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Abstract
We develop a minimally-supervised model for
spelling correction and evaluate its perfor-
mance on three datasets annotated for spelling
errors in Russian. The first corpus is a dataset
of Russian social media data that was recently
used in a shared task on Russian spelling cor-
rection. The other two corpora contain texts
produced by learners of Russian as a foreign
language. Evaluating on three diverse datasets
allows for a cross-corpus comparison. We
compare the performance of the minimally-
supervised model to two baseline models that
do not use context for candidate re-ranking,
as well as to a character-level statistical ma-
chine translation system with context-based
re-ranking. We show that the minimally-
supervised model outperforms all of the other
models. We also present an analysis of the
spelling errors and discuss the difficulty of the
task compared to the spelling correction prob-
lem in English.

1 Introduction

The spelling correction task has been a fundamen-
tal Natural Language Processing (NLP) problem
ever since the origins of the field and has en-
joyed a lot of attention in the NLP research. It
is not surprising, since correcting spelling mis-
takes is of practical relevance for various higher-
level NLP tasks and downstream applications
dealing with noisy data, such as named entity
recognition, dependency parsing, information re-
trieval, topic modeling, machine translation, es-
say scoring, speech recognition, automatic text
correction (van Strien et al., 2020). Running
a spellchecker is now a common pre-processing
step performed in essay scoring (Flor, 2012a),
grammatical error correction (Chollampatt and
Ng, 2018; Rozovskaya and Roth, 2016; Grund-
kiewicz and Junczys-Dowmunt, 2018) and numer-
ous other applications. Nevertheless, even for En-

glish, performance of spellchecking tools is not as
good as one would expect, especially in noisy do-
mains (Flor et al., 2019). Kantor et al. (2019) eval-
uate three publicly available spellcheckers on En-
glish learner data and find that the highest recall
achieved is that of 69%, and the best precision is
57%, which indicates that the task is far from be-
ing solved. Further, their simple in-house imple-
mentation outperforms by a large margin all of the
common publicly available spellcheckers.

One reason for the slow progress on the task
might be the lack of common benchmark datasets.
As a result, proposed methods are being evaluated
either on isolated spelling errors extracted from
a corpus without context1 or on artificially cre-
ated datasets. Recently, Flor et al. (2019) re-
leased a dataset annotated for spelling errors in
English learner essays and provided an evaluation
of a minimal supervision system that combines
features based on the misspelled word itself and
the context in which it appears. They report strong
performance on that corpus, as well as competitive
results on a dataset from the medical domain.

We address the problem of correcting non-word
spelling mistakes in Russian, a language with rich
morphology. Our goal is two-fold: first, to im-
plement various established spelling methods with
known results for English and determine how they
perform on Russian. Our second goal is to per-
form cross-corpus comparison, by evaluating on
several Russian datasets that contain diverse data
(texts by native Russian speakers in the social me-
dia domain, as well as Russian learner texts).

We implement four models. First, we use two
baselines that do not take context into account:
Aspell spellchecker and the model proposed in
Kantor et al. (2019) that was shown to outper-
form Aspell and several other grammar check-

1Context in this work refers to the sentence (or the n-gram
window) in which the misspelled word occurs.
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ers for English. We then implement two mod-
els that also take into account contextual infor-
mation when proposing a correction: a statisti-
cal machine translation (SMT) approach and a
minimally-supervised method. The minimally-
supervised model follows the approach of Flor
et al. (2019). This model is compared against a
character-level SMT spellchecker that takes con-
text into account by incorporating a word-based
language model (LM) as well as other context fea-
tures at the re-ranking level (Chollampatt and Ng,
2018). We evaluate these four methods on three
Russian datasets that contain annotated spelling
mistakes. We perform a detailed error analysis and
identify the challenges pertaining to the Russian
language. We show that even though spelling cor-
rection of non-word errors is considered to be an
easy task, performance on a morphologically-rich
language is challenging and leaves a wide gap for
future research.

This paper makes the following contributions:
(1) we implement and evaluate four established
approaches to spelling correction and evaluate
these on three Russian datasets; (2) we show that
the minimally-supervised approach outperforms
the other methods and is the most robust; (3) we
perform error analysis identifying challenges of
spelling correction for Russian.

