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Abstract

It has been widely recognized that syntax in-
formation can help end-to-end neural machine
translation (NMT) systems to achieve better
translation. In order to integrate dependency
information into Transformer based NMT, ex-
isting approaches either exploit words’ lo-
cal head-dependent relations, ignoring their
non-local neighbors carrying important con-
text; or approximate two words’ syntactic re-
lation by their relative distance on the de-
pendency tree, sacrificing exactness. To ad-
dress these issues, we propose global po-
sitional encoding for dependency tree, a
new scheme that facilitates syntactic rela-
tion modeling between any two words with
keeping exactness and without immediate
neighbor constraint. Experiment results on
NC11 German→English, English→German
and WMT English→German datasets show
that our approach is more effective than the
above two strategies. In addition, our experi-
ments quantitatively show that compared with
higher layers, lower layers of the model are
more proper places to incorporate syntax infor-
mation in terms of each layer’s preference to
the syntactic pattern and the final performance.

1 Introduction

Over the past few years, end-to-end neural machine
translation (NMT) has shown remarkable progress,
achieving promising results on various machine
translation tasks. Although NMT models can per-
form well even only trained on parallel corpus, they
have been found to still benefit from external lin-
guistic knowledge (e.g., lexical analysis and pars-
ing) (Sennrich and Haddow, 2016), and the same
finding was also observed in other tasks (Strubell
et al., 2018; Zhang et al., 2019). Therefore, several
studies have started to to investigate how to incor-
porate dependency information into NMT based on
Transformer, which is currently the most advanced

end-to-end machine translation backbone.
There exist two broad categories of approaches

to integrating a sentence’s dependency structure
into the Transformer. The first category of ap-
proaches (Bugliarello and Okazaki, 2020; Strubell
et al., 2018; Bastings et al., 2017) takes the depen-
dency tree as a general graph structure data. A
graph neural network or a sublayer with a similar
mechanism was introduced at the bottom of the
Transformer’s encoder to represent and encode the
dependency relations among the words in the sen-
tence. In this paradigm, however, a word focuses
only on its immediate neighbors and ignores nodes
that are multi-hop away from it, which may carry
important context that helps disambiguate and en-
rich the current word’s representation in terms of
syntactic structure.

In contrast, methods from the second category
seek to model two words’ syntactic relation rely-
ing on their distance from the dependency tree.
The distance can be two words’ relative depth on
the tree or the length of the path between the two
nodes (Wang et al., 2019a; Omote et al., 2019).
This strategy can be seen as extended relative po-
sition representations (Shaw et al., 2018) where
the relative distance is defined based on the tree.
The advantage of this strategy is that the syntac-
tic relations between a word and all other words
can be modeled, not just those of its immediate
neighbors. Nevertheless, this approach is also un-
satisfactory because the distance on the dependency
tree is a simple proxy for the syntactic relationship
between two words and does not represent how a
word reaches another word on the dependency tree.
Therefore, this type of approach has limitations in
expressiveness.

For these considerations, we propose to model
the position of the word on the dependency tree
in addition to its normal sequential position in the
input text. We use the path from the root node to a
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word on the dependency tree to represent the global
syntactic position of the word. This representation
facilitates the modeling of syntactic relations be-
tween two words at arbitrary distances while en-
abling the model to learn more powerful correlation
functions by exploiting dependency labels rather
than simply relying on the distance of word pairs.

Our main contributions are as follows:

• We propose a new scheme, global positional
encoding for syntax (GPS), to integrate the
dependency tree into the Transformer’s en-
coder, enabling efficient word pairs’ syntax
correlation modeling (Section 3).

• Experimental results demonstrate that our
method outperforms both the Transformer
baseline and other two competitive models
in terms of BLEU score (Section 4.2).

• We found that when external syntax annota-
tion is combined at lower layers of the en-
coder, it gives better results and has larger
weights; and the weights, which indicate a
layer’s reliance on syntactic information, de-
clines rapidly near the output layer of the en-
coder (Section 4.3).

