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Abstract

This paper presents an active learning ap-
proach that aims to reduce the human effort
required during the annotation of natural lan-
guage corpora composed of entities and se-
mantic relations. Our approach assists hu-
man annotators by intelligently selecting the
most informative sentences to annotate and
then pre-annotating them with a few highly ac-
curate entities and semantic relations. We de-
fine an uncertainty-based query strategy with
a weighted density factor, using similarity met-
rics based on sentence embeddings. As a case
study, we evaluate our approach via simulation
in a biomedical corpus and estimate the poten-
tial reduction in total annotation time. Experi-
mental results suggest that the query strategy
reduces by between 35% and 40% the num-
ber of sentences that must be manually anno-
tated to develop systems able to reach a tar-
get F1 score, while the pre-annotation strat-
egy produces an additional 24% reduction in
the total annotation time. Overall, our prelimi-
nary experiments suggest that as much as 60%
of the annotation time could be saved while
producing corpora that have the same useful-
ness for training machine learning algorithms.
An open-source computational tool that im-
plements the aforementioned strategies is pre-
sented and published online for the research
community.

1 Introduction

Machine learning, and specifically supervised
learning, is one of the most effective tools for au-
tomating complex cognitive tasks, such as recognis-
ing objects in images or understanding natural lan-
guage text. One of the main bottlenecks of super-
vised learning is the need for high-quality datasets
of labelled samples on which statistical models

can be trained. These datasets are usually built by
human experts in a lengthy and costly manual pro-
cess. Active learning (Cohn, 2010) is an alternative
paradigm to conventional supervised learning that
has been proposed to reduce the costs involved in
manual annotation .

The key idea underlying active learning is that
a learning algorithm can perform better with less
training examples if it is allowed to actively se-
lect which examples to learn from (Settles, 2009).
In the supervised learning context, this paradigm
changes the role of the human expert. In conven-
tional supervised learning contexts, the human ex-
pert guides the learning process by providing a
large dataset of labelled examples. However, in
active learning the active role is shifted to the al-
gorithm and the human expert becomes an oracle,
participating in a labelling-training-query loop. In
the active paradigm, a model is incrementally built
by training on a partial collection of samples and
then selecting one or more unlabelled samples to
query the human oracle for labels and increase
the training set. This approach introduces the new
problem of how to best select the query samples
so as to maximise the model’s performance while
minimising the effort of the human participant.

The simplest active learning scenario consists of
the classification of independent elements xi drawn
from a pool of unlabelled samples. Examples range
from image classification (Gal et al., 2017) to sen-
timent mining (Kranjc et al., 2015), in which the
minimal level of sampling (e.g., an image or text
document) corresponds to the minimal level of deci-
sion. i.e, a single label is assigned to each xi. More
complex scenarios arise when the decision level is
more fine-grained than the sampling level. In the
domain of text mining, an interesting scenario is the
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task of entity and relation extraction from natural
language text (Zhang et al., 2012). In this scenario
the sampling level is a sentence, but the minimal
level of decision involves each token or pair of
tokens in the sentence, and furthermore, these de-
cisions are in general not independent within the
same sentence. In this case, it is not trivial to es-
timate how informative an unlabelled sample will
be, since each sample has several sources of uncer-
tainty.

This research focuses on the tasks of entity and
relation extraction, proposing an active learning
strategy to reduce the overall time of annotation for
human experts, by actively selecting the most in-
formative sentences to annotate. We also consider
the problem of providing some instances of entities
and relations pre-annotated to further reduce the
annotation time for the human, while minimising
the number of erroneous suggestions. In contrast
with the usual formulation, we focus on the prob-
lem of obtaining the corpus per-se, and the task of
training the underlying machine learning models
is considered as means to an end rather than as the
primary objective.

The contributions of this research can be sum-
marised as follows:

• We present an active learning strategy for
the problem of entity and relation extraction
from natural language text that greatly re-
duces the annotation time for human experts
by actively selecting the most informative sen-
tences and providing pre-annotated sugges-
tions when possible.

• We propose an informativeness measure for
entity and relation extraction that factors in
the uncertainty of annotations in a sentence
counter-balanced by its similarity to the la-
belled set.

• We evaluate our proposal in an experimental
corpus in the biomedical domain, and study
the impact of the query strategy and the bene-
fit of providing pre-annotated suggestions, in
terms of reducing the overall time of annota-
tion.