Section 2 reviews related work on the spelling
correction of Russian and on the established meth-
ods well-studied for English. Section 3 describes
the three datasets of spelling errors used in this
work. Section 4 presents the models. In Section 5,
we present the results, and in Section 6 we perform
error analysis of the results. Section 7 concludes.

2 Related Work

A non-word misspelling is a spelling error, such
that the resulting string is not a valid word in
the language. This is different from real-word
(context-sensitive) errors, for example confusing
“their”, “there” and “they’re” (Wilcox-O’Hearn
et al., 2008). Context-sensitive errors also sub-
sume grammar errors made by non-native speak-
ers (e.g. confusing “a” and “the”), but these typ-
ically are addressed using a different set of meth-
ods (Ng et al., 2014).

Most of the spelling correction research has
been focused on the English language. When deal-
ing with a language that has rich morphology, such
as Russian, specific challenges may arise. For

example, the rich morphology of Russian, as we
show, affects the candidate generation algorithm,
where a substantially higher number of competing
candidates is being generated, including those that
are morphological variants of the same lemma.
There is very little spelling work on other lan-
guages with complex and diverse morphology. For
instance, Oflazer (1996); Mohit et al. (2014); Ro-
zovskaya et al. (2015) address a variety of errors in
Arabic, including grammar and usage errors, but
they do not focus on spelling.

Previous studies on Russian spelling mainly ad-
dressed correcting spelling errors in search queries
(Baytin, 2008; Panina et al., 2013), which is a
special subtask of spelling correction, as the sur-
rounding context for candidate selection is not
considered or is considered in a quite restrictive
way. Sorokin et al. (2016) introduced the first
competition on spelling correction for Russian,
which focused on correcting texts collected from
Russian social media websites. Sorokin (2017)
presents a follow-up study, where they show that
the use of morphological information for can-
didate selection is beneficial for languages with
well-developed morphology, such as Russian. We
use the corpus released in this competition and
show that it is quite different from the other two
corpora used in this work.

Approaches to non-word spelling correction
Broadly speaking, the approaches to correcting
non-word spelling errors can be broken down into
those that only consider the characteristics of the
target token when ranking correction candidates,
and those that also take into account contextual in-
formation. Among the former are those that com-
pute edit distance (Levenshtein, 1966; Damerau,
1964) and phonetic similarity between the mis-
spelling and the candidate correction (Toutanova
and Moore, 2002).

One standard approach to correcting non-word
spelling errors follows the noisy channel model
formulation (Shannon, 1948). This approach in-
corporates non-contextual information, such as
the edit distance and phonetic similarity between
the misspelling and the candidate correction, and
the candidate frequency (Kernighan et al., 1990;
Church and Gale, 1991; Toutanova and Moore,
2002). Essentially, weights for different edit op-
erations are estimated from a large training cor-
pus of annotated spelling errors. However, this
approach requires a lot of supervision: thousands
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of annotated errors paired with their corrections
are used to estimate probabilities associated with
each edit. While the noisy channel model can
also incorporate contextual information, in gen-
eral, adding new features from a variety of sources
is not straightforward in the noisy channel formu-
lation.

Flor et al. (2019); Flor and Futagi (2012) pro-
posed a minimally-supervised model that com-
bines contextual and non-contextual information.
In Flor et al. (2019), they evaluate the model on
two spelling corpora: an English learner corpus
and a corpus from the biomedical domain, show-
ing competitive results. Importantly, unlike the
noisy channel model, their model only requires a
small amount of supervision and is robust on out-
of-domain data. In this work, we describe an im-
plementation of this model for Russian.

SMT methods for Spelling Correction
Character-level statistical machine translation
has been widely used for spelling correction of
natural data as well as OCR post-correction,
which can be viewed as a subtask of spelling
correction. Neural network (NN) approaches, in
particular, seq2seq models have recently been
used for spelling correction. We do not evaluate
NN methods in this work, as we have very
limited amounts of training data. For an analysis
and evaluation of NN approaches for spelling
correction, we refer the reader to Schnober et al.
(2016) and Amrhein and Clematide (2018).

