMs on the ‘en’ dataset, we fed all the test
words in the word similarity tasks into the charac-
ter encoder with and without warm-up, to obtain
word representations for these test words. Then,
we evaluated the quality of these representations
by computing the Spearman’s rank correlation co-
efficient (Spearman, 1904). We chose MEN (Bruni
et al., 2012), MTurk287 (Radinsky et al., 2011),
RW (Luong et al., 2013), MTurk771 (Halawi et al.,
2012) and WS353 (Finkelstein et al., 2002) as our
datasets. The results are shown in Table 6. The
warm up helps the character encoder better capture
semantic relationships between word pairs. Note
that the results on these word similarity tasks in
our paper are not comparable to the ones for recent
models that are designed to directly learn word rep-
resentations instead of being trained on a language
modeling task and that are usually trained with a
large corpus. Our models are for the language mod-
eling task and are trained on ‘en’, which is a small
dataset.

5.2 Analysis of Targeted Perplexity

We measured the perplexity for frequent and rare
words in the test data separately to show that our
method is beneficial for frequent and rare words.

#Word
pairs

Char-
BiLSTM-
LSTM

Warmed-
Char-BiLSTM-
LSTM

MEN 3000 10.55 12.52
MTurk287 287 24.47 26.84
MTurk771 771 3.06 8.59
RW 2034 17.30 18.85
WS353 353 15.17 18.54

Table 6: Results on word similarity datasets.

For example, we calculated the perplexity of the
next word, when a rare word, whose frequency is
less than 15, is given as the current word. A sim-
ilar analysis on language models can be found in
Vania and Lopez (2017). For simplicity, we only
choose the English dataset ‘en’ and the German
dataset ‘de’. To fairly compare with Word-LSTM,
our analysis does not contain new words in the test
data. As we see in Table 7, Char-BiLSTM-LSTM
mainly obtained improvements on rare word group
compared with Word-LSTM. When warmed up,
Char-BiLSTM-LSTM obtained further improve-
ments both on frequent and rare word groups. Note
that the reason of the gain is not that the warm
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up increases the training epochs of CNLMs as our
CNLMs have already been trained to convergence
on all datasets.

Freq. Rare All

Word-LSTM
en

299 417 314
Char-BiLSTM-LSTM 292 245 285
Warmed-Char-BiLSTM-LSTM 267 225 261

Word-LSTM
de

541 617 554
Char-BiLSTM-LSTM 524 353 487
Warmed-Char-BiLSTM-LSTM 491 333 457

Table 7: Targeted perplexity results of our CNLMs.

6 Conclusion

In this paper, we proposed to warm up a charac-
ter encoder of a character-aware neural language
model under the Skip-gram architecture to capture
better semantic relationships between word pairs.
Our method is simple and effective. It was tested on
a standard character-aware neural language model
and a recent state-of-the-art model. The results
showed that our method is effective on typologi-
cally diverse language datasets. For future work,
we plan to extend our method to Transformer-based
language models and investigate how our model
works for other tasks such as text generation.
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