
Proceedings of Recent Advances in Natural Language Processing, pages 1318–1325
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_148

1318

Towards Domain-Generalizable Paraphrase Identification
by Avoiding the Shortcut Learning

Xin Shen
The Chinese University of Hong Kong

xshen@se.cuhk.edu.hk

Wai Lam
The Chinese University of Hong Kong

wlam@se.cuhk.edu.hk

Abstract

In this paper, we investigate the Domain Ge-
neralization (DG) problem for supervised Pa-
raphrase Identification (PI). We observe that
the performance of existing PI models dete-
riorates dramatically when tested in an out-
of-distribution (OOD) domain. We conjecture
that it is caused by shortcut learning, i.e., the-
se models tend to utilize the cue words that
are unique for a particular dataset or domain.
To alleviate this issue and enhance the DG
ability, we propose a PI framework based on
Optimal Transport (OT). Our method forces
the network to learn the necessary features
for all the words in the input, which allevia-
tes the shortcut learning problem. Experimen-
tal results show that our method improves the
DG ability for the PI models.

1 Introduction

Paraphrase Identification (PI) is the task of reco-
gnizing whether one text is a restatement of ano-
ther text, preserving the same meaning while ad-
opting a different expression (Bhagat and Hovy,
2013). Neural network based models have been
proposed for the supervised PI task, and achie-
ve decent performance in the single-domain set-
ting (Yin and Schütze, 2015; Wang et al., 2017;
Yang et al., 2019). At present, the existing PI
corpora are restricted to several particular do-
mains (Dolan et al., 2004; Xu et al., 2014; He et al.,
2020), while the practical sentence pair for the pa-
raphrase judgment can be from any unlabeled do-
main. At the same time, building a PI corpus for
a novel domain needs massive human effort and
is expensive. Therefore, a natural question is: for
the supervised models trained in the domains with
annotated PI corpora, to what extent can they ge-
neralize to an out-of-distribution (OOD) domain?

In this paper, we investigate the multi-
source (Blanchard et al., 2011) Domain Generali-

zation (DG) (Wang et al., 2021; Zhou et al., 2021)
problem for supervised PI. More specifically, we
try to learn a PI model based on information from
several annotated source domains, and it could ge-
neralize well to an unlabeled domain. We inves-
tigate several competitive PI models in the DG
setting, and observe that their performance dete-
riorates dramatically when tested in an OOD do-
main. We conjecture that the poor performance is
caused by the models’ tendency to the shortcut
learning (Geirhos et al., 2020). More specifically,
these models are prone to relying on the shortcut
features, e.g., some cue words, for classification.
These shortcut features are often unique in one par-
ticular dataset or domain. When tested on an OOD
domain, the models’ performance deteriorates be-
cause the shortcuts are missing. Interestingly, this
phenomenon is also observed in other NLP tasks
or models, such as NLI (Gururangan et al., 2018;
Du et al., 2021), reading comprehension (Kaushik
and Lipton, 2018; Lai et al., 2021), and BERT (Ni-
ven and Kao, 2019).

The PI models usually follow the sentence-pair
classification paradigm (Lan and Xu, 2018; Dev-
lin et al., 2019). Some models originally propo-
sed for the other sentence pair classification tasks,
e.g., Semantic Textual Similarity (STS) or Natural
Language Inference (NLI) can be easily adapted to
PI. In what follows, we directly apply the suitable
models without further clarification. One general
character of these models is: they have a compo-
nent of information aggregation, i.e., the extrac-
ted and encoded features are aggregated into one
fixed-length vector before computing the loss func-
tion. We point out that this step is one cause of the
shortcut learning problem. Because in this step, it
is not uncontrollable that which features should be
preserved or discarded in the aggregated vector. In-
spired by this, we conduct a new design for the fi-
nal network layer of PI models to improve the DG
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Figure 1: An example of word alignment between two sentences based on OT distance. Pij is defined in Formu-
la (1). For clarity, the alignment between some unimportant words such as stop words are not shown. This example
is also adopted by Kusner et al. (2015).

ability. The motivation of our method is: if we can
force the PI model to learn the necessary features
for all the input words instead of just relying on the
domain-specific shortcuts, then the effects of short-
cut learning can be alleviated. To this end, our pro-
posed network layer outputs the importance scores
and contextualized representations for all the input
words, and adopt the Optimal Transport (OT) (Vil-
lani, 2008) distance to decide whether two senten-
ces are paraphrase or not. The resulting PI models
can be trained end-to-end, the feature extraction
and encoding layers are not affected. In the experi-
ments, the PI data from four different domains are
adopted for simulating the DG setting. To validate
the effectiveness of our method, we consider two
representative PI models and equip them with our
proposed module. The evaluation results show that
our method improve the OOD domain generaliza-
bility of these PI models.