3 Datasets

We use three Russian datasets annotated for mis-
spellings. The first one, RULEC-GEC, is a learner
corpus collected at the University of Oregon and
consists of essays written by learners of Russian
as a foreign language and heritage speakers (Al-
sufieva et al., 2012; Rozovskaya and Roth, 2019).
The dataset was corrected and annotated by native
Russian speakers and is error-coded. It is anno-
tated exhaustively for various grammar and usage
errors, and contains a large proportion of spelling
errors, especially for heritage speakers (over 42%
of all errors), and over 18% of all errors in the for-
eign group. We only focus on mistakes that are
marked as spelling errors. The corpus is parti-
tioned into training, development, and test. Since
we focus on the spelling errors, we evaluate only
with respect to those mistakes and ignore other an-
notated errors in the data.

The second corpus, henceforth RU-
Lang8 (Trinh and Rozovskaya, 2021), is a
dataset collected from the online language learn-
ing platform Lang-8 (Mizumoto et al., 2011) and
annotated by native speakers. The dataset contains
texts by learners of a variety of foreign languages.
The annotation is publicly available for research.
RU-Lang8 contains 54,000 tokens split up into
development and test partitions. We only use the
test partition in this work for evaluation, as the
models are developed and tuned on the RULEC-
GEC data. RU-Lang8 differs from RULEC-GEC:
the latter consists of essays written on a University
setting in a controlled environment, while the
Lang-8 data was collected online; the majority
of texts are short paragraphs or questions posed
by language learners. RU-Lang8 is thus more
informal and contains data by learners of multiple
first language backgrounds (unlike RULEC-GEC,
whose authors are from the United States).

The third corpus, RUSpellRU, is a dataset
released as part of the competition on auto-
matic spelling correction for the Russian language,
which focused on social media texts. The dataset
is a collection of essays from Russian blogs and
social media. This is another unique dataset,
very distinct: it contains a lot of colloquialisms,
slang expressions and social media spelling con-
ventions (Sorokin et al., 2016). Since the corpus
contains social media texts, the misspellings in-
clude, in addition to typos, a lot of slang and collo-
quial forms common in social media spelling, such
as the use of digits inside the words or unconven-
tional spellings, e.g. using phonetic spelling in-
stead of standard one.

Statistics on the datasets, including the total
number of tokens as well as the spelling error
rates (percentage of tokens containing a spelling
error), are shown in Table 1. We observe that
the RUSpellRU dataset is the most noisy one, and
its error rate is more than five times higher than
in the RULEC-GEC corpus, where the percent-
age of tokens containing a spelling mistake is the
smallest among the three. On the other hand, the
RUSpellRU dataset is produced by native Rus-
sian speakers, while the other two are produced
by learners of Russian and thus also contain other,
grammar and usage-related errors.

Table 2 analyzes the spelling errors with respect
to the type of edit – replacement, split, or merge.
A merge is a misspelling where a space is incor-



1209

Dataset Token Spelling Error
counts errors rate

RULEC-GEC (train) 83,410 1,023 1.23
RULEC-GEC (dev) 41,163 497 1.21
RULEC-GEC (test) 81,693 1,055 1.30
RU-Lang8 31,603 692 2.19
RUSpellRU 28,112 1,963 6.98

Table 1: Corpora statistics.

Corpus Edit type
Repl. Merge Split
(%) (%) (%)

RULEC-GEC 92.4 1.6 6.0
RU-Lang8 95.7 1.5 2.9
RUSpellRU 80.2 11.7 8.1

Table 2: Distribution of annotated misspellings by type
(merges, splits, replacements) in the three datasets. A
merge is a misspelling where a space is incorrectly
omitted, while a split is a misspelling that results from
an extra space being added.

rectly omitted, while a split is a misspelling that
results from an extra space being added. The dif-
ferences between the datasets are quite significant.
The RU-Lang8 corpus contains the highest pro-
portion of replacement errors (95.7%), while the
social media corpus RUSpellRU contains the least
proportion of replacement errors - 80.2%, while
merge errors are about 5 times more common in
RUSpellRU than in the other two corpora.

