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Abstract

In the past few years, generative adversarial
networks (GANs) have become increasingly
important in natural language generation. How-
ever, their performance seems to still have a sig-
nificant margin for improvement. For this rea-
son, in this paper we propose a new adversarial
training method that tackles some of the limita-
tions of GAN training in unconditioned gener-
ation tasks. In addition to the commonly used
reward signal from the discriminator, our ap-
proach leverages another reward signal which
is based on the occurrence of n-gram matches
between the generated sentences and the train-
ing corpus. Thanks to the inherent correlation
of this reward signal with the commonly used
evaluation metrics such as BLEU, our approach
implicitly bridges the gap between the objec-
tives used during training and inference. To
circumvent the non-differentiability issues as-
sociated with a discrete objective, our approach
leverages the reinforcement learning policy gra-
dient theorem. Our experimental results show
that the model trained with mixed rewards from
both n-gram matching and the discriminator
has been able to outperform other GAN-based
models in terms of BLEU score and quality-
diversity trade-off at a parity of computational
budget.

1 Introduction

Neural language generation (NLG) is an important
research area in natural language processing (NLP)
because of its fundamental role in many other tasks
such as machine translation (Wu et al., 2016), text
summarization (See et al., 2017), and dialog systems

(Bordes and Weston, 2017). Typically, these models
are trained using an approach called “teacher forc-
ing”, where the probability of ground-truth tokens
conditional on previous ground-truth tokens is maxi-
mized during training (Goyal et al., 2016). Although
this approach has reported substantial success, it bi-
ases the model toward ground-truth samples during
training, but it has to rely on its own generated sam-
ples during inference, often resulting in a mismatch
between the two data distributions and the so-called
“exposure bias” problem. Researchers have made sev-
eral attempts to alleviate this issue, including sched-
uled sampling (Bengio et al., 2015), adversarial train-
ing (Yu et al., 2017), and, more recently, optimal
transport objectives (Wang et al., 2020).

Generative adversarial networks (GANs) (Good-
fellow et al., 2014), initially conceived for realistic
image generation, have attained a good degree of suc-
cess also in a variety of NLP tasks. Yu et al. (2017)
has been one of the earliest attempts to demonstrate
the potential of GANs for NLG. Following that, a
series of related works have shown considerable im-
provements in terms of sample quality. However,
some of these approaches rely on sophisticated archi-
tecture design such as LeakGAN (Guo et al., 2018),
while others like RelGAN (Nie et al., 2019) are based
on enhanced model capacities. Therefore, direct com-
parison of the performance between different models
becomes difficult since the quality of the generated
sentences is directly related to the model’s capacity
(Radford et al., 2019). For this reason, in this paper
we adopt a unified benchmark called Texygen (Zhu
et al., 2018; Lu et al., 2018), which re-implemented
the models of several significant works, but at an



approximate parity of capacity to permit insightful
comparisons.

Unlike other NLG tasks such as machine trans-
lation or text summarization, unconditioned gener-
ation refers to the generation of natural sentences
without any input or prompt during training and spe-
cific ground-truth target sentences during evaluation
(Semeniuta et al., 2018). It is an important task to
test the model’s ability to generate realistic and di-
verse sentences. Therefore, calculating performance
based on sentence-level metrics becomes impossible
(Lin, 2004; Lavie and Agarwal, 2007). As a conse-
quence, researchers have had to adopt corpus-level
metrics such as corpus BLEU (Papineni et al., 2002)
and self-BLEU (Zhu et al., 2018), and utilize the
entire reference set to evaluate each generated sen-
tence (Zhu et al., 2018; Lu et al., 2018). Despite
some controversy, GAN-based models have princi-
pled advantages in unconditioned generation tasks:
by leveraging a discriminator trained over the entire
training corpus, the generator can be effectively re-
warded or penalized. On the other hand, GAN-based
models also face shortcomings, the most obvious of
which is that the reward signal from the discriminator
can prove elusive to interpret (Lu et al., 2018).

To tackle the above limitations and retain the ad-
vantages of GANs in unconditioned language gen-
eration, in this paper we propose a novel reward to
be used in adversarial training. The proposed re-
ward leverages the matching information between
the generated sentences and the entire training cor-
pus, and we therefore aptly refer to our approach
as n-gram Matching-Enhanced GAN (n-MEGAN).
Since n-gram matching strongly correlates with the
BLEU score used for evaluation, our approach man-
ages to alleviate the mismatch between training and
inference. At the same time, since it does not directly
optimize for the BLEU score during training, it is
able to prevent overfitting and improve performance
compared to its baseline and a range of competitive,
comparable models.