• As a tangible result, we provide the
source code for a prototype annotation
tool that implements the aforementioned
strategies and is compatible with the
BRAT annotation tool, available online

under an open-source license (https:
//github.com/knowledge-learning/

assisted-annotation).

The remaining sections of this paper are organ-
ised as follows. Section 2 reviews the most relevant
research related with active learning in general and
specifically for entity and relation extraction. Sec-
tion 3 presents the formal definition for our active
learning approach. Section 4 describes a computa-
tional prototype tool that implements this strategy.
Section 5 evaluates our proposal in the context of
a corpus of entities and relations in the biomedi-
cal domain. Section 6 presents a discussion of the
most relevant insights that our research provides.
Finally, Section 7 presents the main conclusions of
our research.

2 Related Works

This section reviews some of the most relevant re-
search related with active learning in general, and
specifically focused on entity detection and rela-
tion extraction. One of the most important design
decisions in active learning is how to intelligently
select the novel unlabelled samples in the most ef-
ficient way. The underlying assumption is that we
want to train a model to the highest possible perfor-
mance (measured in precision, F1, etc.) while min-
imising the human cost (measured in time, number
of samples manually labelled, or any other suitable
metric). This requirement is often framed as the se-
lection of the most informative unlabelled samples,
and formalised in terms of a query strategy (Set-
tles, 2009). The most common query strategies
for general-purpose active learning can be grouped
into the following categories:

(i) Uncertainty sampling: The most informative
samples are considered those with the highest
degree of uncertainty, given some measure
of uncertainty for each sample (Lewis and
Catlett, 1994).

(ii) Query by committee: The most informative
samples are considered those with the highest
disagreement among a committee of either dif-
ferent models or different hypotheses from the
same underlying model (Seung et al., 1992).

(iii) Expected model change: The most informa-
tive samples are considered those that produce
the highest change in the model’s hypothesis

https://github.com/knowledge-learning/assisted-annotation
https://github.com/knowledge-learning/assisted-annotation
https://github.com/knowledge-learning/assisted-annotation
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if they were included in the training set (Set-
tles et al., 2008).

(iv) Variance and error reduction: The most in-
formative samples are those which produce
the highest reduction in the model’s general-
isation error or, as a proxy, its variance (Roy
and McCallum, 2001).

Expected model change (iii) and variance/error
reduction (iv) strategies are heavily dependent on
the specific learning model used. In contrast, uncer-
tainty sampling (i) and query by committee (ii) are
applicable in general with a high degree of model
agnosticism. Furthermore, relevant subsets of both
strategies can be formalised under a single frame-
work if we define the uncertainty as a measure of
the entropy of the model’s predicted output. In
this framework, query-by-committee can be im-
plemented via weighted voting, thereby assigning
empirical probabilities to the possible outputs.

Weighted density is a complimentary strategy in
which the most informative samples are weighted
by how representative they are of the input space,
for example, by measuring their similarity to the re-
maining samples (Settles and Craven, 2008). This
approach attempts to counter-balance a noticeable
tendency to select outliers as the most informative
samples —a problem associated with other query
strategies— since outliers are often the samples
that create the highest amount of uncertainty, dis-
agreement or hypothesis change.

Recent advances in natural language processing
have produced an increased interest in active learn-
ing to alleviate the requirement for large annotated
corpora (Olsson, 2009; Tchoua et al., 2019). Set-
tles and Craven (2008) compare several strategies
for active learning in sequence labelling scenar-
ios, concluding that query strategies based on mea-
sures of sequence entropy combined with weighted
sampling outperform other variants. Meduri et al.
(2020) propose a comprehensive benchmark to
evaluate different active learning strategies for en-
tity matching. In the task of named entity recogni-
tion, CRF models have been used to select query
samples (Claveau and Kijak, 2017; Lin et al., 2019).
The task of relation extraction also benefits from
active learning approaches, both in general-purpose
settings (Fu and Grishman, 2013) and in domain-
specific settings (Zhang et al., 2012). However,
despite the growing body of research, it is still a
challenge to apply active learning in joint entity

recognition and relation extraction, especially in
scenarios with low resources (Gao et al., 2019).

3 Active Learning Strategy for
Entity-Relation Annotation

This section presents our active learning strategy
for human-in-the-loop annotation of corpora based
on entity recognition and relation extraction. A
high-level overview of the process is illustrated in
Figure 1.

