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Abstract

We propose an enhanced adversarial training
algorithm for fine-tuning transformer-based
language models (i.e., ROBERTa) and apply
it to the temporal reasoning task. Instead of
adding the perturbation only to the embed-
ding layer, our algorithm searches for the best
combination of layers to add the adversar-
ial perturbation. We further enhance this al-
gorithm with f-divergences, i.e., the Jensen-
Shannon divergence. Moreover, we enrich this
model with general commonsense knowledge
by leveraging data from the general common-
sense knowledge task in a multi-task learn-
ing scenario. Our results show that our model
can improve performance on both English and
Japanese temporal reasoning benchmarks, and
establishes new state-of-the-art results.

Although recent pre-trained language models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have achieved great success in a wide
range of natural language processing (NLP) tasks,
these models may still perform poorly on temporal
reasoning scenarios. Ribeiro et al. (2020) has shown
that such models often fail to make even simple tem-
poral distinctions, for example, to distinguish the
words before and after, resulting in degraded per-
formance.

Following best practices from recent work on en-
hancing model generalization and robustness, we
propose a model that effectively leverages pre-
trained representations (i.e. ROBERTa), adversarial
training, and multi-task learning for robust tempo-
ral reasoning. More specifically, our main contri-
butions are: 1) we propose an enhanced adversarial
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training algorithm for fine-tuning transformer-based
language models that boosts the fine-tuning perfor-
mance of RoOBERTa. More specifically, our algo-
rithm generates and adds the perturbation to a com-
bination of layers during adversarial training. We
hypothesize this might encourage the model to gen-
erate more diverse adversarial examples, and im-
prove model generalization capability. Common ad-
versarial training approaches for NLP add the per-
turbation only to the embedding layer (Zhu et al.,
2019; Jiang et al., 2019; Liu et al., 2020; Pereira
et al., 2020). In addition, we further enhance
this algorithm with f-divergences (i.e., the Jensen-
Shannon divergence), recently proposed by Cheng
et al. (2021); 2) we enrich this model with gen-
eral commonsense knowledge by leveraging data
from the general commonsense knowledge task in a
multi-task learning scenario; 3) we apply our model
to several temporal reasoning tasks and improve
state-of-the-art results.

1 Background

In this section, we describe the temporal reasoning
tasks we tackle in this work. All tasks are chal-
lenging since they require deep understanding of the
temporal properties of language.

Event Ordering Prediction Task: This task in-
volves predicting the temporal relationship between
a pair of input events in a span of text. We use
the MATRES dataset (Ning et al., 2018). It origi-
nally contains 13,577 pairs of events annotated with
a temporal relation (BEFORE, AFTER, EQUAL,
VAGUE). The temporal annotations are performed
on 256 English documents (and 20 more for evalua-



tion) from the TimeBank (Pustejovsky et al., 2003),
AQUAINT (Graff, 2002) and Platinum (UzZaman
et al., 2013) datasets. An example of a sentence
with two events (in bold) that hold the BEFORE re-
lation is below:

At one point, when it (el:became) clear
controllers could not contact the plane,
someone (e2:said) a prayer.

We follow Zhou et al. (2021), and we train and eval-
uate only the instances with a label of either “BE-
FORE” or “AFTER”.

Event Duration Prediction Task: This task con-
sists of deciding whether a given event has a dura-
tion longer or shorter than a day. We use TimeML
(Sauri et al., 2006; Pan et al., 2006), a dataset with
event duration annotated as lower and upper bounds.
An example of a sentence with an event (in bold) that
has a duration shorter than a day is shown below:

In Singapore, stocks hit a five year low.

Story Cloze Task (SCT): This task involves choos-
ing an ending to a story. We use the Story Cloze Task
dataset (Mostafazadeh et al., 2017), where the task
is to choose the correct ending, among two choices,
to a 4-sentence story. It captures a rich set of causal
and temporal commonsense relations between daily
events. An example from the dataset is below. The
correct answer is in bold.

Story: Danny bought a boat. His nearby
marina was having a race. He decided to
enter. Danny and his best friend manned
the boat.

a) Danny decided to go to sleep.

b) They prepared for the start of the
race.

