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Abstract

Chinese character decomposition has been
used as a feature to enhance Machine
Translation (MT) models, combining rad-
icals into character and word level mod-
els. Recent work has investigated ideo-
graph or stroke level embedding. How-
ever, questions remain about the different
decomposition levels of Chinese character
representations, radical and strokes, best
suited for MT. To investigate the impact
of Chinese decomposition embedding in
detail, i.e., radical, stroke, and intermedi-
ate levels, and how well these decomposi-
tions represent the meaning of the original
character sequences, we carry out analy-
sis with both automated and human evalu-
ation of MT. Furthermore, we investigate
if the combination of decomposed Mul-
tiword Expressions (MWEs) can enhance
model learning. MWE integration into
MT has seen more than a decade of explo-
ration. However, decomposed MWEs has
not previously been explored.

1 Introduction

Neural Machine Translation (NMT) (Cho et al.,
2014; Johnson et al., 2016; Vaswani et al., 2017;
Lample and Conneau, 2019) has recently replaced
Statistical Machine Translation (SMT) (Brown
et al., 1993; Och and Ney, 2003; Chiang, 2005;
Koehn, 2010) as the state-of-the-art for Machine
Translation (MT). However, research questions
still remain, such as how to deal with out-of-
vocabulary (OOV) words, how best to integrate
linguistic knowledge and how best to correctly
translate multi-word expressions (MWEs) (Sag
et al., 2002; Moreau et al., 2018; Han et al.,
2020a). For OOV word translation for European
languages, substantial improvements have been

made in terms of rare and unseen words by incor-
porating sub-word knowledge using Byte Pair En-
coding (BPE) (Sennrich et al., 2016). However,
such methods cannot be directly applied to Chi-
nese, Japanese and other ideographic languages.

Integrating sub-character level information,
such as Chinese ideograph and radicals as learning
knowledge has been used to enhance features in
NMT systems (Han and Kuang, 2018; Zhang and
Matsumoto, 2018; Zhang and Komachi, 2018).
Han and Kuang (2018), for example, explain that
the meaning of some unseen or low frequency Chi-
nese characters can be estimated and translated us-
ing radicals decomposed from the Chinese char-
acters, as long as the learning model can acquire
knowledge of these radicals within the training
corpus.

Chinese characters often include two pieces of
information, with semantics encoded within radi-
cals and a phonetic part. The phonetic part is re-
lated to the pronunciation of the overall character,
either the same or similar. For instance, Chinese
characters with this two-stroke radical, 刂 (tı́ dāo
páng), ordinarily relate to knife in meaning, such
as the Chinese character 劍 (jiàn, sword) and
multi-character expression 鋒利 (fēnglı̀, sharp).
The radical 刂 (tı́ dāo páng) preserves the mean-
ing of knife because it is a variation of a drawing
of a knife evolving from the original bronze in-
scription (Fig. 4 in Appendices).

Not only can the radical part of a character be
decomposed into smaller fragments of strokes but
the phonetic part can also be decomposed. Thus
there are often several levels of decomposition that
can be applied to Chinese characters by combin-
ing different levels of decomposition of each part
of the Chinese character. As one example, Fig-
ure 1 shows the three decomposition levels from
our model and the full stroke form of the above
mentioned characters 劍(jiàn) and 鋒(fēng) . To
date, little work has been carried out to investigate



the full potential of these alternative levels of de-
composition of Chinese characters for the purpose
of Machine Translation (MT).

In this work, we investigate Chinese charac-
ter decomposition, and another area related to
Chinese characters, namely Chinese MWEs. We
firstly investigate translation at increasing levels of
decomposition of Chinese characters using under-
lying radicals, as well as the additional Chinese
character strokes (corresponding to ever-smaller
units), breaking down characters into component
parts as this is likely to reduce the number of un-
known words. Then, in order to better deal with
MWEs which have a common occurrence in gen-
eral contexts (Sag et al., 2002), and working in
the opposite direction in terms of meaning rep-
resentation, we investigate translating larger units
of Chinese text, with the aim of restricting trans-
lation of larger groups of Chinese characters that
should be translated together as one unit. In ad-
dition to investigating the effects of decompos-
ing characters we simultaneously apply methods
of incorporating MWEs into translation. MWEs
can appear in Chinese in a range of ways, such
as fixed (or semi-fixed) expressions, metaphor, id-
iomatic phrases, and institutional, personal or lo-
cation names, amongst others.