2 Related Work

Previous studies showed that end-to-end NMT
models could be further improved by combining
source-side or target-side syntax structure into
RNN encoder-decoder framework (Aharoni and
Goldberg, 2017; Wu et al., 2017; Eriguchi et al.,
2016). Since the Transformer has become the de
facto standard architecture for NMT, researchers
have also begun to explore strategies to incorporate
syntax information into Transformer-based NMT.

For phrase structures, Currey and Heafield
(2019) used source-side linearized constituency
parses to improve Transformer-based NMT by
multi-task learning. Ma et al. (2019) used neural
syntactic distance (Shen et al., 2018) for constituent
parsing as input and output sequence.

For dependency grammar, researchers mainly fo-
cused on how to integrate the dependency structure
into the Transformer. As mentioned in the intro-
duction, there are two different viewpoints to look
upon this problem. The first line of works extended
the relative positional encoding (Shaw et al., 2018)
defined on sequence to tree structures. Omote et al.
(2019) defined the relative distance between two

words on the dependency tree in terms of their rela-
tive depth. Wang et al. (2019b) used the length of
the shortest path between two nodes on the depen-
dency tree as their relative distance, and the depth
of each node as their absolute position, in addition
to each word’s normal sequential position. Another
perspective is to take the dependency tree as a gen-
eral graph structure, focusing on local connection
relations and apply methods from graph neural net-
works (or use similar mechanisms). Bastings et al.
(2017) use a graph-convolutional networks to en-
code the source syntax structure, and more recently,
Bugliarello and Okazaki (2020) directly encode the
dependency structure inside the Transformer’s self-
attention module, achieving state-of-the-art results.
By contrast, we neither treat the dependency tree as
a simple sequential structure extension nor as gen-
eral graph data. We seek to represent each word’s
role on the dependency tree, where the represen-
tation is tailored for the dependency grammar’s
tree structure, making it sensible to the syntactic
connection with other words.

Our work is also inspired by researches on mak-
ing Transformer sensible to structured input. Shiv
and Quirk (2019) proposed a tree-structure posi-
tional encoding to make the Transformer sensible
to source code’s tree structure in the code process-
ing task. The main idea is to define the path from
the root node to a leaf node as the leaf node’s posi-
tion on the tree. We extend this idea from unlabeled
directed trees to labeled trees and break the limita-
tion of the tree depth and the number of child nodes.
Moreover, we choose to use a sequence encoder
instead of concatenating sub-vectors to compute
the final path embedding, which utilizes the whole
vector space and enables more powerful modeling
of the interaction between two path embeddings.

3 Model

In this section, we first recap the basic Transformer
architecture and then describe the proposed global
syntactic position encoding mechanism.

3.1 Transformer Architecture

Transformer (Vaswani et al., 2017) is an encoder-
decoder architecture composed of stacked encoder
and decoder layers. Each encoder layer has three
main components: residual connections, feed-
forward layer, and self-attention. The decoder layer
has extra decoder-encoder attention to access the
output of the encoder. Among these components,
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Figure 1: Illustration of our model’s attention of the word ’John’ to the ’school’. The dotted box on the left denotes
the dependency analysis of the sentence ”Tom and John go to school together,” and the series of arrows with a gray
background represents the path. We extract the two words’ paths on the dependency tree and embed the paths to
form query embedding and key embedding, which are then used to calculate the attention score.

the self-attention mechanism is the key feature that
sets Transformer apart from CNN-based and RNN-
based sequence to sequence (seq2seq) models. Self-
attention is used for improving a word’s representa-
tion by focusing on critical context words that help
to enrich and disambiguate it.