2 Problem Formulation

The PI corpus is usually organized as a set
{((xi, x̃i), yi)}Ni=1. For each tuple ((x, x̃), y), x
and x̃ are two input sentences, the label y = 1
indicates that x and x̃ are the paraphrase while
y = 0 denotes the non-paraphrase. The associa-
ted domain of this dataset is defined as a joint dis-
tribution PXY on X × Y , where X is the space
of input sentence pairs1, and Y is the label space.
Then the target of a PI model is to learn a function
f : X → Y , which predicts the label y based on
the sentence pair (x, x̃).

We adopt the common setting of multi-source
DG as in Blanchard et al. (2011). Specifically, as-
sume that we can access a set of K(K > 1) dis-
tinct source domains S = {Sk}Kk=1. Each Sk is as-
sociated with a distinct joint distribution Pk

XY , i.e.,
Pk
XY ̸= Pk′

XY , ∀k ̸= k′ and k, k′ ∈ {1, . . . ,K}.

1With a slight abuse of the terminology here, we do not
try to rigorously define a space containing pairs of sentences.

For Sk, the associated dataset contains i.i.d. da-
ta {((xk

i , x̃
k
i ), y

k
i )}

Nk
i=1 sampled from Pk

XY . The
target domain denoted as T is associated with a
joint distribution PT

XY , where PT
XY ̸= Pk

XY , ∀k ∈
{1, . . . ,K}. Then DG problem for PI is defined
as: given the labeled source domains S, we try
to learn a model based on information from S
such that the model can generalize well to an un-
seen domain T . It should be noted that DG is mo-
re challenging than the related settings such as
domain adaptation (Patel et al., 2015) or transfer
learning (Pan and Yang, 2009). The difference pri-
marily lies in that DG cannot access both the fea-
ture distribution and the label distribution of the
the target domain T , which makes it more prac-
tical for real-world applications.

3 Method Description

3.1 Shortcut Learning Problem

Regardless of the implementation differences,
most neural models for the supervised learning of
PI follow the sentence pair classification paradigm,
i.e., the features from two sentences are extracted
and encoded into one vector for the classificati-
on (Lan and Xu, 2018). For these approaches, the
final output representation fuses features from all
the input words together, and we conjecture that
it is the reason for the poor OOD generalizability.
Concretely, these models are prone to the shortcut
learning, i.e., utilizing the features from some cue
words that are specific to the training domains. In
the fused representations of the final output, the
model neglects the features from the words that ac-
tually decide whether two sentences are paraphra-
se or not, because the model already makes the cor-
rect decision based on the shortcut features. When
these shortcuts are missing in the OOD domain,
the model performs poorly.
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s1: In only 14 days1, US researchers have created2 an artificial bacteria-eating virus3

from synthetic genes4.
s2: An artificial bacteria-eating virus3 has been made2 from synthetic genes4 in
the record time of just two weeks1.

Label: paraphrase;
Domain: news;

Dataset: MRPC (Dolan et al., 2004).
s3: how1 the optimal solution2 to a linear programming problem3 changes4 as the
problem data are modified.
s4: how1 changes4 in the coefficients of a linear programming problem3 affect
the optimal solution2.

Label: non-paraphrase;
Domain: computer science;

Dataset: PARADE (He et al., 2020).

Table 1: Examples of paraphrase and non-paraphrase text pairs, which come from two different domains. We
manually annotate the phrase-to-phrase alignment, and the semantically related phrases are annotated with the
same superscript. For the sake of brevity, we do not annotate more detailed word-to-word alignment, and some
unimportant words such as stop words are not annotated. We use red italic font to denote the words that cannot be
suitably aligned.