In summary, in this paper, we investigate: (i)
the degree to which Chinese radical and stroke se-
quences represent the original word and charac-
ter sequences that they are composed of; (ii) the
difference in performance achieved by each de-
composition level; (iii) the effect of radical and
stroke representations in MWEs for MT. Further-
more, we offer:

• an open-source suite of Chinese character de-
composition extraction tools;

• a Chinese ⇔ English MWE corpus where
Chinese characters have been decomposed

available at radical4mt1.
The rest of this paper is organized as follows:

Section 2 provides details of related work in char-
acter and radical related MT; Sections 3 and 4 in-
troduce our Chinese decomposition procedure into
radical and strokes, and our experimental design;
Section 5 provides details of our evaluations from
both automatic and human perspectives; Section 6
describes conclusions and plans for future work.

1https://github.com/poethan/MWE4MT

2 Related Work

Chinese character decomposition has been ex-
plored recently for MT. For instance, Han
and Kuang (2018) and Zhang and Matsumoto
(2018), considered radical embeddings as ad-
ditional features for Chinese → English and
Japanese ⇔ Chinese NMT. Han and Kuang
(2018) tested a range of encoding models
including word+character, word+radical, and
word+character+radical. This final setting with
word+character+radical achieved the best perfor-
mance on a standard NIST 2 MT evaluation data
set for Chinese → English. Furthermore, Zhang
and Matsumoto (2018) applied radical embed-
dings as additional features to character level
LSTM-based NMT on Japanese→ Chinese trans-
lation. None of the aforementioned work has how-
ever investigated the performance of decomposed
character sequences and the effects of varied de-
composition degrees in combination with MWEs.
Subsequently, Zhang and Komachi (2018) devel-
oped bidirectional English ⇔ Japanese, English
⇔ Chinese and Chinese ⇔ Japanese NMT with
word, character, ideograph (the phonetics and se-
mantics parts of characters are separated) and
stroke levels, with experiments showing that the
ideograph level was best for ZH→EN MT, while
the stroke level was best for JP→EN MT. Al-
though their ideograph and stroke level setting re-
placed the original character and word sequences,
there was no investigation of intermediate decom-
position performance, and they only used BLEU
score for automated evaluation with no human as-
sessment involved. This gives us inspiration to ex-
plore the performance of intermediate level em-
bedding between ideograph and strokes for the
MT task.

3 Chinese Character Decomposition

In this section, we introduce a character decom-
position approach and the extraction tools which
we apply in this work (code will be publicly avail-
able). We utilize the open source IDS dictionary
3 which was derived from the CHISE (CHarac-
ter Information Service Environment) project4. It
is comprised of 88,940 Chinese characters from
CJK (Chinese, Japanese, Korean script) Unified

2https://www.nist.gov/
programs-projects/machine-translation

3https://github.com/cjkvi/cjkvi-ids
4http://www.chise.org/
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Level-1


鋒 (fēng)

(semantic, metal) ⾦金金夆 (phonetic, féng)

⼈人王丷     夂丰

⼈人⼀一⼟土丷           夂三⼁丨

⼃丿㇏⼀一⼀一⼁丨⼂丶㇀⼀一        ㇀㇇㇏⼀一⼀一⼀一⼁丨
…

劍 (jiàn)

(phonetic, qiān) 僉⺉刂(semantic, knife)

亼吅从   ⺉刂

⼈人⼀一⼝口⼝口⼈人⼈人         ⺉刂

⼃丿㇏⼀一⼁丨𠃍⼀一⼁丨𠃍⼀一⼃丿㇏⼃丿㇏  ⼁丨⼅亅
… … …

Level-1: 

Level-2: 

Level-3: 
… 

Full-stroke:

Figure 1: Examples of the decomposition of Chinese characters.

Ideographs and the corresponding decomposition
sequences of each character. Most characters are
decomposed as a single sequence, but characters
can have up to four possible decomposed repre-
sentations. The reason for this is that the character
can come from different resources, such as Chi-
nese Hanzi (G, H, T for Mainland, Hong Kong,
and Taiwan), Japanese Kanji (J), Korean Hanja
(K), and Vietnamese ChuNom (V), etc.5 Even
though they have the same root of Hanzi, the his-
torical development of languages and writing sys-
tems in different territories has resulted in certain
degrees of variation in their appearance and stroke
order. For instance, (且, qiě) vs (目, mù) from
the second character example in Figure 2.