Given an input sequence x = {x0, ..., xn}, self-
attention outputs a new sequence z = {z0, ..., zn}.
Each word’s representation in the new sequence
are contextualize by a weighted sum over all words
in the old sequence.

zi =

n∑
j

αij(xjW
V ) (1)

Each weight, αij , is normalized by a softmax
function:

αij =
exp (eij)∑n
k=1 exp (eik)

(2)

eij is computed by the dot product ofwordi’s query
vector and wordj’s key vector

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(3)

where
√
dz , a scale factor, reduces the peak of the

attention distribution to alleviate the vanishing gra-
dients problem.

3.1.1 Sequential Positional Encoding
Transformer’s self-attention can access information
directly from other words no matter how far away
they are from the current word, making it easier to
model long-range dependencies. However, unlike
RNN’s intrinsic order-variant forward process, the
self-attention module is computationally insensible

to the word order. Thus we need to put the word
order information into the representation of the in-
put sequence. In practice, we often simply add
the positional embedding and input word embed-
ding together as inputs to the model. Transformer’s
default positional embeddings has the following
formulation:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
where pos is the index of a word in the sequence
and i is the dimension of the positional encoding
vector.

3.2 Positional Encoding for Dependency
Structure

A sentence exists as a sequence of words, but
it also has structural organization. Dependency
parsing describes a sentence as a labeled directed
tree, whose vertices correspond to words, and la-
beled edge denotes head-dependent relation be-
tween words. Besides each word’s sequential po-
sition, we would like to represent their positions
on the dependency tree to exploit prior linguistic
knowledge behind the sentence.

We follow similar steps of encoding position
in sequential structure to represent a word’s po-
sition on the dependency tree. We need first to
index a word and then transform the index into a
vector, also called positional embedding, and the
computation between two positional embeddings
should reflect their relationship on the target struc-
ture. For sequential structure, the relation is the
distance, and for the dependency tree, the relation
is the grammatical relation denoted by how a node
reaches another node. Therefore, we can represent
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a words’ tree position through the path from the
root node to it. Figure 1 showing an example, John
can be represented by a sequence of grammatical
labels [root → conj → cc] and school can be
represented by [root→ obl].

In this setting, the syntactic relation between two
words can be inferred from their position represen-
tation on the syntactic tree.

To acquire the final syntactic positional embed-
ding, we only need to vectorize the path. First,
we replace all the labels with index from the de-
pendency label vocabulary, then we encode the
sequence into a vector, as if we are dealing with a
sequence of words. Any neural network that can
transform a sequence into a vector fits this job well,
and we take LSTM as our syntactic position en-
coder:

si = LSTM(pi)

where si is the syntactic positional embedding for
xi, and pi = {label0, ..., labeln} is the path from
root to xi on dependency tree.

3.3 Combining the Two Positional
Embeddings

Once we can represent a word’s position on the
dependency tree, the next question is how to enrich
a word’s hidden representation by its position on
the syntactic tree, in addition to its position in the
sequence. Following Transformer’s initial setup to
incorporate sequential positional embedding, we
may add the syntactic positional embedding into
the input word embedding. However, this approach
suffers from two drawbacks. First, when summing
up heterogeneous embeddings, we are implicitly
model correlation between different types of em-
bedding in the self-attention module, which is no-
ticed by Ke et al. (2021). To realize the problem
here, we can split the hidden representation of a
word xi into the word embedding wi, positional
embedding pi, and syntactic positional embedding
si, and see how the self-attention computes the
attention weight:

eij =(wi + si + pi︸ ︷︷ ︸
xi

)WQ)·

(wj + sj + pj︸ ︷︷ ︸
xj

)WK)T /
√
dz

(4)

After expanding the above equation, we can see
that the attention weight of word i to word j, de-
noted by eij , consists of the correlation between

heterogeneous embeddings, e.g., the correlation be-
tween syntactic positional embedding and sequen-
tial positional embedding, which is not reasonable.

More importantly, when a source sequence con-
tains multiple sentences, mixing the syntactic po-
sitional embeddings with word embedding allows
two words from different sentences to interact with
each other syntactically in the self-attention mod-
ule. However, two words’ syntax annotations are
supposed to affect each other only within a sen-
tence.