Finally, in Table 3 we analyze the replacement
errors with respect to the edit distance between the
source word and the correction. In the RULEC-
GEC and RUSpellRU datasets, over 80% of re-
placement edits are within edit distance 1, where
each type of change, including transposition er-
rors, has a cost of 1. This analysis is consistent
with findings in English corpora of misspellings
(Flor et al., 2019). The RU-Lang8 corpus, how-
ever, contains a higher proportion of errors with
edit distance greater than 1. Only 68.4% of errors
are within edit distance of 1.

4 The Models

In this section, we describe the minimally-
supervised model, the character-level SMT
speller, and the two baselines that do not use
context.

Corpus Edit dist. Perc. (%)

RULEC-GEC

1 84.0
2 11.3
3 2.6

> 3 2.1

RU-Lang8

1 68.4
2 19.5
3 7.3

> 3 4.8

RUSpellRU

1 83.6
2 10.9
3 3.6

> 3 1.9

Table 3: Distribution of annotated misspellings (re-
placement errors) by edit distance to correct form, in
the RULEC-GEC and RU-Lang8 datasets.

Dataset Gold Recall (%)
errors

RULEC-GEC 1055 65.7
RU-Lang8 692 79.9
RUSpellRU 1963 71.3

Table 4: Error detection performance on the three test
sets.

4.1 Minimally-Supervised Spelling
Correction Model

We implement the model described in Flor and Fu-
tagi (2012), Flor (2012a), that is evaluated in the
original papers on the English learner corpus of
TOEFL and GRE essays. It was also evaluated
on the TOEFL-11 corpus as well as a corpus of
biomedical English texts (Flor et al., 2019). Imple-
mentation of the model for Russian and its evalua-
tion on the Russian data with its rich morphology
is one of the contributions of the current work.

In this approach, the spelling correction task is
broken down into three subtasks: (1) detection, (2)
candidate generation, and (3) ranking of the candi-
dates. We describe each step below. In our imple-
mentation, we only consider single-token spelling
errors, where the original and the correction are
both single tokens.
Error Detection2 Detection of non-word spelling
errors is performed using a dictionary (lexicon).
Tokens that are not in the lexicon are considered to
be misspelled. This is not a trivial step, as proper

2The detection step described here is the same for all
spelling correction approaches used in this work, to make the
comparisons among the algorithms fair.
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Dataset Classification of errors missed at detection step (%)
Proper name Other Context-sens. Cap. Grammar Multi-token

RULEC 5.9 16.9 22.8 15.4 18.4 20.6
RU-Lang8 15.1 18.7 40.3 0.01 11.5 13.7
RUSpellRU 4.8 3.7 17.3 4.4 9.2 36.8

Table 5: Analysis of spelling mistakes missed at the detection stage. The mistakes that should have been detected
are those in categories Other and Proper name. Context-sens. stands for context-sensitive errors, where the original
token is also a valid word in the language. Cap. stands for capitalization errors.

names, in particular those that are foreign names,
or rare words, may be missing and would be mis-
takenly flagged as potential misspellings. Never-
theless, recall (detecting potential misspellings) is
more important than maintaining high precision in
this step. Our dictionary is based on the Yandex
corpus (Borisov and Galinskaya, 2014). The cor-
pus size is over 18 million tokens, and the resulting
dictionary contains 2.3 million word types. To re-
duce the number of false positives, for the words
not in the dictionary, we also check whether the
token is recognized as the last or first name by
the Mystem morphological analyzer (Segalovich,
2003) (if it appears non-capitalized in non-initial
sentence position) or if the stem of the word is
recognized as a known stem. The recall of the de-
tection algorithm is shown in Table 4. The low-
est recall of 65.7 is achieved on the RULEC-GEC
dataset, while the highest recall is obtained on RU-
Lang8 (79.9%).