Figure 2 shows example characters that have
two different decomposition sequences. In our
experiments, when there is more than one de-
composed representation of a given character, we
choose the Chinese mainland decomposition stan-
dard (G) for the model, since the corpora we use
correspond best to simplified Chinese as used in
mainland China. The examples in Figure 2 also
show the general construction and corresponding
decomposition styles of Chinese characters, such
as left-right, up-down, inside-outside, and embed-
ded amongst others. To obtain a decomposition
level L representation of Chinese character α, we
go through the IDS file L times. Each time, we
search the IDS file character list to match the
newly generated smaller sized characters and re-
place them with decomposed representation recur-
sively.

4 NMT Experiments

We test the various levels of decomposed Chinese
and Chinese MWEs using publicly available data
from the WMT-2018 shared tasks Chinese to En-

5Universal Coded Character Set
(10646:2017) standards.iso.org/ittf/
PubliclyAvailableStandards

Character Decomposition Decomposition

丽 (lì) ⿱⼀一⿰⿵⼌冂⼂丶⿵⼌冂⼂丶
[G]

⿰⿱⼀一⿵⼌冂⼂丶⿱⼀一⿵
⼌冂⼂丶[T]

具 (jù) ⿱⿴且⼀一八[GTKV] ⿳⽬目⼀一八[J]

函 (hán) ⿶⼐凵⿻了了⿱丷八[GTV] ⿶⼐凵⿻丂⿱丷八[JK]

勇 (yǒng) ⿱甬⼒力力[GTV] ⿱⿱龴⽥田⼒力力[JK]

Character construction: ⿱: up-down, ⿰: left-right, ⿵⿶
⿴: inside-outside, ⿻: embedded

Figure 2: Character examples from IDS dictio-
nary; the grey parts of decomposition graphs rep-
resent the construction structure of the character.

glish, using the preprocessed (word segmented)
data as training data (Bojar et al., 2018). We
preserve the original word boundaries in decom-
position sequences. To get better generalizabil-
ity of our decomposition model, we use a large
size training set, the first 5 million parallel sen-
tences for training across all learning steps. The
corpora “newsdev2017” used for development and
“newstest2017” for testing are from the WMT-
2017 MT shared task (Bojar et al., 2017). These
include 2002 and 2001 parallel Chinese ⇔ En-
glish respectively. We use the THUMT (Zhang
et al., 2017) toolkit which is an implementation of
several attention-based Transformer architectures
(Vaswani et al., 2017) for NMT and set up the
encoder-decoder as 7+7 layers. Batch size is set as
6250. For sub-word encoding BPE technology, we
use 32K BPE operations that are learned from the
bilingual training set. We use Google’s Colab plat-
form to run our experiments6. We call our base-
line model using character sequences (with word
boundary) the character sequence model. For
MWE integrated models, we apply the same bilin-
gual MWE extraction pipeline from our previous
work (Han et al., 2020b), similar to (Rikters and

6https://colab.research.google.com

standards.iso.org/ittf/PubliclyAvailableStandards
standards.iso.org/ittf/PubliclyAvailableStandards
https://colab.research.google.com


Figure 3: Chinese→English BLEU scores for in-
creasing learning steps; RXD1/2/3 represents the
decomposition level of Chinese characters. RXD1
indicates ideograph from (Zhang and Komachi,
2018)

Bojar, 2017), which is an automated pre-defined
PoS pattern-based extraction procedure with fil-
tering threshold set to 0.85 to remove lower qual-
ity translation pairs. We integrate these extracted
bilingual MWEs back into the training set to in-
vestigate if they help the MT learning. In the de-
composed models, we replace the original Chinese
character sequences from the corpus with decom-
posed character-piece sequence inputs for train-
ing, development and testing (keeping the original
word boundary).

5 Evaluation

In order to assess the performance of each model
employing a different meaning representation in
terms of decomposition and MWEs, we carried
out both automatic evaluation using BLEU (Pap-
ineni et al., 2002) in Fig. 3, and human evalua-
tion (Direct Assessment) of the outputs of the sys-
tem. Since decomposition level 3 yields generally
higher scores than the other two levels, we also ap-
plied decomposition of MWEs to level 3 and con-
catenated the bilingual glossaries to the training.