Therefore, we decouple the syntactic positional
embedding and word embedding:

êij =

(
xiW

Q
) (
xjW

K
)T

√
dz

+

(
siW

Q
s

) (
sjW

K
s

)T
√
dz

(5)

xi = wi + pi (6)

where xi is the word representation as in Trans-
former’s typical setting, and si denotes the syntac-
tic positional embedding of word i. In this man-
ner, we can eliminate the unnecessary correlation
between heterogeneous embeddings and avoid un-
desired syntactic correlation for two words from
different sentences by simply mask the second term
in equation (5).

4 Experiment

4.1 Experimental Setup
Model and Baselines. We compare our ap-
proach with a strong baseline, Transformer, and
other two types of dependency information aug-
mented strategies: (1) Parent scaled self-attention
(PASCAL) proposed by Bugliarello and Okazaki
(2020), in which a word’s attention distribution is
scaled to have larger weight on its head word. (2)
Absolute and relative structural position proposed
by Wang et al. (2019b), which augment encoder
by each word’s depth and word-pair’s relative dis-
tance on the dependency tree. We implement our
models and reimplement Transformer with struc-
tural position (Wang et al., 2019b) based on the
Fairseq (Ott et al., 2019) toolkit. We deploy the
syntactic positional encoding at the bottom layer
for our model and report the performance in the
main results section. See section 4.3 for further
analysis of this design choice.

Data. We use datasets with different sizes and
source languages to evaluate the efficiency of our
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Dataset Train valid Test
NC11 En-De 238,843 2,169 2,999
NC11 De-En 238,843 2,169 2,999
WMT16 En-De 4,281,379

(filtered)
2,169 2,999

WMT16 En-De 5,852,458 2,999 3,004

Table 1: Data statistics

approach. For English → German translation
task, we train on WMT16 and WMT17 corpus
and use newstest2015/ newstest2016 as validation/
test sets for WMT16, newstest2016/newstest2017
for WMT17’s validation/test sets. Following
Bugliarello and Okazaki (2020), we remove sam-
ples with incorrect source language in WMT16
dataset. We also train on News Commentary v11
(NC11) for German→ English and English→ Ger-
man tasks. See Table 1 for the dataset statistics for
our experiments.

For data processing, we follow the same steps of
Vaswani et al. (2017). We tokenize and split data
with Moses (Koehn et al., 2007), using byte pair
encoded (BPE) with shared vocabulary for German
and English. We use Stanford CoreNLP parser
(Manning et al., 2014) to acquire dependency trees
of source sentences.

Training. For all models, we use Adam opti-
mizer and learning rate scheduler with 8,000 warm-
up steps. We train the model 100K steps on the
WMT16 and WMT17 datasets and 20K steps on
the NC11 dataset, which is much smaller than the
previous two large-scale datasets. For Transformer
and our path-encoder, we use dropout = 0.1 on
WMT16 and WMT17, and dropout = 0.3 on
NC11 dataset. We use label smoothing ε = 0.1
for all experiments. During inference, we use
beam search with beam size = 4 and length
penalty α = 0.6. We report the final results us-
ing SACREBLEU (Post, 2018).

4.2 Main Results
We can see from Table 2 that in all three syntax-
augmented NMT systems, syntax information im-
proves the performance of the baseline model at
least 0.5 BLEU points.

On the other hand, although the distance-based
approach (Structure Position) can theoretically
model the syntactic relationship between any pair
of words, it performs slightly inferior (0.1−0.3
BLEU points) than the PASCAL model, which only

represents local head-dependent relations; this may
be caused by information loss when using distance
to approximate the syntactic relation between two
words. In contrast, our strategy represents each
word’s global position on the syntax tree, facili-
tating efficient syntax relation modeling between
non-local word pairs on the dependency tree. This
further leads to consistent improvements over other
models.

