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Abstract

Most prior work on task-oriented dialogue sys-
tems is restricted to supporting domain APIs.
However, users may have requests that are out
of the scope of these APIs. This work fo-
cuses on identifying such user requests. Exist-
ing methods for this task mainly rely on fine-
tuning pre-trained models on large annotated
data. We propose a novel method, REDE,
based on adaptive representation learning and
density estimation. REDE can be applied
to zero-shot cases, and quickly learns a high-
performing detector with only a few shots by
updating less than 3K parameters. We demon-
strate REDE’s competitive performance on
DSTC9 data and our newly collected test set.

1 Introduction

Current task-oriented dialog systems often rely on
pre-defined APIs to complete target tasks (Williams
et al., 2017; Eric et al., 2017) and filter out any other
requests beyond the APIs as out-of-domain cases.
However, some in-domain user requests can be
addressed by incorporating external domain knowl-
edge from the web or any other sources (Kim et al.,
2020). To address this problem, Kim et al. (2021)
recently organized a benchmark challenge on task-
oriented conversational modeling with unstructured
knowledge access in DSTC9 (Gunasekara et al.,
2020). This challenge includes the knowledge-
seeking turn detection task to determine whether to
invoke a knowledge-driven responder or just rely
on available API functions. One data sample is pro-
vided in Table 1. The state-of-the-art systems (He
et al., 2021; Tang et al., 2021; Mi et al., 2021;
Jin et al., 2021) implemented this detector by fine-
tuning a large pre-trained model on the training
dataset (about 72K samples) as a binary classifier,
and achieved an F1 score of over 95% on the bench-
mark test set. However, after close investigation,
we find those user queries in the test set are very
limited in topic coverage and language variation.

To evaluate the detector performance on real-world
user queries, we specially curate a new contrast
set following Gardner et al. (2020) by manually
collecting questions posted by real users on Tripad-
visor forums. We found that the detector trained
on DSTC9 Track 1 training samples had a large
performance degradation on this contrast set (F1
score dropped by over 15%), suggesting the need
for methods with better generalization.

In this work, we propose a method that can
quickly learn a knowledge-seeking turn detector
with much fewer out-of-domain samples, such as
only a few shots or even zero shot. Our method is
composed of two stages: REpresentation learning
and DEnsity estimation (REDE). First, we learn a
representation model via fine-tuning a pre-trained
sentence encoder on all non-knowledge-seeking
turns (utterances that can be supported by APIs)
via masked language modeling (MLM). Then we
learn a density estimator using these representation
vectors. During inference, the density estimator
produces a density score for a given user utter-
ance. If it is above a threshold, this utterance is
counted as an in-domain API turn, otherwise as a
knowledge-seeking turn.

To incorporate out-of-domain examples, we pro-
pose to use principle component analysis to quickly
learn a projection matrix with few knowledge-
seeking turn samples and then use this matrix to
linearly transform the representation vectors. We
conduct experiments on the DSTC9 Track 1 data as
well as our new contrast test set. We demonstrate
that REDE can achieve competitive performance
as other supervised methods in the full-shot setting
and outperform them by a large margin in the low-
resource setting. More importantly, our approach
generalizes much better in the new contrast test set
that we created.

Overall, our contributions are summarized as
follows:

• We propose a new approach, REDE, for



282

Turn Speaker Utterance Sampled Knowledge Snippets from FAQs

1 User I’m looking for a place to stay in the south of town. It doesn’t
need to have free parking.

2 Agent There are 4 hotels that are in the area you are looking for. Would
you prefer a 3 or 4 star rated hotel?

3 User I don’t care about the star rating as long as it’s expensive.
4 Agent The Lensfield Hotel is the only expensive hotel in the south area.

Would you like any more information on this location?
5 User I’m interested in knowing, do they have a workout facility on the

premises?
6 Agent There are both a fitness center and gym available on the premises.

Does this sound ok?
Q1: Do you have room service for your guests?

A1: Yes, the Lensfield Hotel provides room services.
Q2: Is there a gym available at your location?
A2: There is both a fitness center and gym avail-
able on the premises.
Q3: Can I bring my dog?
A3: Pets are not allowed at the Lensfield Hotel.

7 User That is perfect can you book that for me please.
8 Agent The Lensfield Hotel is located in the South. It has a 3 star rating

and is expensive. There is free parking and internet. I have booked
it for you.