We further analyze the recall of the detection
algorithm by classifying the spelling mistakes in
the gold data that were missed (Table 5). In the
RULEC-GEC dataset, 22.8% of these errors are
context-sensitive spelling mistakes, i.e. spelling
errors that involve confusing valid words and
which are not covered in this task. 20.6% are
spelling errors that are multi-token (i.e. require
merging two or more tokens), while 18.4% are
context-sensitive grammar mistakes (e.g. noun
case) which were miscategorized by the annota-
tor. Another 15.4% of mistakes are capitalization
errors. Only 16.9% of the missed errors (cate-
gory Other) as well as 5.9% of errors that involve
spelling mistakes on proper names are in fact
spelling mistakes that should have been detected
at this stage. Similarly, on RU-Lang8 dataset,
40.3% of missed errors are context-sensitive er-
rors, and the actual mistakes that were missed (cat-
egories Other and Proper Name) include 33.8% of
all missed tokens. In the RUSpellRU corpus, these

Dataset Dist. Cand. Gold
per error in cand.(%)

RULEC-GEC
1 3.1 79.4
2 44.3 92.9
3 313.0 95.5

RU-Lang8
1 4.6 66.0
2 76.0 85.0
3 412.6 91.5

RUSpellRU
1 3.7 68.1
2 70.6 77.6
3 361.9 78.8

Table 6: Evaluation of the candidate generation step.

errors comprise 8.5%.
If we exclude the non-relevant errors that are

counted as missed, the recall of the detection stage
improves to 89.2% for the RULEC-GEC corpus,
92.2% for the RU-Lang8 corpus, and 96.7% on the
RUSpellRU dataset.
Candidate Generation We consider several ap-
proaches to candidate generation based on the edit
distance between the source and the target strings.

Candidates are generated using the dictionary
described in the previous section. Candidates in-
clude all dictionary words within edit distance that
does not exceed half the length of the misspelled
string; the maximum distance is set to three, as
the number of candidates grows very quickly due
to the rich morphology of Russian (see Table 6).
For example, on average, 3 candidates are gen-
erated with edit distance of 1 for RULEC-GEC.
This number increases to 313 when an edit dis-
tance of 3 is used instead. This is because, due
to the morphological complexity, morphological
variants of the same base word are included as dif-
ferent candidates (also discussed in Section 6). In
English, candidates up to edit distance of 6 are in-
cluded (Flor et al., 2019), but doing so would ex-
plode the search space.

The candidate generation algorithm is evaluated
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Feature name Description
Non-contextual features

Orthographic similarity Inverse edit distance

Character difference
A pair comprising original
and replacement character

Candidate frequency Unigram word frequency
Contextual features

N-gram support
N-gram counts
in the 4-word window

Table 7: Description of all the features used in candi-
date ranking with the minimally-supervised model.

in Table 6. As the edit distance increases, the re-
call of the candidate generation (i.e. proportion of
errors for which gold is among the generated can-
didates) improves, however, the number of candi-
dates per error increases exponentially. We note,
though, that, while on the RULEC-GEC and RU-
Lang8 datasets, the recall increases to over 90%
with the edit distance set to 3, on the RUSpellRU
corpus, the highest recall achieved is 78.8%, even
though 83.6% of misspellings are within edit dis-
tance of 1, as shown in Table 3. This indicates
that a large number of colloquial and slang words
present in the corpus are not found in the dictio-
nary.
Ranking of Candidate Corrections The ranking
step is the most challenging one and is the focus of
most work on non-word spelling correction (Fivez
et al., 2017). Ranking of correction candidates
in the minimally-supervised model uses both the
features of the misspelling-candidate pair and the
contextual information. Flor (2012b) tuned fea-
ture weights manually on a set of misspellings, ex-
tracted from a corpus of TOEFL and GRE essays.
In this work, similar to (Flor et al., 2019), fea-
ture weights are learned using a linear algorithm
(Averaged Perceptron (Rosenblatt, 1958), imple-
mented within Learning Based Java (Rizzolo and
Roth, 2007).