3.2 OT Distance for Measuring the Text
Similarity

As a preliminary to our method, we introduce the
OT distance first. It provides an explainable ap-
proach to measuring the text similarity. Concretely,
given two pieces of texts x = [w1,w2, · · · ,wm]
with m words and x̃ = [w̃1, w̃2, · · · , w̃n] with n
words, the OT distance between x and x̃ is defined
as:

DOT (x, x̃) = min
P∈

∏
(a,b)

⟨P,C⟩

= min
P∈

∏
(µ,µ̃)

m∑
i=1

n∑
j=1

c(wi, w̃j) · Pij .
(1)

Here, C stands for the cost matrix, whose element
Cij = c(wi, w̃j) determines the cost of trans-
porting the word wi to the word w̃j . c(wi, w̃j) is
smaller when wi and w̃j are more semantically
similar. The matrix P is the transport plan, whe-
re Pi,j is larger when wi and w̃j are more close-
ly aligned.

∏
(µ, µ̃) = {P ∈ Rm×n

+ | P1n =
µ,PT1m = µ̃} is the set of all the feasible
transport plans. ⟨·, ·⟩ stands for the Frobenius dot-
product between two matrices of the same si-
ze. The vectors µ = [µ1, · · · , µm] and µ̃ =
[µ̃1, · · · , µ̃n] satisfy that

∑m
i=1 µi =

∑n
j=1 µ̃j =

1, and the element µi or µ̃j reflects the relative im-
portance of the corresponding word in the text. In
Figure 1, we give an example of OT distance bet-
ween two sentences. From this example, we can

observe that: by solving the optimization problem
in Formula (1), the solution matrix P explicitly
aligns the semantically related words. And the op-
timal objective value of Problem (1) is the distance
of moving sentence x to sentence x̃.

For the values of vectors µ and µ̃, different
models behave differently. Word Mover’s Distan-
ce (WMD) (Kusner et al., 2015) requires that all
the words in one text are equally treated, i.e., µi =
1
m(∀i, 1 ≤ i ≤ m), and µ̃j = 1

n(∀j, 1 ≤ j ≤ n).
Yokoi et al. (2020) point out that WMD is not sui-
table for unsupervised STS, because the import-
ance of each word should be differentiated. They
propose Word Rotator’s Distance (WRD) and ad-
opt the norm of the pretrained embedding as the
weight of the corresponding word. For the unsu-
pervised methods WMD and WRD, the values of
µ and µ̃ are fixed, and independent of whether the
sentence pair (x, x̃) is paraphrase or not. However,
we claim that they are dependent of each other in
the supervised setting. Consider some examples in
Table 1. Since the nature of paraphrase is seman-
tic equivalence, for the paraphrase sentences (e.g.,
s1 and s2 in Table 1), the unaligned words (e.g.,
US researchers and the record time) are unim-
portant. Conversely, the key to a non-paraphrase
is to find the difference in between. For the non-
paraphrase sentences (e.g., s3 and s4 in Table 1),
the unaligned words (e.g., problem data and co-
efficients) are key to make the difference and are
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Algorithm 1 Log-domain Sinkhorn algorithm for computing the entropy-regularized OT distance.

Input: k = 0, u0 = 0m,v0 = 0n, K is the maximum number of iterations allowed.
1: while k < K do
2: uk+1 = uk + ε log(µ)− log

(
R(uk,vk)1n

)
.

3: vk+1 = vk + ε log(µ̃)− log
(
R(uk+1,vk)T1m

)
.

4: k = k + 1.
5: end while

Output: P∗ = R(uk,vk).

thus important. Another important issue is the va-
lue of c(wi, w̃j). For the unsupervised methods
such as WMD and WRD, the value of c(wi, w̃j)
is fixed. It is usually computed based on the pre-
trained embeddings of the corresponding words.
However, this practice lacks flexibility when rep-
resenting the word relatedness in the supervised
setting. The contextualized word representations
should be adopted.

3.3 Domain-Generalizable PI via OT layer
The analysis in Section 3.1 indicates that the short-
cut learning problem is caused by the aggregated
representation in the classifier layer, which is ad-
opted by most existing PI models. To make the
PI models more domain-generalizable, we change
the output layer of the network to memorize the
necessary features of all the words during the in-
domain training. The analysis in Section 3.2 sug-
gests that the values of µ, µ̃, and C should be ad-
aptive in the supervised setting of PI. At the sa-
me time, these values are all specific to individual
word. Therefore, we parameterize the word impor-
tance vectors and the contextualized word embed-
dings as the learnable outputs of a neural network.
The neural network is trained so that the OT di-
stance DOT (x, x̃) is minimized for the paraphrase,
while is maximized for the non-paraphrase:{

min DOT (x, x̃) if y = 1;
max DOT (x, x̃) if y = 0.