4.2.1 Effect of Sentence Length.
The effect of sentence length on translation qual-
ity has been an important research question, mo-
tivating us towards better model architecture and
helpful training tricks, e.g., reversed input order,
bidirectional-encoder, and attention. We make a
further comparison between our model and the
baseline concerning the sentence length. We col-
lect five groups of test examples according to their
source sentence length {0-20, 20-30, 30-40, 40-
50, 50+}, and evaluate each group’s BLEU score,
which is plotted in Figure 2. We can observe a
general trend in Figure 2 that the syntactic infor-
mation helps the model achieve better translation
especially on longer sentences, which are likely to
have more complex structures and rich connections
among the words in them.

4.3 Effects of Syntax at Different Layers

Previous researches empirically found that com-
bining the syntax information at the bottom layer
of the encoder gives the best result (Strubell et al.,
2018; Bugliarello and Okazaki, 2020). In this sub-
section, we measure how our model’s performance
changes over the layer that we choose to combine
the syntactic position, and quantify the syntax’s
impact on each layer’s self-attention module.

First, we change the layer used to combine the
syntactic position and train the model on the NC11
De-En dataset. We present the performance over
the selected layer in Table 3. Consistent with pre-
vious studies, we observed that combining syn-
tax structure at lower layers gives better results
and achieves the best at the bottom layer. How-
ever, though the syntactic information brings per-
formance gains no matter at which layer we com-
bine it, these improvements are not complementary.
When we combine the syntactic position at all six
layers of the encoder, we observe comparable re-
sults than only combining it at the first layer of the
encoder while accompanied by severe overfitting
and much more training time.
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Model NC11 En-De NC11 De-EN WMT16 En-De WMT17 En-De
Transformer 25.0 26.6 33.0 25.5
PASCAL 25.9 27.4 33.9 26.1
Structure Position 25.7 27.1 33.8 26.0
Ours 26.0⇑ 27.6⇑ 34.1⇑ 26.3⇑

Table 2: Performances on the test set of three datasets in terms of BLEU score, with ⇑ denotes statistical signifi-
cance over the Transformer (p < 0.05) through boot strap resampling (Koehn, 2004)

0-20 20-30 30-40 40-50 50+

Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
-B

L
E

U

NC11 De-En

NC11 En-De

WMT16 En-De

WMT17 En-De

Figure 2: BLEU improvements on four datasets over the length of the source sentence.

In our setting, the syntactic information exerts
influence directly on the self-attention distribution.
Nevertheless, it remains unclear to what extent the
model relies on the supplied syntax information,
whose answer would provide us more interpretabil-
ity and understanding of what is happening inside
the model. To figure out this problem, we define
the Average Weight of Syntax Logits (AWSL) as a
metric to indicates the weight of syntax in the self-
attention module. For each sample and attention
head, we compute the weight of syntax logits as:

w =
1

N2

∑
i

∑
j

|eij |
|eij |+ |esij |

(7)

where N is the number of words in the sentence, eij
and esij denotes the normal attention weight and the
syntax correlation weight of word i to word j, re-
spectively. We then average the weight w for each
sample and attention head to compute AWSLl for
layer l, as plotted in Figure 3.

Through the lens of AWSL, we can observe that
the model relies on the abstract syntax patterns
more at the lower layers. Such reliance becomes
gradually smaller as the layer becomes deeper but
drops sharply near the output layer.

One possible explanation for the two trends
about model performance and feature importance
is that combining syntax information at lower lay-
ers not only leads to better utilization across all
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0.55
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syntax
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Figure 3: The red line shows how the Average Weight
of Syntax Logits (AWSL) varies over the layer we
choose to combine syntax structure, and the blue line
denotes the weight of the model’s standard attention
module.

subsequent layers but also reaches a closer match
in terms of the abstraction level between the layer
and the supplied information. We note that this
finding is in line with previous studies on probing
the hidden representations of the deep language
model (Raganato and Tiedemann, 2018; Tenney
et al., 2019; Vig and Belinkov, 2019), which found
that the model tends to encode more syntactic fea-
tures in lower layers while more complex semantic
features in higher layers.
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Layer None 0 1 2 3 4 5 1-6
BLEU 23.8 24.7 24.5 24.5 24.0 24.1 24.0 24.7

Table 3: Model performance over the layer chose to combine syntactic position.