We used the models with the most learning
steps, 180K, and run human evaluation on the
Amazon Mechanical Turk crowd-sourcing plat-
form,7 including the strict quality control mea-
sures of Graham et al. (2016). Direct Assessment
scores for systems were calculated as in Graham
et al. (2019) by firstly computing an average score
per translation before calculating the overall aver-
age for a system from its average scores for trans-
lations. Significance tests in the form of Wilcoxon
Rank-Sum test are then applied to score distri-
butions of the latter to identify systems that sig-
nificantly outperform other systems in the human
evaluation.

7https://www.mturk.com

Results of the Direct Assessment human eval-
uation are shown in Table 1 where similarly per-
forming systems are clustered together (denoted
by horizontal lines in the table). Systems in a
given lower ranked cluster are significantly out-
performed by all systems in a higher ranked clus-
ter. Amongst the six models included in the
human evaluation, the first five form a cluster
with very similar performance according to human
assessors, including the baseline, MWE, RXD1,
RXD3MWE, and RXD3 which do not outperform
each other with any significance. RXD2, on the
other hand, is far behind the other models in terms
of performance according to human judges (also
the automated BLEU score) performing signifi-
cantly worse than all other runs (at p < 0.05). As
the tradition of WMT shared task workshop, we
cluster the first five models into one group, while
the RXD2 into a second group. Furthermore, hu-
man evaluation results in Table 1 show that the top
five models all achieve high performance on-par
with state-of-the-art in Chinese to English MT.

We also discovered that the decomposed models
generated fewer system parameters for the neural
nets to learn, which potentially reduces compu-
tational complexity. For instance, the total train-
able variable size of the character sequence base-
line model is 89,456,896, while this number de-
creased to 80,288,000 and 80,591,104 respectively
for the RXD3 and RXD2 models (a 10.25% drop
for RXD3). As mentioned by Goodfellow et al.
(2016), in NLP tasks the total number of possible
words is so large that the word sequence models
have to operate on an extremely high-dimensional
and sparse discrete space. The decomposition
model reduced the overall size of possible tokens
for the model to learn, which is more space effi-
cient.

For the automatic and human evaluation results,
where decomposition level 2 achieved a surpris-
ingly lower score than the other levels, error anal-
ysis revealed an important insight. While level 1
decomposition encoded the original character se-
quences into radical representations, and this typi-
cally contains semantic and phonetic parts of the
character, and level 3 gives a deeper decompo-
sition of the character such as the stroke level
pieces with sequence order. In contrast, however,
level-2 decomposition appears to introduce some
intermediate characters that mislead model learn-
ing. These intermediate level characters are usu-

https://www.mturk.com


Ave. Ave. z n N
raw

73.2 0.161 1,232 1,639 BASE

71.6 0.125 1,262 1,659 MWE
71.6 0.113 1,257 1,672 RXD1
71.3 0.109 1,214 1,593 RXD3MWE
70.2 0.073 1,260 1,626 RXD3
53.9 −0.533 1,227 1,620 RXD2

Table 1: Human evaluation results for systems
using Direct Assessment, where Ave. raw =
the average score for translations calculated from
raw Direct Assessment scores for translations,
Ave. z = the average score for translations af-
ter score standardization per human assessor mean
and standard deviation score, n is the number of
distinct translations included in the human evalua-
tion (the sample size used in significance testing),
N is the number of human assessments (including
repeat assessment).

ally constructed from fewer strokes than the orig-
inal root character, but can be decomposed from
it. As in Figure 1, from decomposition level 2,
we get new characters 从 (cóng) and 王 (wáng)
respectively from 劍 (Jiàn, sword) and 鋒 (fēng,
edge/sharp point), but they have no direct mean-
ing from their father characters, instead meaning
“from” and “king” respectively. In summary, de-
composition level-2 tends to generate some inter-
mediate characters that do not preserve the mean-
ing of the original root character’s radical, nor
those of the strokes, but rather smaller sized inde-
pendent characters with fewer strokes that result in
other meanings.