2 Related Work

While the original GAN used a differentiable train-
ing objective, later GAN-based methods have been
able to also incorporate non-differentiable compo-
nents, and can be roughly divided into two categories

based on how they address non-differentiability (Se-
meniuta et al., 2018). The first category aims to
ensure end-to-end trainability through continuous re-
laxations, such as the Gumbel-Softmax relaxation
used in Kusner (2016) and Nie (2019). The other cat-
egory circumvents this issue by drawing on reward-
based algorithms, especially the policy gradient theo-
rem (Williams, 2004) of reinforcement learning (RL).
One advantage of this approach is that it allows for
the direct optimization of the discrete metrics which
are extensively used for the evaluation of NLG tasks.
The most straightforward candidate for this is the
BLEU score (Ranzato et al., 2016). However, train-
ing the model with the same metric used for its eval-
uation is prone to overfitting, and using BLEU as
reward has not led to reported improvements (Casas
et al., 2018; Lu et al., 2018).

In view of this, the majority of GAN-based works
in unconditioned language generation has continued
to explore differentiable objectives. Guo et al. (2018)
have proposed a complex hierarchical structure that
allows the reward signal from the discriminator to
better flow into the generator, and showed its advan-
tages in long text generation. Fedus et al. (2018)
have focused on integrating text understanding into
text generation by randomly masking some input
tokens, and exhibited some improvements in both
conditioned and unconditioned generation tasks. At
their turn, Lin et al. (2017) have proposed using rel-
ative rather than absolute rewards to ensure that the
reward signals of different sentences remain distin-
guishable. Our work follows a similar idea to Lin et
al. (2017), but aims to leverage a reward signal that
correlates with, yet it is not identical to, a meaningful
evaluation metric.

3 Model

As mentioned in Section 1, at a parity of training data,
the quality of the generated sentences directly relates
to a model’s capacity (i.e., the order of magnitude of
its size). Therefore, for a fair evaluation we adopt
a widely cited benchmark called Texygen that has
been used as reference by many other works (Nie
et al., 2019; Caccia et al., 2020; Wang et al., 2020).
Please note that this benchmark has streamlined all
the implementations, but retained all the original al-
gorithms faithfully. For the same reasons, we reuse



Figure 1: A sketch of the proposed model. The red boxes
represent the computation of the n-gram matching (RN ).
The blue boxes represent the reward from the unfolded
recurrent discriminator (RD). Eventually, the gray boxes
represent the mixed reward (RM ).

most of its hyperparameters settings.

3.1 Generator

The generator Gθ that we have used for our work is a
standard LSTM architecture (Hochreiter and Schmid-
huber, 1997). However, our approach is architecture-
agnostic, and larger models such as the transformer
(Vaswani et al., 2017) can be equally employed. Typ-
ically, the generator is first pre-trained with the stan-
dard negative log-likelihood (NLL) loss to reduce
the perplexity. After that, adversarial training is per-
formed on the pre-trained model to fine-tune the gen-
erator over a chosen reward. The pre-training stage
is usually beneficial with GAN-based models since
the exploration space of adversarial training is much
broader than that of NLL training (Chen et al., 2020).
Indeed, if directly trained with the adversarial objec-
tive, models may fail to generate realistic sentences
altogether.

3.2 Discriminator

We employ a discriminator, Dφ, with the same ar-
chitecture as the generator except for the final linear
layer, whose output dimension is 2 (real or generated)
rather than the size of the vocabulary. Fedus et al.
(2018) has shown that an LSTM-based discriminator
can more effective than those based on CNNs be-
cause of its ability to assess the sequential nature of
the sentence. The loss function of the discriminator

can be expressed as:

L = − 1

Nr

Nr∑
r=1

logDφ(X
r)− 1

Ng

Ng∑
g=1

log(1−Dφ(Xg)) (1)

where Xr is a sentence from the training set (“real”)
and Xg is a generated sentence.