We implement the following features: or-
thographic similarity (inverse edit distance),
character-difference, candidate word frequency,
and n-gram support. The features are listed in Ta-
ble 7 and described below.
Orthographic similarity is computed as inverse
edit distance, 1/(eDist + 1), where eDist is the
edit distance (including transpositions) between
the misspelling and the correction candidate (Lev-
enshtein, 1966; Damerau, 1964).
Character difference is a feature that encodes the

specific letter change between the original and the
candidate. This feature is active with replacement,
deletion, and character insertion errors for candi-
dates whose edit distance is 1. The feature is ex-
pected to reflect some common and well-known
character confusions, both among native and non-
native Russian writers, e.g. omitting the ü at the
end of a word after character ø or incorrectly us-
ing à instead of o in an unstressed position. Note
that this feature is similar to the concept of encod-
ing phonetic similarity, which we omit in this im-
plementation.
Candidate frequency A more frequent word is
more likely to be the intended word than a rare
word (Flor, 2012a). Unigram word frequency is
computed for each candidate using the Yandex
corpus.
N-gram support For each correction candidate, all
n-grams in the window of four context words on
each side are taken into account by the n-gram
support feature. We use co-occurrence counts
computed from a large corpus collected over the
Web (235 million tokens), henceforth the Sharoff
corpus.3 The n-gram support feature is a summa-
tion over the counts of all n-grams of length 2 to
5 (excluding the unigram count of the candidate
itself, since its frequency is reflected in the candi-
date frequency feature). For each error, the n-gram
count value is normalized by the highest candidate
count for that error.

For each misspelled token, with the exception
of the letter difference feature, the feature scores
of its candidate corrections are normalized, by di-
viding the score of the candidate feature by the
highest-scoring candidate on that given feature.

4.2 The SMT Speller

We implement a character-level statistical ma-
chine translation (SMT) speller (Chollampatt and
Ng, 2017). Input to the character-level SMT com-
ponent is a sequence of characters that make up the
unknown (misspelled) word and output is a list of
correction candidates (words). In Chollampatt and
Ng (2017), the misspelled words are those words
that have not been observed in the source side of
the parallel training data used to train the transla-
tion model. In this work, the unknown words are
identified using the same detection algorithm de-
scribed in Section 4.1. We do this for two reasons:
first, due to lack of large amounts of parallel data

3The corpus was kindly shared by Serge Sharoff.
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and the morphological complexity of Russian, the
number of unknown words for a word-level SMT
system would be too high. Second, we wish the
keep the detection step fixed, which allows for a
fair comparison of the re-ranking algorithms.

The character-level translation model, in line
with Chollampatt and Ng (2017), is trained on
pairs of misspellings and their corrections from the
RULEC-GEC training corpus (774 pairs) and an
additional set of 1,000 correct words selected uni-
formly at random from the target side of RULEC-
GEC training data.4 The language model that is
part of the SMT system is a 5-gram character-
level model trained on the Yandex corpus (22
million tokens). The SMT model is tuned on
the misspelling-correction pairs from the RULEC-
GEC development set. The character-level SMT
model is tuned using MERT (minimum error-rat
training) on characters, with character-level edit
operation features and a 5-gram character LM.

For each unknown word, the character-level
SMT produces 100 candidates that are then
rescored to select the best candidate based on the
context. The rescoring is done following Chol-
lampatt and Ng (2017) and uses word-level n-
gram LM features: LM probability and the LM
OOV (out-of-vocabulary) count denoting the num-
ber of words in the sentence that are not in the
LM’s vocabulary. The word-level n-gram LM is
trained on the Sharoff corpus, using the KenLM
toolkit (Heafield et al., 2013).

4.3 Further Baseline Systems

We compare to two other methods that do not
make use of context information: Aspell, and a re-
ranking algorithm proposed in Kantor et al. (2019)
. The latter has been recently used in grammar and
spelling correction research and showed good re-
sults in English.
Kantor et al. re-ranking Kantor et al. (2019) im-
plement an approach to English spelling correc-
tion, that is quite simple but is surprisingly ef-
fective and outperforms substantially other com-
monly used open-source spellcheckers: Enchant,
Norvig, and Jamspell. Briefly, the approach relies
on a large dictionary compiled from a native cor-
pus to identify misspelled tokens. In re-ranking,
for each misspelling, the most frequent candidate
correction (with a minimum count of 20) within

4We also tried adding all words from the target side (with-
out repetitions), but this did not improve the performance.