Our active learning strategy is designed for an
arbitrary corpora of independent natural language
sentences, each of which must be annotated by a
human expert at token level. We consider a prede-
fined set E of entity labels, each of which can span
one or more tokens, continuous or discontinuous.
Additionally, there is a predefined setR of binary
relation types between entities, where the possible
relations between each pair of entities can depend
on the entity type, i.e., not all relation types are
defined for all entity labels. There is no sub-token
annotation, and not all tokens need to be anno-
tated. This abstract annotation schema can repre-
sent a broad range of different tasks, from domain-
specific relation extraction (e.g., gene-protein in-
teraction) to general-purpose semantic representa-
tion (e.g., AMR parsing).

The active learning strategy proposed in this
research works iteratively in batches of K sen-
tences (e.g., K = 10). At any point there will
be a labelled pool L with |L| = n×K sentences
that have been manually annotated by a human
annotator, and a large unlabelled pool U of raw
sentences. Initially, the human annotator selects K
representative sentences and performs a full man-
ual annotation (step 0). Afterwards, two machine
learning models are iteratively trained on the man-
ually labelled sentences (step 1) and a metric of
informativeness, I(s), is computed for each sen-
tence s ∈ U (step2). The top K sentences in terms
of I(·) are selected (step 3) and the model pro-
duces a prediction of entity and relation labels for
each one (step 4). Each prediction has an associ-
ated metric of uncertainty, H(·), estimated by the
models. Based on this uncertainty and pre-defined
thresholds ue and ur for entities and relations re-
spectively, all the entities ei (relations rj) with an
estimated uncertainty H(ei) > ue (H(rj) > ur)
are discarded. Finally the selected and partially
annotated sentences are presented to the human an-
notator, who must correct the incorrect annotations
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Figure 1: High-level illustration of the active learning strategy presented in this research for human-in-the-loop
annotation of entity-relation corpora.

and add the missing ones (step 5). The corrected
sentences are incorporated to the labelled pool for
the next iteration (step 6).

The following components for the active learn-
ing strategy need to be specified: a machine learn-
ing model ME that predicts entity labels; a ma-
chine learning model MR that predicts relations;
and, suitable definitions for I(·) and H(·) based
on these machine learning models. We will not de-
fine specific machine learning models at this point,
since different models can be suitable for different
corpora. For our strategy to work, the machine
learning models ME and MR are only required to
provide a probability distribution over the possi-
ble labels rather than a single prediction. This is a
soft restriction that many machine learning models
comply with.

To measure the informativeness I(si) of each
sentence si ∈ U, we define a metric based on un-
certainty sampling with weighted density, inspired
by Settles and Craven (2008).

First, given the set of n entity annotations Ei ∈
En = {ei1, . . . , ein} and m relation annotations
Ri ∈ Rm = {ri1, . . . , rim} predicted for a sen-
tence si, we define the uncertainty of each entity
eik (or relation rik) as the entropy of the probability
distribution for all possible labels for that entity or
relation. Formally:

H(eik) = −
∑
lj∈E

P (eik = lj |si; θ) log2 P (eik = lj |si; θ)

H(rik) = −
∑
lj∈R

P (rik = lj |si; θ) log2 P (rik = lj |si; θ)

Where θ represents the parameters of the machine
learning model used to estimate these probabilities.

We can define the mean uncertainty associated
to the predicted entities and relations, respectively,
as follows:

Ĥ(Ei) =
1

n

∑
ei
k
∈Ei

H(eik) Ĥ(Ri) =
1

m

∑
ri
k
∈Ri

H(rik)

Second, we define an information density metric
ID(si) to estimate how representative each sen-
tence si is with respect to the input space. In a
similar formulation to Settles and Craven (2008),
ID(si) is defined as the average similarity of the
sentence si to the cluster of K labeled sentences:

ID(si) =
1

K

∑
sj∈L∗

i

sim(si, sj)

Where L∗
i is the subset of K labeled sentences

that maximize the similarity metric with respect
to si. Any sensible similarity metric can be used.
In this research we propose the use of Doc2Vec
embeddings (Le and Mikolov, 2014) pre-trained on
the unlabeled set U to estimate sentence similarity.
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Finally, the overall informativeness of an unla-
beled sentence si is estimated based on the uncer-
tainty measures H(·) of each component, weighted
by the information density of the sentence:

I(si) =
[
Ĥ(Ei) + Ĥ(Ri)

]
× ID(si)

β

Where β is a scaling factor to balance exploitation
versus exploration, i.e., decreasing the uncertainty
of the model versus selecting more varied sentences
to reduce model bias.