3.3 Reward

Our proposed training objective leverages two re-
ward signals. The first, RN , uses n-gram matching
as reward. The second, RD, is the signal from the
discriminator. In addition, we have synthesized a
third type of reward, RM , by combiningRN andRD.
Figure 1 shows a sketch of our model, with emphasis
on the reward signals. Thanks to the recurrent archi-
tecture of our discriminator, we are able to obtain a
reward signal at every time step. Therefore, the re-
ward signal from the discriminator for the k-th word
generated by the generator can be simply expressed
as:

RD(xk) = Dφ(xk) (2)

where Dφ(xk) measures the ability of word xk to
“fool” the discriminator.

For RN , our basic assumption is that words with
longer n-gram overlap with the training corpus
should receive a higher reward than those with a
shorter one. We use the notation Xk−n+1:k to refer
to the subsentence of length n ending at word xk.
Due to the sequential nature of the text, we should
increase the order of n-grams from the left-end side
to ensure the target token xk is always included in
the subsequences, like the reverse operation in the
seq2seq model (Sutskever et al., 2014). Here, we set
the maximum n to 4 as suggested by Papineni (2002).
The n-gram matching, noted as M(Xk−n+1:k), is
performed by comparing the target subsequence with
the entire training corpus. If a match occurs, this
process will output 1 and exit early, otherwise, it will
return 0. Additionally, this process can be further
accelerated by storing the already matched pairs in
a look-up memory. Since the generation error in-
creases with the length of the generated sequence
(Bengio et al., 2015), for the first few tokens, that
lack high-order n-grams, we can simply use a special
〈pad〉 token to fill the subsequence. Given that the
〈pad〉 token will never appear in the training corpus,
this eventually ends up penalizing the initial tokens



which are easily learned and generated by the genera-
tor anyway, and force the generator to focus on later
tokens.

To compute the total matching reward for word xk,
we use an equally-weighted average as suggested by
Lavie and Agarwal (2007):

RN (xk) =
1

N

N∑
n=1

M(Xk−n+1:k) (3)

Note that, in alternative, it is possible to use different
weights for the different orders of n-grams, so as to
modulate the matching reward to different overlap
preferences.

To form our third reward signal, RM , from the
combination of RD and RN , we have chosen to use
a multiplication instead of linear interpolation, as in:

RM (xk) = RN (xk)RD(xk) (4)

In this way, the final reward can be interpreted as a
weighted value, where the value is the signal from the
discriminator, and the weight depends on the largest
length, n, of subsequence matching with the refer-
ence corpus. In case on no match, the reward will
suitably reduce to 0. Overall, this scheme will encour-
age the generator to focus on generating sentences
with longer n-grams overlapping. It should be noted
that this is particularly important in unconditioned
generation tasks, since there are no inputs or specific
reference sentences to drive the training; rather, the
main aim for this task is to generate grammatically-
and lexically-correct sentences, and therefore more
and longer overlapping n-grams will directly relate
to the quality of the generated sentences, as we show
in Section 4.

4 Experiments and results

4.1 Datasets and Experimental Set-Up
We have performed our experiments over three popu-
lar datasets for unconditioned text generation, namely
COCO Image Captions, EMNLP2017 WMT News,
and Chinese Poetry. The first two datasets consist of
sentences of variable length, while the last dataset
is made of sentences (verses) all of the same length.
Further details are provided in the relevant subsec-
tions. To generate sentences, we can either always
start from a fixed point or from a sampled point

from a distribution, such as a variational autoencoder
(Bowman et al., 2016). Here, we adopt the approach
of Texygen, always starting from a special start-of-
sentence token, 〈sos〉. We stop generating whenever
another special token, 〈eos〉, is predicted, or a maxi-
mum pre-defined length has been reached. For gener-
ated sentences shorter than the maximum set length,
we post-pad the sentence using a special pad token,
〈pad〉. During gradient backpropagation, we mask
out all the 〈pad〉 tokens since they usually detract
from the final performance. All models have been
trained on the given training set, and evaluated on
the corresponding test set. The number of generated
sentences for the evaluation process has been set to
the same size as the test set.