9 User Great, thank you!

Table 1: One example of task-oriented conversations with unstructured knowledge access. The user utterance of
turn 5 is beyond the coverage of API and needs external knowledge support, therefore it is a knowledge-seeking
turn while other user turns are non-knowledge-seeking turns. To address turn 5, three sampled FAQ pairs for
the entity “Lensfield Hotel” extracted from the external knowledge are listed in the rightmost column. The most
appropriate FAQ pair is highlighted in bold font.

knowledge-seeking turn detection that be ap-
plied to zero or few shot cases. It can be
quickly adapted to new knowledge-seeking
turns data with much less training samples,
which can achieve over 90% F1 score with
only five shots;

• Once the continuous pretraining stage on non-
knowledge-seeking turns data is finished, our
model can be quickly adapted to any kinds of
knowledge-seeking turns data within seconds
with only a few parameters to be learned.

• We curate and release a contrast set to exam-
ine the generalization capability of the knowl-
edge seeking-turn detectors.1 We demonstrate
that our model is better at generalizing to this
contrast set than the previous best models.

2 Related Work

Our work is closely related to those participating
systems in DSTC9 Track 1 (Kim et al., 2020, 2021).
All the systems proposed to treat the problem of
knowledge-seeking turn detection as a binary clas-
sification task and fine-tuned pre-trained models
such as RoBERTa, UniLM, PLATO, GPT2, on the
whole training set (He et al., 2021; Tang et al., 2021;
Mi et al., 2021), which yielded around 99% and

1https://github.com/jind11/REDE

96% F1 scores on the development and test sets,
respectively. Our method differs in two aspects: 1)
We do not need to fine-tune the pre-trained model
on the training set; 2) Our model is at least 5 times
smaller and we need less than 5% of training data
to achieve similar performance.

Our method is inspired by previous work for
out-of-domain (OOD) detection (Ren et al., 2019;
Gangal et al., 2020; Hendrycks et al., 2019) and
one-class classification (Sohn et al., 2021). Kim
et al. (2020) also tried tackling this problem by
applying an unsupervised anomaly detection algo-
rithm, Local Outlier Factor (LOF) (Breunig et al.,
2000), which compares the local densities between
a given input instance and its nearest neighbors, but
did not obtain good results (F1 score is less than
50%). Sohn et al. (2021) proposed to first learn a
representation model via contrastive learning, then
learn a density estimator on the obtained repre-
sentations. They showed decent performance for
one-class classification. All these previous work
assumed no access to OOD samples, however, we
would like to make use of those OOD samples ef-
ficiently when they are available. Therefore we
extend the general representation learning frame-
work by proposing a novel representation transfor-
mation method to learn OOD samples, which leads
to significantly boosted detection performance.

Our work is also related to few/zero-shot learn-
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ing, which has been widely studied previously (Gao
et al., 2020; Jin et al., 2020c,b). Transfer learn-
ing (Zhou et al., 2019c; Jin et al., 2020a; Zhou
et al., 2019a,b; Yan et al., 2020) and data augmen-
tation (Jindal et al., 2020b,a) have been two major
methods for this direction, while our work focuses
on manipulation of learned representations, which
provides a new perspective.

3 Methods

Our method includes three steps: encoder adap-
tation, representation transformation, and density
estimation. The representation transformation step
is only applicable when there are OOD examples
(i.e., knowledge-seeking turns).

3.1 Encoder Adaptation
In this step, we adapt a pre-trained sentence en-
coderE to the in-domain data, i.e., non-knowledge-
seeking turns, XNK = {xNK

1 , ..., xNK
N }, via

masked language modeling (Devlin et al., 2019).
Specifically, 15% of tokens of xNK

i are masked
and E is trained to predict these masked tokens.

3.2 Representation Transformation
To incorporate the knowledge-seeking turnsXK =
{xK1 , ..., xKM}, a standard solution is to fine-tune E
on the combined data of knowledge-seeking and
non-knowledge-seeking turns, X = XK ∪XNK ,
as a supervised binary classifier. However, in few-
shot settings where M << N , there is an extreme
class imbalance problem. In addition, fine-tuning
large models may take a long time and much com-
putation power with large data size. Instead, we
propose a simple linear transformation to the sen-
tence representation e = E(x) without updating
the model parameters, following (Su et al., 2021):

ẽ = T (e) = (e− µ)W (1)

where µ = 1
M

∑M
i=1E(xKi ). To calculate W ,

we first calculate the covariance matrix, Σ =
1
M

∑M
i=1(E(xKi ) − µ)T (E(xKi ) − µ), then per-

form Singular Value Decomposition (SVD) over
Σ such that: Σ = UΛUT , and finally we obtain
W = U

√
Λ−1.

The elements in diagonal matrix Λ derived from
SVD are sorted in descending order. Therefore,
we can retain the first L columns of W to reduce
the dimension of transformed vectors ẽ, which is
theoretically equivalent to Principal Component
Analysis (PCA). However, to be noted, both µ and

W parameters are obtained using those knowledge-
seeking turns instead of non-knowledge-seeking
turns and the number of knowledge-seeking turns
is much smaller, which can be as small as just a few
shots. In another word, we only need a very small
size of out-of-domain samples to learn the parame-
ters needed for our representation transformation
as defined in Eq. 1 to transform the representations
of in-domain data. This is in contrast to the conven-
tional PCA based density estimation method that
assumes only having access to in-domain data, i.e.
non-knowledge-seeking turns, and needs to learn
and perform PCA transformation both on a good
amount of those in-domain data.