CASE I

Die Rede war mit Obama nicht abgesprochen, ein Treffen hatte dieser mit Hinweis auf die seinerzeit 
bevorstehende Wahl in Israel abgelehnt.

obj

��meeting )

( rejected )

The speech did not talk to Obama; he had rejected a meeting with hints of Israel ’ s upcoming 
election.

obj

The speech was not clear to Obama; a meeting had rejected it, pointing to Israel ’ s upcoming election.

nsubj

SRC

OURS

BASE

CASE II

 menschlichen Neuronen vorübergehend anfällig für das Ultraschall-Signal in einer klinischen 

nsubj

"Wir glauben, dass mit Gentherapie und einem therapeutischen Virus es möglich ist, die angezielten

Einstellung für bestimmte neurologische Behandlungen zu machen", sagte Chalasani. 

( neurons ) ( fragile� vulnerable)

"We believe that gene therapy and a therapeutic virus can be made temporarily vulnerable to ultrasound 
signals," Chalasani said.fragile

nsubj:pass xcomp

"We believe that gene therapy and therapeutic virus can make the human neurons temporarily vulnerable to 
the ultrasound signal in a clinical attitude to certain neurological treatments," Chalasani said.

obj xcomp

SRC

OURS

BASE

Table 4: We can see through the two cases that the baseline model generates syntactically incorrect translation
due to the misunderstanding of the source sentence’s syntactic structure, and the supplied syntax structure helps it
achieve more faithful translation.

4.4 Case Study

Table 4 presents several representative cases that
indicate how syntactic knowledge helps the model
achieve better translation, while linguistically-
uninformed baseline makes mistakes. In the first
case, the meeting is the object to be rejected. How-
ever, the baseline takes meeting as nsubj (nominal
subject) of the verb rejected, while our model cor-
rectly identified the meeting as the verb’s object. A
more complex example is the second case, where
the adjective anfällig (means fragile) governs the
nominal Neuronen (means neurons). The baseline
wrongly and indirectly connects therapy and vul-
nerable, establishing misleading connection “ther-
apy is made vulnerable”, while our model correctly
set up the second-order relation between neurons
and vulnerable: “make neurons vulnerable”.

5 Conclusion and Future Work

In this paper, we propose a global position encod-
ing scheme for the dependency tree. We leverage

the dependency labels and represent each word’s
syntactic role on the dependency tree using the
path, which enables efficient syntactic correlation
modeling between any pair of words in a single
layer. In the experiment, we show that our model
outperforms other syntax augmentation strategies.
In addition, we quantitatively analyze the model’s
reliance on syntax information and show that the
model pay more weight and achieves better per-
formance when we combine syntax information at
lower layers.

For future works, the following problems are
worth noting:

1. Since it is commonly known that off-the-shelf
parser’s performance may drop dramatically
when facing out-of-domain data, it is impor-
tant to assess the parser’s accuracy on different
machine translation benchmarks and evaluate
those syntax augmented NMT systems’ toler-
ance of parsing errors.

2. Previous works have shown that human-
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designed patterns are not the only option to
establish dependency relations among words;
trees induced from the Pre-trained Language
Models also exhibit promising results in down-
stream applications (Wu et al., 2020; Dai et al.,
2021). The induced tree is an attractive solu-
tion, especially when considering the expen-
sive annotation and domain adaption problem
for supervised dependency parser. Therefore,
it is desirable to compare the performance of
model using trees produced by the supervised
parser and trees induced from the Pre-trained
Language Models.
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