4.2 Results
As noted by Lavie and Agarwal (2007), recall-based
metrics are meaningless if a task has no inputs and
targets. Therefore, for evaluation we utilize the cor-
pus BLEU score as a proxy for sentence quality, and
the Self-BLEU score as a measure of the sentence
diversity (more properly, sentence self-similarity; i.e.,
the lower, the better) (Zhu et al., 2018). Following
Texygen and virtually every other paper in this field,
we report the results using the entire test set as the ref-
erence. The BLEU score is measured by comparing
each generated sentence with each of the sentences in
the given test set. This score reflects the ability of a
model to generalize beyond the training set, by mea-
suring the similarity between the generated sentences
and those in the unseen test set. The Self-BLEU score
is measured by comparing each generated sentence
with each of the other generated sentences. While
they are de-facto standards in the literature on un-
conditioned language generation, these two metrics
are very sensitive to “best matches”, and as such the
results need to be discussed cautiously and integrated
with qualitative analysis. To compare the quality and
diversity trade-off of different methods, we follow
Wang et al. (2020) and also report the BLEU-5 F1
score. This score can be expressed as:

BLEU-F1 =
2 ∗ BLEU ∗ (1− Self-BLEU)

BLEU + (1− Self-BLEU)
(5)

In the following tables, the results referred to as
NLL have been obtained by reproducing the experi-
mental settings of Caccia et al. (2020) that carried



Model
BLEU ↑ Self-BLEU ↓ BLEU-F1 ↑

B-2 B-3 B-4 B-5 B-2 B-3 B-4 B-5 B-5
SeqGAN* 0.745 0.498 0.294 0.180 0.950 0.840 0.670 0.489 0.266
MaliGAN* 0.673 0.432 0.257 0.159 0.918 0.781 0.606 0.437 0.248
RankGAN* 0.743 0.467 0.264 0.156 0.959 0.882 0.762 0.618 0.222
LeakGAN* 0.744 0.517 0.327 0.205 0.934 0.818 0.663 0.510 0.289
MaskGAN* 0.539 0.328 0.209 0.143 0.752 0.516 0.378 0.293 0.238
TextGAN* 0.593 0.463 0.277 0.207 0.942 0.931 0.804 0.746 0.228

NLL§ 0.765 0.537 0.354 0.229 0.903 0.739 0.560 0.426 0.322
RD 0.800 0.604 0.411 0.273 0.949 0.875 0.749 0.596 0.323
RN 0.786 0.577 0.381 0.251 0.940 0.838 0.691 0.517 0.330
RM 0.829 0.653 0.463 0.314 0.949 0.876 0.775 0.633 0.338

* results from Lu (2018).
§ reproduced with the best temperature (α = 1.25−1) provided by Caccia et al. (2020)

Table 1: The quality and diversity of generated sentences with the Image COCO dataset. Quality is represented by
BLEU score, and diversity is represented by Self-BLEU score. We also include the BLEU-F1 score to compare the
quality-diversity trade-off. NB: for the BLEU and BLEU-F1 scores, higher is better. For the Self-BLEU score, lower is
better.

the cat are in a green long bowl .
a tv sits next to the ocean .
a large window in a room with a vehicle and reading a book .
a woman is sitting in a field surrounded by cars .
a airport filled wall sits on the back of a car
two people are preparing food in a kitchen .
a vintage quadruple propellor airplane looking

Table 2: A few randomly-selected sentences generated
by the RM model for the COCO Image Captions dataset,
selected at the training iteration where the highest BLEU-
5 score was obtained (potentially, the most challenging
for diversity).

out a well-designed temperature sweeping. There-
fore, we have used the best temperature parameter
provided by their paper (α = 1.25−1) to reimplement
the results under the same framework. For a fuller
comparison, we also report the results on the same
datasets from a pool of strong competitors including
SeqGAN, MaliGAN (Che et al., 2017), RankGAN,
LeakGAN, MaskGAN and TextGAN (Zhang et al.,
2017).

4.2.1 COCO Image Captions
We first evaluate the performance of the proposed

rewards on the COCO Image Captions dataset1 (Lin
1http://cocodataset.org

et al., 2014). This dataset covers a vocabulary of 4.6K
unique words, and the maximum sentence length
is 37. The training and test sets contain 10, 000
sentences each. The results from all the compared
models on this dataset are reported in Table 1. The
scores show that our mixed reward model, RM , has
achieved the best performance in all the BLEU scores,
which flags a better sentence quality compared to
the other models. In terms of single rewards, RD
has achieved a higher BLEU score than RN in all
cases, yet always less than RM . This gives evidence
that combining n-gram matching information with a
learned reward from a discriminator leads to synergy.
Table 1 also shows that higher BLEU scores invari-
ably come at a corresponding cost in diversity, as
measured by the Self-BLEU score, as also previously
reported in Caccia et al. (2020). This inescapable
trade-off makes the comparison between different
models difficult. For example, although MaskGAN
has achieved the best (lowest) Self-BLEU scores, it
has also reported the worst BLEU scores. Conversely,
although our model has attained the highest BLEU
scores, it has also suffered from a significant drop in
Self-BLEU. Therefore, in order to compare the mod-
els based on a quality-diversity trade-off, following
Wang et al. (2020), we report the BLEU-5 F1 score
(longest n-gram BLEU) in the rightmost column of
Table 1. The results show that on this dataset our