6 Conclusions and Future Work

In this work, we examined varying degrees of Chi-
nese character decomposition and their effect on
Chinese to English NMT with attention architec-
ture. To the best of our knowledge, this is the
first work on detailed decomposition level of Chi-
nese characters for NMT, and decomposition rep-
resentation for MWEs. We conducted experiments
for decomposition levels 1 to 3; we had a look
at level 4 decomposition and it appears similar
to level 3 sequences. We publish our extraction
toolkit free for academic usage. We conducted
automated evaluation with the BLEU metric, and

crowd sourced human evaluation with the direct
assessment (DA) methodology. Our conclusion is
that the Chinese character decomposition levels 1
and 3 can be used to represent or replace the origi-
nal character sequence in an MT task, and that this
achieves similar performance to the original char-
acter sequence model in our NMT setting. How-
ever, decomposition level 2 is not suitable to rep-
resent the original character sequence in meaning
at least for MT. We leave it to future work to ex-
plore the performance of different decomposition
levels in other NLP tasks.

Another finding from our experiments is that
while adding bilingual MWE terms can both in-
crease character and decomposed level MT score
according to the automatic metric BLEU, the hu-
man evaluation shows no statistical significance
between them. Significance testing using auto-
mated evaluation metrics will be carried out in
our future work, such as METEOR (Banerjee and
Lavie, 2005), and LEPOR (Han et al., 2012; Han,
2014), in addition to BLEU.

We will consider different MWE integration
methods in future and reduce the training set to in-
vestigate the differences in low-resource scenarios
(5 million sentence pairs for training set were used
in this work). We will also sample a set of the test-
ing results and conduct a human analysis regard-
ing the MWE translation accuracy from different
representation models. We will further investigate
different strategies of combining several level of
decompositions together and their corresponding
performances in semantic representation, such as
MT task. The IDS file we applied to this work lim-
ited the performance of full stroke level capability,
and we will look for alternative methods to achieve
full-stroke level character sequence extraction for
NLP tasks investigation.
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Appendices

Appendix A: Chinese Character Knowledge

Figure 4 demonstrates the meaning preservation
root of Chinese radicals, where the evolution of
the Chinese character 刀 (Dāo), meaning knife,
evolved from bronze inscription form to contem-
porary character and radical form, 刂 (named as:
tı́ dāo páng).

NMT for Asian languages has included trans-
lation at the level of phrase, word, and character
sequences (see Figure 5).

Appendix B: More Details of Evaluation

The evaluation scores of character sequence
baseline NMT, character decomposed NMT and
MWE-NMT according to the BLEU metric are
presented in Fig. 3. The RXD1 model, decompo-
sition level 1, is the ideograph model Zhang and
Komachi (2018) used for their experiments where
the phonetics (声旁 shēng páng) and semantics
(形旁 xı́ng páng) parts of character are separated
initially.

From the automated evaluation results, we see
that decomposition model RXD3 has very close
BLEU scores to the baseline character sequence
(both with word boundary) model. This is very
interesting since the level 3 Chinese decompo-
sition is typically impossible (or too difficult)
for even native language human speakers to read
and understand. Furthermore, by adding the de-
composed MWEs back into the learning corpus,
“rxd3+MWE” (RXD3MWE) yields higher BLEU
scores in some learning steps than the baseline
model. To gain further insight, we provide the
learning curve with the learning steps and corre-
sponding automated-scores in Figure 6.

The BLEU score increasing ratio in decom-
posed models (from RXD3 to RXD3MWE) is
larger than the ratio in original character sequence
models (from BASE to BASEMWE) by adding
MWEs in general. Furthermore, the increase in
performance is very consistent by adding MWEs
from the decomposed model, compared to the con-
ventional character sequence model. For instance,
the performance has a surprisingly drop at 100K
learning steps for BASEMWE.

Appendix C: Looking into MT Examples

From the learning curves in Fig. 6, we suggest that
with 5 million training sentences and 7+7 layers
of encoder-decoder neural nets, the Transformer
model becomes too flat in its learning rate curve
with 100K learning steps, and this applies to both
original character sequence model and decompo-
sition models.

In light of this, we look at the MT outputs from
head sentences of testing file at 100K learning
steps models, and provide some insight into er-
rors made by each model. Even though the au-
tomated BLEU metric gives the baseline model a
higher score 21.56 than the RXD3 model (20.75)
the translation of some Chinese MWE terms is
better with the RXD3 model. For instance, in Fig-
ure 7, the Chinese MWE 商场 (Shāngchǎng) in
the first sentence is correctly translated as mall
by RXD3 model but translated as shop by the
baseline character sequence model; the MWE 楼
梯间 (lóutı̄jiān) in the second sentence is cor-
rectly translated as stairwell by the RXD3 model
while translated as stairs by baseline. Further-
more, the MWE 近日 (Jı̀nrı̀) meaning recently is
totally missed out by the original character se-
quence model, which results in a misleading am-
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Chinese radical 刂 (Dāo, knife) evolution from Pictogram to Regular script