Temporal Commonsense Reasoning Task: This
task focuses on temporal commonsense reasoning.
We use the MC-TACO (Zhou et al, 2019) dataset.
It considers five temporal properties: (1) duration
(how long an event takes), (2) temporal ordering
(typical order of events), (3) typical time (when an
event occurs), (4) frequency (how often an event oc-
curs), and (5) stationarity (whether a state is main-
tained for a very long time or indefinitely). It con-
tains 13k tuples, each consisting of a sentence, a

question, and a candidate answer, that should be
judged as plausible or not. The sentences are taken
from different sources such as news, Wikipedia, and
textbooks. An example from the dataset is below.
The correct answer is in bold.

Paragraph: Growing up on a farm near St.
Paul, L. Mark Bailey didn’t dream of be-
coming a judge.

Question: How many years did it take for
Mark to become a judge?

a) 63 years & b) 7 weeks & c¢) 7 years
d) 7 seconds & e) 7 hours &

In the next section, we introduce our temporal rea-
soning model.

2 Temporal Reasoning Model

Our model uses RoBERTa (Liu et al., 2019) as the
text encoder as it has obtained high performance
on several natural language understanding (NLU)
benchmarks. We focus on exploring adversarial
training and multi-task learning, as detailed below.
Adversarial training (ADV): Adversarial training
works as an online data augmentation method and
can help improve model performance, especially in
low-resource scenarios. It can also help improve
model performance without increasing the model
size, which is helpful in scenarios where compu-
tational resources are limited. Adversarial training
has proven effective in improving model generaliza-
tion and robustness in computer vision (Madry et al.,
2017; Goodfellow et al., 2014) and more recently in
natural language processing (NLP) (Zhu et al., 2019;
Jiang et al., 2019; Cheng et al., 2019; Liu et al.,
2020; Pereira et al., 2020). It works by augmenting
the input with a small perturbation that maximizes
the adversarial loss:
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where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017). Re-
cently, adversarial training has been successfully ap-
plied to NLP as well (Zhu et al., 2019; Jiang et al.,
2019; Pereira et al., 2020). In our work, we propose



to enhance the ALICE (Pereira et al., 2020) algo-
rithm. ALICE combines two approaches to estimate
the perturbation d: one that uses the label y (Zhu et
al., 2019) and another that uses the model prediction
f(z;0), i.e., a “virtual” label (Miyato et al., 2018;
Jiang et al., 2019):

mein E(m,y)ND {H}saXl(f(x + 51; 9)7 y)+
1

omaxl(f(a +82:0). f(a:0))].

where §; and Jo are two different perturbations,
bounded by a general [, norm ball, estimated by a
fixed K steps of the gradient-based optimization ap-
proach. In our experiments, we set p = oco. Ef-
fectively, the second term encourages smoothness
in the input neighborhood, and « is a hyperparam-
eter that controls the trade-off between standard er-
rors and adversarial errors. ALICE has been origi-
nally proposed for the commonsense reasoning task,
however, it is a general algorithm that can be ap-
plied to other tasks as well. In our work, we show
its applicability to the temporal reasoning tasks de-
scribed in Section 1. Moreover, we propose to fur-
ther enhance this algorithm with f-divergences, re-
cently proposed by Cheng et al. (2021). Specifi-
cally, we consider the posterior regularization with
the Jensen-Shannon divergence (JSD) (Lin, 1991),
instead of the KL-divergence, originally proposed
for ALICE. JSD is a smoothed and symmetric ver-
sion of the KL-Divergence. We show in our exper-
iments that JSD outperforms the KL-divergence on
the temporal tasks. In addition, we investigate which
combination of layers is best for adding the pertur-
bation during training. ALICE originally adds the
perturbation only to the embedding layer. We show
that adding the perturbation to a combination of the
transformer’s layers instead leads to better results.
We first set a maximum layer (among all RoOBERTa
layers, including the embedding layer) where the ad-
versarial perturbation can be added. In each epoch,
for each mini-batch selected, we first sample noise
vectors 01 and & from A(0, 021), with mean 0 and
variation of o2. A layer among the embedding layer
and the maximum layer previously set is randomly
chosen and the model performs adversarial steps
from this layer by K gradient steps. The noise inputs
are then constructed by adding the perturbations ¢
and J2 to the hidden state vector of the randomly

chosen layer. Specifically, the model first performs
a forward pass up to the chosen layer, then the per-
turbations &1 and & are separately added to its hid-
den states, generating two different noise inputs. For
example, if the second RoOBERTa layer is set as the
maximum layer, a layer among the embedding layer,
the first, and the second layer is randomly chosen for
each mini-batch selected, and adversarial training is
performed from this layer. The model is then up-
dated according to the task-specific objective for the
task. The best layer combination is chosen by using
a development set. We name our enhanced model
ALICE++.