(2)

In this way, we force the network to memorize re-
presentations for each individual word, instead of
learning a fused representation. And we expect the
shortcut learning problem can be alleviated. For
the practical usage, we adopt the following regres-
sion based objective:

min
θ

1

N

N∑
i=1

{
(exp (−DOT (xi, x̃i))− yi)

2
}
,

(3)

where θ denotes the network parameters. The ob-
jective in Formula (3) is mathematically equiva-
lent to the objective in Formula (2), but is mo-
re numerically stable. Following the practice as
in Chen et al. (2019, 2020), we compute the va-
lue of cost c(wi, w̃j) as the cosine distance bet-
ween the corresponding contextualized word re-
presentations. We name our method as Domain
Generalizable Optimal Transport (DG-OT) layer.
Except the final output layer, the preceding layers
of PI models can be unchanged. In Figure 2, we
present the architecture of decomposable attention
model (Parikh et al., 2016) when equipped with
our proposed DG-OT layer.

3.4 Computing the OT Distance

To incorporate the OT distance into neural net-
works, we adopt the practice in (Cuturi, 2013; Fro-
gner et al., 2015) and solve the following entropy-
regularized OT problem:

min
P∈

∏
(µ,µ̃)

⟨P,C⟩ − εH(P). (4)

Here, H(P) is the entropy regularization term
defined as: H(P) = −

∑
i,j Pij(log(Pij) − 1).

ε is a positive hyper-parameter for controlling
its relative importance. When the value of ε is
small enough, Problem (4) is a good approxi-
mation of original OT distance in Formula (1).
In this paper, we utilize the Sinkhorn algo-
rithm in the log domain (Chizat et al., 2018;
Schmitzer, 2019) to solve Problem (4). The
details are presented in Algorithm 1, in which
the function R(u,v) is defined as: R(u,v) =
diag(exp(uε )) exp(−

C
ε )diag(exp(

v
ε )). After

computing the entropy-regularized OT distance
between xi and x̃i with Algorithm 1, we substitu-
te DOT (xi, x̃i) in Formula (3) with the objective
value of Problem (4). The resulting OT classifier
layer is fully differentiable, and the whole PI
model can be trained in an end-to-end way.
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Weight of each word:

Compute OT distance

Softmax Softmax

Sentence SentenceSentence pairs:

Embedded representations:

Encoded representations:

Attended representations:

Cost matrix C: 

A regression based training objective

Figure 2: The architecture of decomposable attention model (Parikh et al., 2016) when equipped with our proposed
DG-OT layer.

Dataset Domain #Training #Validation #Testing
total (+/-) total (+/-) total (+/-)

MRPC News 4076 (2753/1323) 500 (250/250) 600 (300/300)
PIT-2015 Twitter 5000 (2500/2500) 1000 (500/500) 1200 (600/600)
QQP Quora questions 5000 (2500/2500) 1000 (500/500) 1200 (600/600)
PARADE Computer science 5000 (2500/2500) 1000 (500/500) 1200 (600/600)

Table 2: Statistics of the processed PI datasets. The symbol + indicates the paraphrase sentence pairs, while the
symbol - indicates the non-paraphrase sentence pairs.

4 Experiment

4.1 Datasets and Settings
We consider four publicly available PI datasets
from different domains for the experiment:

• Microsoft Research Paraphrase Corpus
(MRPC) (Dolan et al., 2004), which
contains sentence pairs from news articles.

• Paraphrase Identification from Twitter (PIT-
2015) (Xu et al., 2014), which contains pairs
of Twitter tweets.

• Quora Question Pairs (QQP)2, which conta-
ins Quora question pairs.

• PARAphrase identification based on Domain
knowledgE (PARADE) (He et al., 2020),

2https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

which contains definitions of terminologies
from the domain of computer science.