If we consider the annotation of a sentence as
a stochastic process, where each entity or relation
annotation is a random event, then Ĥ(·) is a finite
approximation of the entropy rate of the annota-
tion process. This provides an intuitive interpre-
tation for the informativeness measure I(·) in the
domain of information theory. The most informa-
tive sentences are those whose entropy rate is max-
imum (weighted by density). Maximum entropy
rate has been successfully applied to feature selec-
tion in other machine learning scenarios (Einicke
et al., 2017).

4 Computational Prototype

The strategy presented in section 3 is implemented
as a web application that can be integrated with the
BRAT annotation tool (Stenetorp et al., 2012). This
application is independent of BRAT and relies only
on the file system to iteratively select batches of
sentences and apply suggestions. The web interface
is simple to use, allowing the user to ask for a new
batch, and decide whether to accept, modify or
discard the annotation suggestions (see Figure 2).
This tool is compatible with any entity and relation
annotation schema that can be represented in BRAT
Standof ANN format (Yepes et al., 2013).

As explained in Section 3, two different machine
learning modelsME andMR must be implemented
to evaluate the informativeness metric I(·). These
models must provide probability estimates for each
label, and should be efficient enough to be trained
in the same time it takes a human annotator to
annotate a single batch, such that the new batch
is always ready. For the previous reasons, we se-
lected two simple machine learning models based
on standard formulations for the problems of entity
recognition and relation extraction respectively.

For entity model ME , we select a conditional
random field (CRF) classification model with syn-
tactic and semantic features extracted with the
spacy library. The extracted features include

coarse and fine-grained part-of-speech tagging,
lemmatization, a standard NER labeling, as well
as indicator variables for several syntactic pat-
terns (e.g., numbers, dates, punctuation, emails,
URLs, etc.). By this means, the entity recognition
problem is framed as a sequence tagging problem
using the BILOUV encoding and Viterbi decoding.
Special hand-crafted rules are designed to account
for multi-word entities with discontinuous word
spans. The uncertainty of each entity H(eik) is esti-
mated by the normalized marginal probabilities of
the CRF model on the token sequence, averaging
the probabilities of the tokens that correspond to
the same entity. Despite its simplicity, this model
achieves an F1 score of 0.78 in the entity extraction
subtask of the eHealth-KD Challenge 2020, which
is competitive with state-of-the-art techniques in
past benchmarks (Piad-Morffis et al., 2019b).

In the case of the relation model MR, this sub-
task is more complex and simple baselines per-
form significantly worse than state-of-the-art mod-
els. However, since complex models cannot be
trained in the required time, we decided to main-
tain a simple baseline. The problem of extracting
all relations in a sentence is modeled as a set of
independent classification problems between all
pairs of entities in the sentence. Each pair is repre-
sented by the same characteristics used in the entity
recognition subtask, applied to both entities under
analysis, plus a bag-of-words encoding of the to-
kens that appear in the smallest dependency subtree
that contains both entities. The uncertainty H(rij)
of each pair is computed from the marginal prob-
abilities provided by a logistic regression model
trained on each pair representation. For the infor-
mation density metric ID(·) an implementation of
Doc2Vec from the gensim library is used.

5 Experiments and Results

To validate the effectiveness of the active learning
strategy proposed in this research we selected a
recent manually annotated corpus of Spanish sen-
tences in the biomedical domain, i.e., the eHealth-
KD 2020 corpus (Piad-Morffis et al., 2020). This
selection was motivated by the relative complex-
ity of the annotation schema proposed in this cor-
pus, which contains different entity and relation
types, multi-word tokens, overlapping annotations
and other characteristics that make it a challenging
annotation process even for human experts (Piad-
Morffis et al., 2019a). The corpus contains a total



221

Figure 2: Screenshot of the web application prototype for semi-automatic corpus annotations integrated with the
BRAT annotation tool. The right panel shows an illustrative selection of annotated sentences in the schema of the
eHealth-KD 2020 corpus (Piad-Morffis et al., 2020), see Section 5.

of 1300 sentences in Spanish, manually annotated
with a general-purpose entity-relation schema. Of
these, a set of 1000 sentences is used as the unla-
beled pool U, and the remaining 300 are used for
testing the final performance of all machine learn-
ing models trained in the experimentation. The
corpus has been split following the authors’ recom-
mendations. Figure 2 shows an illustrative example
of the annotation schema applied to 3 exemplary
English sentences, in the context of the prototype
application developed in this research.