Dataset P R F1

RULEC-GEC 71.6 46.5 64.6
RU-Lang8 54.0 42.7 51.3
RUSpellRU 74.5 59.0 65.9

Table 8: Key results of the minimally-supervised
model. Performance on the error correction, using
the full set of features. The model is trained on the
RULEC-train corpus. Since edit distance 1 is used, this
feature is omitted.

an edit distance of 1 (transposition is treated as a
distance of 1) is returned. If no such candidate ex-
ists, they check if the misspelled word can be split
into two words that are in the word-count data or
in the dictionary. We implement their re-ranking
method (keeping the minimum count for words
at 5, since Russian is a morphologically-rich lan-
guage). Our list of incorrect tokens is generated
using the same candidate detection step described
above (Section 4.1). Only the re-ranking is differ-
ent.

5 Results

In all cases, the models are trained on the RULEC-
train corpus and tuned on the RULEC develop-
ment data. All results are reported on the test par-
titions of the three datasets. Key results of the
minimally-supervised model on the three datasets
are shown in Table 8. We observe that the perfor-
mance on RU-Lang8 is significantly lower than on
the other two datasets. We conjecture that this may
be due to the fact that RU-Lang8 has a small pro-
portion of errors with corrections being within an
edit distance of 1 from the misspelled token (see
Table 3).

The results of the minimally-supervised model
and of the other models implemented in this work
are shown in Table 9. The minimally-supervised
model outperforms all of the other models sig-
nificantly on all three datasets. The relative per-
formance of the models on each dataset is con-
sistent: we note that Aspell has the poorest per-
formance. This is followed by the SMT ap-
proach and the approach by Kantor et al. (2019).
The two approaches are quite close, although the
SMT method has high precision on RULEC-GEC
and the RUSpellRU datasets. The minimally-
supervised method achieves a substantially higher
recall than all the other methods. It also achieves
the highest precision on RULEC-GEC and RUS-
pellRU, although on the RU-Lang8 corpus its pre-
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Dataset System P R F1

RULEC-GEC

Aspell 42.2 41.2 42.0
Kantor et al. (2019) 65.5 43.6 59.6
SMT 70.1 34.4 58.1
Minim.-super. 71.5 46.5 64.6

RU-Lang8

Aspell 33.8 7.3 19.6
Kantor et al. (2019) 50.1 41.9 48.2
SMT 49.9 28.5 43.4
Minim.-super. 42.7 54.0 51.3

RUSpellRU

Aspell 34.2 35.8 35.0
Kantor et al. (2019) 59.5 48.4 53.4
SMT 66.7 20.1 44.9
Minim.-super. 74.5 59.0 65.9

Table 9: Comparison of the minimally-supervised
model with other systems implemented in this work.

Dataset Edit dist. P R F1

RULEC-GEC
1 71.6 46.5 64.6
2 67.5 51.0 63.4
3 62.1 50.5 59.4

RU-Lang8
1 42.7 54.0 51.3
2 46.5 51.8 50.6
3 49.1 53.6 52.7

RUSpellRU
1 74.5 59.0 65.9
2 67.5 59.9 63.4
3 65.4 59.5 62.3

Table 10: Evaluation of different edit distances in can-
didate generation. Performance on error correction of
the minimally-supervised model, using the full set of
features. The model is trained on RULEC-train.

cision is lower than the SMT and the re-ranking
approaches. Overall, among the three datasets, the
performance on RU-Lang8 is the lowest.
Evaluation of different edit distance values in
candidate generation Next, we evaluate perfor-
mance as a function of edit distance values for
candidate generation. In all cases, we use the full
feature set. Results are shown in Table 10. We
observe that there is no clear benefit to using an
edit distance greater than 1: on the RULEC-GEC
corpus, recall slightly improves, while precision
drops. On the RU-Lang8 dataset, precision im-
proves with a larger edit distance, while recall re-
mains the same. On the RUSpellRU dataset, recall
does not change, while precision drops. For this
reason, we use an edit distance of 1 in candidate
generation, as the number of candidates is much
smaller, as discussed above. It should be noted
that, while using only edit distance 1 is optimal