This step of transformation can be viewed as
another round of unsupervised representation learn-
ing with knowledge-seeking turns, which helps us
obtain a better representation and is extremely crit-
ical to our claimed great performance for few-shot
learning, as analyzed in Section 5.2.2.

3.3 Density estimation

In this step, we encode all the non-knowledge-
seeking turns in the training set and transform
them to obtain {ẽNK

1 , ..., ẽNK
N }, normalize them

into unit vectors, and then learn a shallow density
estimator D over them, such as Gaussian Mixture
Model (GMM). Note that in the zero-shot setting
when no knowledge-seeking turns are available, the
representation transformation step (in Section 3.2)
is skipped.

During inference, given a test sample x, we
encode it with the encoder E, transform it with
T defined in Eq. 1, and then use the learned
density estimator D to produce a density score
D(T (E(x))). If it is above a pre-set threshold
η, x is considered as a non-knowledge-seeking
turn, otherwise as a knowledge-seeking turn. This
whole pipeline is motivated by the assumption
that the well learned representations of in-domain
(non-knowledge-seeking turns) and OOD samples
(knowledge-seeking turns) should be distributed
separately in the latent space, and thus the esti-
mated density of in-domain data by the density
estimator should be higher than that of OOD data.

4 Experiments

4.1 Dataset

We use the DSTC9 Track 1 competition data (Kim
et al., 2020, 2021), and focus on the sub-task of
binary knowledge-seeking turn detection. The data
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statistics are summarized in Table 2.2 We further
curate a new contrast test set by first collecting
questions posted by real users in the Tripadvisor
forums3, then obtain the questions as knowledge-
seeking turns that cannot be addressed by Multi-
WOZ API schema (Eric et al., 2019) (this schema
was also used for constructing the DSTC9 Track 1
dataset), and finally manually paraphrasing them
to make them more like dialogue utterances. We
obtained 617 knowledge-seeking turns and mixed
them with those non-knowledge-seeking turns in
the original test set to form the contrast set.

Table 3 shows several data samples for the newly
curated contrast set. These user queries collected
from real users are much more diverse than those in
the benchmark test set of DSTC9 Track 1 dataset.
Among these examples, the user query of “How
much do you charge for parking?” is actually quite
challenging for knowledge-seeking turn detection
since this query is very close to one of the avail-
able API functions that is responsible for checking
whether there is free parking. However, in order
to answer this query, we still need to invoke the
knowledge module to retrieve external unstructured
knowledge.

Pos Neg All

Train Set 19,184 52,164 71,348
Valid Set 2,673 6,990 9,663
Test Set 1,981 2,200 4,181
Contrast Set 617 2,200 2,817

Table 2: Statistics of the knowledge-seeking turn detec-
tion benchmark dataset. Pos: knowledge-seeking turns;
Neg: non-knowledge-seeking turns.

4.2 Baselines and Settings

The baselines are 1) the best performing model
in the DSTC9 Track 1 competition (Kim et al.,
2021), which is a fine-tuned RoBERTa-Large
model (Liu et al., 2019) on the training set. 2)
Fine-tuned RoBERTa-Large-NLI (obtained by fine-
tuning RoBERTa-Large on SNLI and MultiNLI
datasets) and DistilBERT-Base-NLI-STSB (ob-
tained by fine-tuning DistilBERT-Base on SNLI,
MultiNLI, and STS-B datasets) on the training set.

The sentence encoder E we used is DistilBERT-
Base-NLI-STSB (Reimers and Gurevych, 2019).4

2Data can be downloaded from:
https://github.com/alexa/alexa-with-dstc9-track1-dataset

3https://www.tripadvisor.com
4https://github.com/UKPLab/sentence-transformers

Domains Examples

Attraction Is it necessary to buy tickets in advance?
Attraction How long it could take to see it all ? 4 hours

it would be enough?
Hotel Is there a minimum check in age?
Hotel How much do you charge for parking?
Restaurant Would there be room for a stroller with a

sleeping baby during dinner?
Restaurant Can I order crab cakes take out for eight serv-

ings ?

Table 3: Examples of newly collected user questions in
the contrast set. These user queries collected from real
users are much more diverse than those in the bench-
mark test set of DSTC9 Track 1 dataset.