We simulated the assisted annotation process to
evaluate the effect to annotating the corpus using ac-
tive learning strategies versus annotating the corpus
in the original order without suggestions (baseline).
As the process of annotating a corpus is expensive,
it was simulated using the gold annotations in the
training collection. The improvement can be es-
timated by comparing how many sentences need
annotating to reach a specific performance of the
machine learning algorithms (measured in terms of
F1 in the testing collection).

To study the relative impact of the different com-
ponents of our query strategy, we evaluated three
different variants. They consisted of using the full
query strategy proposed in Section 3 with β = 1, as
well as considering only entity uncertainty Ĥ(Ei)
and relation uncertainty Ĥ(Ri) respectively. Fig-
ure 3 shows how the F1 metric improved with each
batch of sentences, for the first 500 sentences. The
target F1 is the final score obtained by training the
models ME and MR on the full 1000 sentences
of the corpus. In general, the curves that corre-
spond to the active learning strategy (i.e., assisted
variants) approach the target F1 significantly faster
than the unassisted baseline.

To illustrate the degree of time-reduction
achieved, Figure 4 shows the minimum number
of sentences that must be annotated to reach dif-
ferent relative target F1 scores. For example, af-
ter annotating the first 400 sentences it is possible
to achieve a 95% of the ultimate F1 score when
using all the corpus. However, to reach the tar-
get score, the first 880 out of a 1000 sentences
must be annotated if the corpus is annotated in the
original order (baseline). By contrast, using our
active learning strategy only between 530 to 580
sentences must be annotated to reach the same tar-
get F1, thereby saving between a 35% and a 40%
of human annotation time.

Another interesting finding is to estimate the
extent to which the suggested annotations further
reduce the total annotation time. A human anno-
tator using the tool will need to accept some of
the suggested annotations, correct the ones that are
wrong and annotate the ones that are missing. Each
of these actions has a different cost in time. For
quantifying the improvement in overall time that
the suggestions produce, we assigned a relative
cost (in terms of abstract time units) to each of the
following types of annotations:

Missing annotations: annotations that the model
did not suggest and the human annotator must
produce, have a cost of 1 time unit.

Spurious annotations: annotations that the
model suggested and are wrong, which must
be eliminated by the human annotator, have a
cost of 2 time units.

Correct annotations: since the human annotator
must at least recognise the annotation is cor-
rect, the cost is 0.25 time units.
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Partial annotations: annotations that are partially
correct either because the spans are partially
covering or the label is wrong, have a cost of
0.5 time units.

This cost structure assumes that the problem of
correcting wrong annotations is more complex than
simply producing the correct annotations, while ac-
knowledging that even agreeing with correct anno-
tations has a non-zero cost. For an active learning
strategy to be helpful it must provide enough cor-
rect annotations to outweigh the cost of correcting
the wrong annotations; hence, it should prioritise
precision over recall.

Figure 5 shows the relative effect (in terms of
reducing the overall annotation time) of enabling
annotation suggestions for different combinations
of the entity and relation thresholds ue and ur. It
can be observed that on average, the entity sug-
gestions produce a positive effect (green colour)
across a wide range of thresholds, while the rela-
tion suggestions tend to produce a negative effect
as more suggestions are allowed. This is a direct
consequence of the MR relation model’s perfor-
mance, which achieves at most an F1 score of 0.27,
while the entity model ME achieves up to a 0.78
score. The optimal time reduction is achieved for
an entity threshold ue = 2.4 and a relation thresh-
old ur = 0, producing an estimated 24% reduction
in the total annotation time. Interestingly, these
parameters result in an overall performance for the
machine learning model of F1 = 0.54, with a pre-
cision of 0.78 and a recall of 0.41. As expected,
given the asymmetrical cost structure, it is prefer-
able to prioritise precision rather than recall for the
annotation suggestions.

An overall reduction in annotation time for this
experimental simulation can be estimated by com-
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Figure 3: Iterative improvement of the machine learn-
ing model performance in terms of F1 with and without
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tion.
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Figure 4: Minimum number of sentences necessary to
reach a specific performance relative to the target F1

with each active learning strategy for sentence sugges-
tion.

bining the improvements provided by annotation
suggestions and the sentence ordering. Assuming
both effects are independent, the best case scenario
for this corpus suggests the following. Using the
active learning approach a human annotator would
have needed to annotate only 530 sentences out of
1000, each of them with an estimate time cost of
76% compared to the full annotation. This results
in an overall reduction of as much as 60% of the to-
tal annotation time, producing a smaller corpus on
which machine learning models can still be trained,
delivering the same performance as those trained
on the original corpus.