商 Shang Dynasty 

(1600-1046BC)

⻄西周 Western-
Zhou Dynasty 
(1045-771BC)

戰國 Warring 
States period 
(476-221BC)

漢漢 Han Dynasty 
(202BC-220)

東漢漢 Eastern 
Han (from 57AD 

on)

Bronze 
inscriptions

Oracle bone 
script

Bronze

Inscription Silk 篆 (on Seal) Regular script

Figure 4: Example Chinese radical, 刂 (Dāo), where the character evolved from leftmost pictogram to
present day regular script (rightmost) containing only two strokes. The two strokes are called as 豎 (Shù,
vertical) +豎 (Shù gōu, vertical with hook). The corresponding character representation is 刀 (Dāo).

Word level 28 /  歲 /  廚師 /  被 /  發現 /  死 /  於 /  舊金⼭ /  一家 / 商場
Character 28               歲 廚 師 被 發 現 死 於 舊 金 ⼭ 一 家 商 場
Pronunciation èr shí bā Suì chú shī bèi fā xiàn sǐ yú jiù jīn shān yī jiā shāng chǎng

Radical 28               止戌 广尌 𠂤帀 衤皮 癶 王見 歹匕 方仒 萑臼 人王丷 ⼭ 一 宀豕 亠丷冏 土昜𣥂 𭚧

English Ref. 28-Year-Old Chef Found Dead at San Francisco Mall

Figure 5: Example of Chinese word to character level changes for MT. Pronunciation is Mandarin in
Pinyin. The English reference here is taken from the corpus we used for our experiments.

biguous translation of an even larger content, i.e.,
did the chief moved to San Francisco (SF) recently
or this week. We will not get this clearly from
the character base sequence model, however, the
MWE 近日 (Jı̀nrı̀) is correctly translated by the
RXD3 model and the overall meaning of the sen-
tence is clear that the chef moved to SF recently
and was found dead this week.

We also attach the translations of these two sen-
tences by four other models. With regard to the
first sentence MWEs, all the four models trans-
late San Francisco mall correctly as REF and RXD3
beating BASE model. In terms of the second sen-
tence MWEs, BASEMWE and RXD2 drop out the
MWE 近日 (Jı̀nrı̀, recently) as BASE model, and
all the four models drop out the translation of
MWE楼梯间 (lóutı̄jiān, stairwell).



20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000

12

14

16

18

20

22

Learning Steps

B
L

E
U

sc
or

es

BASE

RXD1
RXD2
RXD3
RXD3MWE

Figure 6: Learning curves from different models with BLEU metric

src
28 岁 厨师 被 发现 死 于 旧⾦金金⼭山 ⼀一家 商场 
近⽇日 刚 搬 ⾄至 旧⾦金金⼭山 的 ⼀一位 28 岁 厨师 本周 被 发现 死 于 当地 ⼀一家 商场 的 楼梯间 。

ref
28 @-@ Year @-@ Old Chef Found Dead at San Francisco Mall 
a 28 @-@ year @-@ old chef who had recently moved to San Francisco was found dead in the stairwell of a local 
mall this week .

rxd3
the 28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef who recently moved to San Francisco has been found dead on a stairwell in a local mall 
this week .

base
the 28 @-@ year @-@ old chef was found dead in a shop in San Francisco 
a 28 @-@ year @-@ old chef who has moved to San Francisco this week was found dead on the stairs of a local mall .

base
MWE

28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef who recently moved to San Francisco was found dead this week at a local mall .

rxd3
MWE

28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef recently moved to San Francisco was found dead this week at a local mall .

rxd1
the 28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef recently moved to San Francisco was found dead in a local shopping mall this week .

rxd2
the 28 @-@ year @-@ old chef was found dead in a San Francisco mall 
a 28 @-@ year @-@ old San Francisco chef was found dead in a local mall this week .

Figure 7: Samples of the English MT output at 100K learning steps: RXD1, RXD2 and RXD3 are the Chi-
nese decomposition with level 1 to 3, BASE is the character sequence model, BASEMWE and RXD3MWE
are character sequence model with MWEs and decomposition level 3 model with decomposed MWEs,
and src/ref represents source/reference.
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