Multi-task learning (MTL): Multi-task learning is
an effective training paradigm to promote model
generalization ability and performance (Caruana,
1997; Liu et al., 2015; Liu et al., 2019; Ruder, 2017;
Collobert et al., 2011). It works by leveraging data
from many (related) tasks. We propose to enrich
the training of the temporal commonsense reasoning
task and Story Cloze Task by leveraging data from
the general commonsense knowledge task. Since the
commonsense reasoning task commonly involves
reasoning about temporal events, e.g. what event(s)
might happen before or after the current event, we
hypothesize that those tasks might benefit from it. In
our experiments, we use the CosmosQA (Huang et
al., 2019) dataset. It has 35,888 questions on 21,886
distinct contexts taken from blogs of personal narra-
tives. Each question has four answer candidates, one
of which is correct. An example from this dataset is
below. The correct answer is in bold.

Paragraph: Did some errands today. My
prime objectives were to get textbooks,
find a computer lab, find career services,
get some groceries, turn in payment plan
application, and find out when KEES
money kicks in. I think it acts as a refund
at the end of the semester at Murray, but
I would be quite happy if it would work
now.

Question: What happens after I get the re-
fund?

Option I: 1 can pay my bills.
Option 2: 1 can relax.

Option 3: I can sleep.



Option 4: None of the above choices.

We use the MT-DNN framework (Liu et al., 2019;
Liu et al., 2020), which incorporates RoOBERTa as
the shared text encoding layer (shared across all
tasks), while the top layers are task-specific. We
used the pre-trained RoBERTa model to initialize
the shared layers and refined them via MTL on the
temporal reasoning tasks.

3 Experiments

3.1 Datasets and Evaluation Metrics

The English datasets used in our experiments are
summarized in Table 1. For TimeML, we follow the
train and test splits as in (Zhou et al., 2020). For
MCTACO, we follow Zhou et al (2019). For the
MATRES dataset, we follow Ning et al. (2018). For
the Story Cloze Task, we use the 2016 and 2018 data
releases after removing duplicates. We set 20% of
the TimeML, MATRES, and Story Cloze Task train-
ing data as the development set to tune the hyper-
parameters. For the MC-TACO dataset, no training
set is available. Following Zhou et al (2019), we use
the dev set for fine-tuning the model. We use 20%
of this data for fine-tuning the parameters.

We evaluate the performance on MATRES in
terms of accuracy and Fl-score, and TimeML and
Story Cloze Task in terms of accuracy. For the MC-
TACO dataset, we report the exact match (EM) and
F1 scores, following Zhou et al (2019). EM mea-
sures how many questions a system correctly la-
beled all candidate answers, while F1 measures the
average overlap between one’s predictions and the
ground truth.

3.2 Implementation Details

Our model implementation is based on the MT-DNN
framework (Liu et al., 2019; Liu et al., 2020). We
use RoOBERTa_LARGE (Liu et al., 2019) as the text
encoder. We used ADAM (Kingma and Ba, 2014)
as our optimizer with a learning rate in the range
€ {9%x 10751 x 1075} and a batch size in the range
€ {16,32,64}. The maximum number of epochs
was set to 10. A linear learning rate decay sched-
ule with warm-up over 0.1 was used unless stated
otherwise. To avoid gradient exploding, we clipped
the gradient norm within 1. All the texts were tok-
enized using WordPiece and were chopped to spans

no longer than 512 tokens. We also set the dropout
rate of all the task-specific layers as 0.3. During ad-
versarial training, we follow (Jiang et al., 2019) and
set the perturbation size to 1 x 107, the step size to
1x1073, and to 1 x 107 the variance for initializing
perturbation. We search the regularization weight o
in {0.01, 0.1, 1}. We set the number of projected
gradient steps to 1.