Model
BLEU ↑ Self-BLEU ↓ BLEU-F1 ↑

B-2 B-3 B-4 B-5 B-2 B-3 B-4 B-5 B-5
SeqGAN* 0.724 0.416 0.178 0.086 0.907 0.704 0.463 0.265 0.154
MaliGAN* 0.755 0.436 0.168 0.077 0.909 0.718 0.470 0.252 0.140
RankGAN* 0.686 0.387 0.178 0.086 0.897 0.677 0.448 0.298 0.153
LeakGAN* 0.835 0.648 0.437 0.271 0.938 0.821 0.668 0.510 0.349
MaskGAN* 0.265 0.165 0.094 0.057 0.448 0.244 0.14 0.091 0.107
TextGAN* 0.205 0.173 0.153 0.133 0.999 0.975 0.967 0.962 0.059

NLL§ 0.850 0.573 0.323 0.182 0.848 0.588 0.327 0.172 0.298
RD 0.839 0.553 0.303 0.160 0.881 0.623 0.361 0.214 0.267
RN 0.836 0.602 0.371 0.215 0.873 0.703 0.482 0.490 0.302
RM 0.911 0.702 0.439 0.237 0.941 0.829 0.668 0.421 0.336

* results from Lu (2018)
§ reproduced with the best temperature (α = 1.25−1) provided by Caccia et al. (2020)

Table 3: The quality and diversity of generated sentences with the EMNLP2017 WMT News dataset. Quality is
represented by the BLEU score, and diversity is represented by Self-BLEU score. We also include the BLEU-F1 score
to compare the quality-diversity trade-off. NB: for the BLEU and BLEU-F1 score, higher is better. For the Self-BLEU
score, lower is better.

RM model has been able to achieve the best quality-
diversity trade-off. To show that our model in fact
achieves appropriate diversity, Table 2 also provides
a few randomly-selected sentences generated by the
RM model from the training iteration that scored the
highest BLEU-5 score (potentially, the most chal-
lenging for diversity). The generated sentences show
no evidence of major lack of diversity or “mode col-
lapse”. As such, we believe that the RM model can
be deemed as the best trade-off between quality and
diversity for this dataset.

4.3 EMNLP2017 WMT News
We also evaluate our model on longer sentences with
the EMNLP2017 WMT News dataset2. This dataset
contains 5.3K unique words, and its maximum sen-
tence length is 51. The training set and test sets
consist of 260, 000 and 10, 000 sentences, respec-
tively. The results from all the compared approaches
on this dataset are shown in Table 3. Our mixed re-
ward model, RM , has outperformed all other models
in the majority of BLEU scores (BLEU-2, BLEU-
3, and BLEU-4), with the exception of BLEU-5
where it has been slightly outperformed by Leak-
GAN. In terms of single rewards, on this dataset RN
has achieved a higher BLEU score than RD in most
cases, which shows that these two reward signals

2http://www.statmt.org/wmt17/

have different performance over short and long text
generation. For the quality-diversity trade-off, Table
3 shows the BLEU-5 F1 score of all the compared
models. Interestingly, LeakGAN has reported the
best performance in this metric and our RM model
has only ranked second. This is probably because
LeakGAN was explicitly designed for long text gener-
ation, whereas our model is a general-purpose model
that has no bias toward sentences of a specific length.
Finally, for a qualitative analysis, Table 4 shows five
random sentences generated by the RM model at the
iteration with the highest BLEU-5 score, showing,
again, good diversity and also good overall quality.
For comparison, Table 4 also shows five sentences
from the NLL model (at the same random indexes,
for an unbiased comparison): it can be seen that the
sentences generated by our RM model are signifi-
cantly longer, and also more articulate in terms of
sentence structure. This example epitomizes the be-
havior that the proposed reward is able to impart on
the generator.