Dataset Counts P R F-s

RULEC-GEC

all feats 71.5 46.5 64.6
no cand freq 71.2 46.1 64.2
no char. diff 71.2 46.2 64.2
no n-gram 67.5 43.9 61.0

RU-Lang8

all feats 42.7 54.0 51.3
no cand freq 43.5 55.1 52.3
no char. diff 43.2 54.7 52.0
no n-gram 40.2 51.1 48.5

RUSpellRU

all feats 74.5 59.0 65.9
no cand freq 74.0 58.7 65.4
no char. diff 74.4 58.9 65.7
no n-gram 72.1 57.1 63.8

Table 11: Feature ablation. Performance on the error
correction, using an edit distance of 1. The model is
trained on the RULEC-train corpus.

for the scoring with the system, it is not sufficient,
as there are still many misspellings in each of the
datasets (as shown in Table 3) that have correc-
tions within higher edit distances. We leave this
for future work.

Feature ablation Finally, we perform feature
ablation to evaluate the contribution of the various
features in the minimally-supervised model. Re-
sults are shown in Table 11. The n-gram support
feature is shown to be the most important: drop-
ping this features results in performance loss of 2-
3 points on each dataset. This result demonstrates
the significance of the contextual information in
spelling correction.

6 Error Analysis

Candidate re-ranking We perform error analysis
of the candidate re-ranking component that is part
of the minimally-supervised approach. From each
dataset, we analyze 100 errors, on which an incor-
rect candidate is preferred. Results are shown in
Table 12. Morph. variant refers to incorrect candi-
dates that is an inflectional morphological variant
of the correct suggestion. Wrong cand. denotes
an incorrect suggestion that is not morphologically
related to the correct suggestion. Dist. denotes
corrections that have an edit distance greater than
1 to the source word. Since we currently only con-
sider candidates within edit distance of 1, these er-
rors cannot be corrected. Lex. change refers to
misspellings that are also word usage errors. It is
interesting to note that all three corpora have the
same proportion of errors (50%) that could not be
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Dataset Mistakes by type (%)
Morph. Wrong Edit Lex.
variant cand. dist. change

RULEC-GEC 23 13 50 14
RU-Lang8 17 13 50 20
RU-SpellRU 20 31 49 0

Table 12: Distribution of incorrect suggestions by the
candidate re-ranking algorithm. Morph. variant refers
to an incorrect candidate that is a morphological vari-
ant of the correct suggestion. Wrong cand. denotes an
incorrect suggestion that is not morphologically related
to the correct suggestion. Edit dist. denotes corrections
that have an edit distance greater than 1 to the source
word. Lex. change are errors that are word usage er-
rors, in addition to having a spelling error.

corrected due to the edit distance of the correct
candidate being greater than 1. Further, the cor-
pora have similar distributions overall regarding
mistakes when selecting a morphological variant
(17-23%). This shows that for languages with rich
morphology, morphological variants present an is-
sue for spelling correction, since morphological
variants typically differ by one character change,
and thus correction candidates typically include
multiple morphological variants of the same word.
A similar conclusion, although not quantified, was
drawn in the RUSpellRU competition for the so-
cial media data (Sorokin et al., 2016). We con-
firm this finding for various corpora and quantify
it. Both of the learner corpora also have grammat-
ical errors, and some of these were mistagged as
spelling mistakes (14% and 20% in the RULEC
and RU-Lang8 corpora, respectively). In contrast,
because the RUSpellRU corpus contains data from
native speakers, it is not expected to have many
grammar-related errors.

7 Conclusion

In this paper, we implement four models for
spelling correction for Russian and evaluate these
on three diverse datasets that contain spelling
mistakes. We present a comparative analysis of
spelling mistakes contained in the three datasets.
Evaluation results show that the minimally-
supervised model outperforms two baseline mod-
els that do not use context when selecting a can-
didate correction, and another model that uses
a character-level SMT and a language model in
re-ranking. We perform feature ablation of the
minimally-supervised model showing that contex-

tual information contributes to the performance.
We also carry out error analysis that reveals that
one common source of errors in Russian in se-
lecting the appropriate correction candidate is the
presence of morphological variants. This study
should provide insight into the spelling correction
problem for languages with rich morphology.
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