3.3 Main Results

We present our results in Table 2. We compare
our model, ALICE++ , with other state-of-the-art
models. Overall, the adversarial methods, i.e., AL-
ICE and ALICE++ , were able to outperform the
standard fine-tuning approach (STD) and the other
baselines, without using any additional knowledge
source, and without using any additional dataset
other than the target task datasets. These results sug-
gest that adversarial training leads to a more robust
model and helps generalize better on unseen data.
Both ALICE++ (JSD), the model that uses
the Jensen-Shannon Divergence, and ALICE++
(JSD + Best layers selection)» the model that uses JSD and
the best layer combination to add the perturba-
tion, were able to outperform ALICE and the other
baselines. Overall, ALICE++ (JSD + Best layers selection)
obtained better performance. This indicates that
adding the adversarial perturbation to the other lay-
ers of the model in addition to the embedding layer
can improve the model generalization capability.
For example, on the MATRES dataset, ALICE++
(JSD + Best layers selection) obtained a 89.82% Fl-score,
a 2.52% improvement over SYMTIME (Zhou et
al., 2021), a T5 model that exploits distant super-
vision signals from large-scale text and uses tem-
poral rules to combine start times and durations
to infer end times. On the TimeML dataset, AL-
ICE++ (JSD + Best layers selection) outperformed TacoML
(Zhou et al., 2020), a BERT model pre-trained on
explicit and implicit mentions of temporal com-
mon sense, extracted from a large corpus us-
ing pattern rules, and obtained an accuracy of
84.45%, an absolute gain of 2.75%. On the MC-
TACO dataset, ALICE++ (JSD + Best layers selection) out-
performs the T5-3B model (Kaddari et al., 2020)
in terms of Fl-score, obtaining an Fl-score of
80.09%, an improvement of 0.63%, and an EM
score of 58.56%, only 0.52% lower than T5-3B



Dataset | #Train | #Test #Label Metrics

MATRES | 10,906 | 698 | 2 {BEFORE, AFTER} Accuracy & F1-score
TimeML 1,248 | 1,003 2 Accuracy

SCT 1,571 | 1,871 2 Accuracy
MC-TACO| 3,783 | 9,442 2 F1-Score & Exact Match (EM)

Table 1: Summary of the four English evaluation datasets: MATRES, TimeML, Story Cloze Task (SCT), and MC-

TACO.

MATRES TimeML | MC-TACO ‘ SCT
Model Acc F1 Acc EM F1 Acc
Human - - 87.70 75.80 87.10 -
STD 91.12 88.93 81.06 51.05 76.85 | 96.37
ALICE (Pereira et al., 2020) 91.69 89.10 82.75 56.45 79.50 | 96.85
ALICE++ (JSD) 91.55 89.37 83.15 58.10 80.20 | 97.17
ALICE++ (JSD + Best layers selection) 91.98 89.82 84.45 58.56 80.09 | 97.38
ALICE++ (JSD + Best layers selection, MT_CosmosQA) - - - 59.90 80.88 | 97.49
T5-3B (Kaddari et al., 2020) - - - 59.08 79.46 -
TacoML (Zhou et al., 2020) - - 81.70 - - -
SYMTIME (Zhou et al., 2021) - 87.30 - - - -
GDIN (Tian et al., 2020) - - - - - 91.90

Table 2: Test results of MATRES, TimeML, Story Cloze Task (SCT), and MC-TACO. The best results are in bold.
STD denotes the standard fine-tuning procedure where we fine-tune RoBERTa on each task specific temporal rea-
soning dataset. ALICE++ denotes our proposed models. ALICE++ (JSD) denotes the model that uses the Jensen-
Shannon Divergence, ALICE++ (5D + Best layers selectiony denotes the model that uses JSD and the best layer combination
to add the perturbation, and ALICE++ (5sp + Best layers selection), MT_CosmosQA) denotes the model that trains jointly with
the CosmosQA dataset, in the multi-task learning setting. Note that STD, ALICE, and all ALICE++ models use
RoBERTay argE as the text encoder, and for a fair comparison, all these results are produced by ourselves.

model. When we train this dataset together with
the CosmosQA in the multi-task learning setting,
ALICE++ (JSD + Best layers selection, MT_CosmosQA) out-
performed the T5-3B model on both F1 and EM,
with score of 80.88% and 59.90%, respectively. We
emphasize that both SYMTIME and T5-3B use T5,
a much larger model (with 3B parameters) than
RoBERTa (300M parameters), used in our experi-
ments. On the Story Cloze Task (SCT) dataset, AL-
ICE++ (JSD + Best layers selection) largely outperformed
GDIN (Tian et al., 2020), a model that enhances
BERT and ALBERT (Lan et al., 2019) word repre-
sentations with knowledge sources. It obtained an
accuracy of 97.49%, while GDIN obtained an score
of 91.90%.