To simulate the DG setting, we use three data-
set for the in-domain training, and use the remai-
ned one dataset for evaluating the OOD generali-
zation ability. During the in-domain training sta-
ge, the validation set is merged from three in-
domain validation sets. We also conduct the in-
domain testing for the purpose of comparison,
where the in-domain testing set is merged from
three in-domain testing sets. To prevent the PI mo-
dels from being dominated by one or several par-
ticular domains, we process the datasets so that
each domain has relatively the same number of
sentence pairs. Because the original splittings of
these four datasets differ, and it is hard to direct-
ly sample training/validation/testing sets and en-
sure they are of comparative and relatively-large
size over different domains. Therefore, for each

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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source: NTQ source: NTC source: NQC source: TQC
METHOD →NTQ → C →NTC → Q → NQC → T →TQC → N
DECATT 61.2/63.5 58.3/60.1 56.7/62.9 50.4/58.7 65.5/62.4 56.4/58.1 57.3/63.2 52.9/58.2
DECATT+DG-OT 63.9/68.8 58.7/64.1 64.8/67.2 62.1/63.3 70.9/68.4 65.4/63.2 63.2/62.8 57.1/60.7
BIMPM 65.2/66.7 62.7/61.4 63.2/68.7 58.3/47.4 68.8/64.9 61.2/53.5 71.8/73.5 52.9/57.7
BIMPM+DG-OT 67.1/70.3 64.1/65.9 63.8/67.5 61.9/57.6 72.1/68.2 65.3/64.9 72.6/73.2 64.5/61.6

Table 3: Results of in-domain testing and OOD generalization. Each result is organized as accuracy/F1. We use
the initials N, T, Q, C to represent the domains of News, Twitter, Quora, and Computer science, respectively.

dataset, we merged the original splittings of trai-
ning/validation/testing sets together, and random-
ly sample the new training/validation/testing sets.
We conduct sampling without replacement. The
statistics of the processed datasets are described in
Table 2. Following the previous works, we adopt
accuracy and F1 score as the evaluation metric.

4.2 Baselines

We adopt the following models for the experiment:

• DECATT (Parikh et al., 2016), a decompo-
sable attention model. We change the origi-
nal three-way classification to two-way clas-
sification.

• BIMPM (Wang et al., 2017), a bilateral
multi-perspective matching model.

For these models, we adopt and adapt the imple-
mentations in AllenNLP-Models3. To validate the
effectiveness of DG-OT layer, we equip these two
models with DG-OT layer, and compare them
with their vanilla versions. To be fair, the shared
network structures have the same size. DECATT

should be compared with DECATT+DG-OT, and
BIMPM should be compared with BIMPM+DG-
OT, when the other settings are the same. For all
the methods, we adopt GloVe (Global Vectors for
Word Representation)4 to initialize the word em-
beddings. The hyper-parameters are tuned based
on the performance in terms of F1 on the validati-
on set.

4.3 Results

The results of in-domain testing and OOD gene-
ralization are reported in Table 3, from which we
can draw the following conclusions:

3https://github.com/allenai/
allennlp-models.

4glove.840B.300d in https://nlp.stanford.
edu/projects/glove.

• When other conditions are the same, the
OOD performance is poorer than the in-
domain performance, which agrees with the
common expectation. The reason is the under-
lying data distributions are different.

• In the same setting, the performance of
BIMPM is generally better than that of DE-
CATT. It suggests that BIMPM is more suita-
ble for the PI task in the setting of multiple-
domain training.

• When equipped with DG-OT, both the per-
formance of DECATT and BIMPM are im-
proved obviously in both the in-domain and
OOD setting. And the performance dropping
brought by OOD domain is less obvious
when DG-OT is equipped by the model. The-
se results validate that DG-OT helps to avoid
the shortcut learning.

5 Conclusions and Future Works

As a preliminary attempt in this direction, we in-
vestigate the DG problem for supervised PI task in
this paper. We point out that the aggregation opera-
tion is one reason for the poor OOD generalization
ability of the existing PI models. We incorporate
the Optimal Transport (OT) distance and design a
novel classifier layer, i.e., DG-OT layer. It tack-
les the shortcut learning problem by enforce the
network to learn the importance weights and con-
textualized representations for all the words. The
experiments validate the effectiveness of DG-OT
layer. Avoiding the shortcut learning is only one
factor to the DG ability of PI models. Another im-
portant aspect is how to handle the domain shift,
which is left as our future work. Besides, sentence
pair classification include other tasks such as STS
and NLI. It is still unclear whether our method is
suitable for STS and NLI, and we leave this topic
as the future work.

https://github.com/allenai/allennlp-models
https://github.com/allenai/allennlp-models
https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
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