4.4 Chinese Poetry
Lastly, we evaluate our model on the Chinese Poetry
dataset3 of Zhang and Lapata (2014). For this ex-
periment, we have chosen the section of the dataset
containing five-word quatrain poems. This subset

3https://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/



RM :

975: she was declared not only used a fourth place in the whole , i knew in the car , ” said the coach of those who had
too living with a statement on a condition , according to the violent crime - point of the woman .
2785: how do you fight like a watch - fire for a very young woman , and i felt like that this time wasn ’ t what they
wouldn ’ t have a sort of different feelings or the things do not actually have never been before .
5469: it will be four days more debates in the better of the strength of the top - elected .
9575: we have only made an opportunity to have to hear what ’ s been also , which they know the ronald clinton ’ s camp
did not want to be able to continue to be tied with the context of the media and the kind of the proposals and we truly
9649: donald trump has warned that there will be possible thing , that the eu is doing all the women ’ s campaign .

NLL:

975: the women , which is taken to the 10 queensland citizens protection extended to the execution pilot and couldn ’ t
net employment .
2785: in the list and on their page as a president , he speaks of the world back in past of what he will step up .
5469: she is a now coach , but the global crisis is no benefit resources to protect the father , very at federal authorities .
9575: a “ rise in that - which warned if it said he didn ’ t test growth under the presidency .
9649: when you ’ re here when your children , i wouldn ’ t keep home over the screen in your doctor .

Table 4: Five randomly-selected sentences generated by the RM model (top) and by the NLL model (bottom) for the
EMNLP2017 WMT News dataset.

consists of 4 lines in each poem, and 5 words in each
line, resulting in a fixed poem length of 20 words
in total. Since the most meaningful n-grams in Chi-
nese poems are unigrams and bi-grams, in this ex-
periment we follow the setting of Yu et al. (2017)
and only use n = 2 for evaluating the BLEU, Self-
BLEU and BLEU F1 scores. Also, for this dataset
the maximum n-gram matching in Eq. 3 has corre-
spondingly been set to 2. Table 5 shows that, in this
case, RN has achieved the highest BLEU score by
a large margin, possibly because of the regular na-
ture of the poems. However, RN has also suffered
from a correspondingly reduced diversity, indicated
by the highest Self-BLEU score. Conversely, the RD
and NLL models have achieved better Self-BLEU
scores, yet with much lower BLEU scores. The best
trade-off between quality and diversity as expressed
by BLEU F1 has been achieved by RD. Overall, the
results on this dataset differ from those on COCO
Image Captions and EMNLP2017 WMT News, most
likely because of its specific structural and semantic
requirements (Zhang and Lapata, 2014).

5 Conclusion

In this paper, we have proposed a new training ap-
proach for generative adversarial networks for the
task of unconditioned text generation. The approach

Model BLEU-2 Self-BLEU-2 BLEU-2 F1
NLL§ 0.346 0.377 0.445
RD 0.418 0.496 0.496
RN 0.635 0.839 0.257
RM 0.549 0.675 0.408

§ reproduced with the best temperature (α = 1.25−1) pro-
vided by Caccia et al. (2020)

Table 5: BLEU, Self-BLEU, and BLEU F1 scores for the
Chinese Poetry dataset.

leverages the policy gradient theorem to maximize a
mixed reward signal (RM ), obtained from the multi-
plication of a reward based on n-gram matching with
sentences in the training set (RN ) and a reward pro-
vided by a real-vs-generated discriminator (RD). Our
experimental results show that the proposed model
has been able to achieve a comparable or better per-
formance than its NLL baseline and several other
GAN-based models in terms of sentence quality and
quality-diversity trade-off. Since our n-gram match-
ing scheme has margin for further optimization (such
as, for instance, the use of different weights for the
different n-gram orders, or the adoption of a collabo-
rative matching scheme such as in METEOR (Lavie
and Agarwal, 2007)), in the future we plan to explore
other variants of the proposed approach, and also
extend the evaluation to transformer-based language
generators.



6 Acknowledgment

The first author is funded by the China Scholarship
Council (CSC) from the Ministry of Education of P.
R. China.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam M.

Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In NIPS.

Antoine Bordes and J. Weston. 2017. Learning end-to-
end goal-oriented dialog. arXiv, abs/1605.07683.

Samuel R. Bowman, L. Vilnis, Oriol Vinyals, Andrew M.
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