3.4 Evaluation on Japanese dataset

We also explore the feasibility of our model on a
Japanese dataset. Table 4 describes our results on
the Japanese event ordering prediction task. We
use the BCCWJ-Timebank corpus (Asahara et al.,
2014). It consists of four tasks: 1) DCT, which de-
notes relations between a time expression of docu-
ment creation time (DCT) and an event instance; 2)
T2E, which denotes relations between a time expres-
sion (non-DCT) and an event instance within one
sentence; 3) E2E, which denotes relations between
two consecutive event instances; and 4) MAT, which
denotes relations between two consecutive matrix
verbs of event instances. We perform the document-
level 5-fold cross-validation. In each split, we
randomly select 15% documents as the develop-
ment set. We follow a merged 6-relation set (BE-



FORE’, "BEFOREOR-OVERLAP’, "OVERLAP’,
’OVERLAP-ORAFTER’, ’AFTER’, and "VAGUE’)
as in Yoshikawa et al. (2014). The statistics of the
corpus are shown in Table 3. An example from the
corpus on the E2E task is shown below.

Task: E2E

il v % (el:3.5)T LIS (e &), Koy
745 <

(el:Shake) the salt a little and (e2:leave)
it for a while to wipe off the water.

Label: BEFORE

Moreover, we train all tasks jointly using multi-
task learning, following Cheng et al. (2020). We
use a Japanese BERT_BASE model ! as the text en-
coder. Compared to standard fine-tuning and the
other baselines, ALICE++ could improve on all
tasks. It outperformed the model by Cheng et al.
(2020), a BERT_BASE model that dynamically up-
dates event representations. ALICE++ also outper-
formed the model by Yoshikawa et al. (2014), a
feature-based SVM classifier.

DCT
2,873

E2T
1,469

E2E
1,862

MAT
776

Table 3: Number of TLINKSs in the BCCWJ-Timebank
dataset. A (TLINK) defines the temporal ordering of
temporal information expressions and event expressions.

Model DCT | E2T | E2E MAT
STD 83.04 | 65.15 | 68.54 |63.50
Yoshikawa et al. (2014) 75.60 | 55.70 | 59.90 |50.00
Cheng et al. (2020) 81.60 | 60.70 | 64.50 |64.60
ALICE++ 83.22 | 66.61 | 68.96 64.63

Table 4: Accuracy test results on the BCCWJ-Timebank
dataset. ALICE++ denotes the model that uses JSD and
the best layer combination to add the perturbation.

4 Analysis of RoOBERTa layers when
adding the adversarial perturbation

In this Section, we show a brief analysis of the
best combination of layers for adding the adversar-
ial perturbation. Figure 1 shows the accuracy on the

"https://nlp.ist.i.kyoto-u.ac.jp/?ku_bert_japanese

TimeML, Story Cloze Task, MC-TACO, and MA-
TRES development sets as we change the layer com-
bination to add the adversarial perturbation. We can
observe that adding the adversarial perturbation to
the other layers of the model in addition to the em-
bedding layer leads to better performance compared
to adding the perturbation to the embedding layer
only.

A similar tendency is observed on the BCCW]J-
Timebank, as shown in Figure 2.

5 Conclusion

We proposed an adversarial training algorithm
for fine-tuning transformer-based language models,
ALICE++ , that boosts the fine-tuning performance
of RoBERTa. Our experiments demonstrated that it
achieves state-of-the-art results on several temporal
reasoning tasks. Although in this paper we focused
on the temporal reasoning task, ALICE++ can be
generalized to solve other downstream tasks as well,
and we will explore this direction as to future work.
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Figure 1: Performance on the TimeML, Story Cloze Task, MC-TACO, and MATRES development sets as we change
the layer combination to add the adversarial perturbation. maxz_layer = 0 denotes that the adversarial perturbation is
added to the embedding layer only. All the other values denote that, for each mini-batch, a layer among the embedding
layer and max_layer is randomly chosen and the model performs adversarial training from this layer. The model is
then updated according to the task-specific objective for the task.
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Figure 2: Accuracy on the BCCWJ-Timebank development sets as we change the layer combination to add the ad-
versarial perturbation. maz_layer = 0 denotes that the adversarial perturbation is added to the embedding layer
only. All the other values denote that, for each mini-batch, a layer among the embedding layer and max_layer is
randomly chosen and the model performs adversarial training from this layer. The model is then updated according to
the task-specific objective for the task.
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