6 Discussion and Future Work

The machine learning model used for entity recog-
nition ME achieves a result comparable with the
state-of-the-art in this corpus while being simple
enough to be trained during annotation. Not only
does the model produce a significant reduction in
the number of sentences that need to be annotated
but it also is capable of pre-annotating entities that
are often correct, even when factoring in the sig-
nificantly higher cost of correcting the wrong sug-
gestions. By contrast, the relation extraction model
MR performed significantly worse than current
state-of-the-art in this corpus. However, even if the
pre-annotated relations suggested by this model are
on average not beneficial, it is interesting to note
that using only the uncertainty of relations Ĥ(Ri)
as a query strategy still produces a significant time
reduction (see Figure 4, assisted (relations)). Un-
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Figure 5: Effect of using entity and relation suggestions
for different values of the entity uncertainty threshold
ue and relation uncertainty threshold ur. Green values
indicate a reduction in the annotation cost in terms of
relative time units.

fortunately, all good performing models for this
problem are composed of complex deep learning
architectures that cannot be trained sufficiently fast
enough to be used during the annotation process in
a commodity hardware.

Indeed, using simple models is necessary in ac-
tive learning scenarios where algorithms must be
trained interactively, but even without consider-
ing this issue, there are additional factors to con-
sider related to model complexity. We argue that
an interesting trade-off exists between the capac-
ity of a model and its usefulness for active learn-
ing. Very simple models (underfit) will have a
high uncertainty in all samples, while very com-
plex models (overfit) will overestimate their cer-
tainty. In both cases, the informativeness I(·) for
all sentences will be very similar, and there is no
sensible way to choose the most informative ones.
This suggests that there may be an optimal middle
ground where the model learns enough to provide
useful suggestions while still maintaining a healthy
level of uncertainty. The fact that even weak base-
lines (like the relation model MR) are still a useful
source of information when actively selecting unla-
belled sentences is one surprising conclusion of our
research. This seems to suggest that even in very
complex scenarios where state-of-the-art models
are impossible to train interactively, using weaker
surrogate models can still provide a significant ben-
efit for human-in-the-loop learning.

Regarding the generalisation of our approach,

the fact that the corpus is in the Spanish language is
irrelevant for our experimental results since the ma-
chine learning models used are language-agnostic
and no language-specific heuristics were applied.
Hence, these results should generalise to other lan-
guages and annotation schemas albeit with differ-
ent baseline F1 scores according to the complexity
of the underlying learning problem. Nevertheless,
we are interest in evaluating our approach using
languages other than English since the creation of
linguistic resources is one of the main difficulties of
NLP research, especially for other languages. An
ongoing research priority is to validate this strategy
on other corpora with different annotation schemas.

In future work, we will explore how to explic-
itly control the complexity of a model during the
active learning process by controlling the model’s
capacity. Two strategies that can be analysed are
the use of ensemble methods and deep learning
architectures with early stopping. In both cases,
the intuitive idea is to iteratively refine a machine
learning model up to the point where a sufficiently
good performance is achieved but before the model
overfits on the small labelled set of sentences, such
that uncertainty measures are still relevant. Another
interesting scenario in which to apply this approach
is when many annotators exist for the same text.
In this case, the models can learn contradictory
hypotheses due to differences between annotators.
Interestingly, in the case of active learning, this
is a positive phenomena, since inter-annotator dis-
agreement is a meaningful proxy for annotation
difficulty. Active learning models trained on a pool
of sentences with multiple, possibly contradictory
annotations, will naturally tend to select sentences
that are more likely to cause disagreement between
annotators. In this context, it can be interesting to
explore query-by-ensemble methods where each
model in the ensemble is trained on a different
annotator’s pool to maximise model variance.

7 Conclusions

In this article, we present an approach for reducing
the time involved in manually annotating a corpus
of natural language sentences that contains entities
and relations. This approach uses active learning
with uncertainty sampling and weighted density,
and provides an estimated reduction of 60% of total
annotation time in a simulated experiment with a
real corpus. This improvement is derived from two
independent factors: intelligently sorting which
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sentences to annotate and providing pre-annotated
suggestions with a high-degree of certainty. The
proposed strategies have been implemented into
a computational tool that is applicable to a broad
range of corpus annotation schemas and is available
for the research community.
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