The threshold η is chosen based on the highest F1
score on the development set. For the density esti-
mator, we have tried OC-SVM, KDE with various
kinds of kernels, and GMM, and we find GMM per-
forms the best and its inference time is the lowest.
We set the number of components to 1 for GMM.
Dimensionality L is set as 650 for PCA transforma-
tion by tuning on the development set. Details of
comparison and tuning results are in the appendix.
For evaluation metrics, we report precision (P), re-
call (R), and F1 scores.

5 Results & Discussion

5.1 Main Results

Full supervised setting Table 4 summarizes the
comparison of our method REDE with baselines
where all knowledge-seeking turn samples in the
DSTC9 Track 1 training set are used for training.
REDE has two advantages: (1) Once the first step
of adaptive pre-training on non-knowledge-seeking
turns is done, it only needs to update less than 3K
parameters of the density estimator for learning the
knowledge-seeking turns, but it can still achieve
superior performance on the test set; (2) It can be
better generalized to the new contrast set that has
distribution shift with respect to the training data.

Low-resource setting We are more interested
in exploring how our method performs under
the low-resource setting compared with baselines.
Therefore, we sub-sampled different numbers of
knowledge-seeking turn samples and kept using
all non-knowledge-seeking turn samples. We then
trained the model and obtained F1 scores on the
test set. We performed five times of random sub-
sampling and report the average and standard devi-
ation in Figure 1. Since the error bar of REDE is
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Learning Schema Sentence Encoder Model
size

Trainable
Parameters

Test Set (%) Contrast Set (%)
P R F1 P R F1

Standard Fine-tuning
RoBERTa-Large 355M 355M 99.19 92.88 95.93 96.61 69.37 80.75
RoBERTa-Large-NLI 355M 355M 99.46 92.28 95.73 97.54 64.18 77.42
DistilBERT-Base-NLI-STSB 66M 66M 98.92 92.78 95.75 95.36 66.67 78.44

REDE DistilBERT-Base-NLI-STSB 66M 3K 97.76 94.65 96.18 86.98 94.17 90.43

Table 4: Performance on the original test set and contrast set when all knowledge-seeking turns data are used for
training. Trainable parameters refer to those parameters that are updated for learning knowledge-seeking turns.

too small to be seen, we further provide the com-
plete results in Table 5. As we can see, REDE is
always superior than baselines for all sub-sampling
ratios. The performance gap is larger when fewer
examples are used. Most notably, for the zero-shot
setting without using any knowledge-seeking turns,
REDE can still achieve 85.95% of F1 score. For
comparison, in the zero-shot setting, we also tested
Local Outlier Factor (LOF) (Breunig et al., 2000),
which was used in (Kim et al., 2020), and obtained
an F1 score of 73.78% on the test set, which is
much lower than our proposed density estimation
method. Under the few-shots setting such as 5-
shots and 10-shots, REDE can obtain more than
90% of F1, whereas other supervised baselines’
scores are under 20%.
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Figure 1: F1 score plots with error bar on the test
set with different numbers of knowledge-seeking turns
used for training Full name of DistilBERT-Base is
DistilBERT-Base-NLI-STSB.

5.2 Analysis

5.2.1 Effect of MLM Adaptation
As shown in Table 6, after removing the MLM
adaptation step, our method has significant perfor-
mance degradation, especially for the contrast set,
indicating the importance of adapting the general
pre-trained model to the target dataset via unsuper-
vised learning. We have also tried adopting con-
trastive learning for such unsupervised adaptation

Samples DistillBERT RoBERTa REDE

5 5.70± 0.99 0.00± 0.00 90.56± 0.69
10 13.88± 7.37 0.00± 0.00 91.34± 0.92
20 32.51± 3.84 0.00± 0.00 92.85± 0.26
50 53.22± 4.70 0.00± 0.00 94.29± 0.35
200 78.35± 2.57 47.87± 39.28 95.05± 0.20
1,000 89.14± 0.49 90.76± 0.94 95.74± 0.13
2,000 91.49± 0.97 91.92± 0.79 95.97± 0.12
4,000 93.49± 0.53 93.55± 0.49 95.95± 0.18
10,000 94.56± 0.32 95.06± 0.46 96.07± 0.17

Table 5: Averaged F1 score and standard deviation un-
der the low-resource setting by randomly sub-sampling
different number of knowledge-seeking turns for five
times. DistillBERT is DistillBERT-Base-NLI-STSB
while RoBERTa is RoBERTa-Large.

(i.e., SimCSE), which has shown state-of-the-art
performance for unsupervised representation learn-
ing (Gao et al., 2021). Results in Table 6 show that
it is worse than MLM. The reason could be that
contrastive learning used in SimCSE would lead to
more uniform and dispersed distribution over the
latent space, however, the density estimation based
OOD detection favors more dense and collapsed
distribution for in-domain data.

Settings Test Set F1 (%) Contrast Set F1 (%)

REDE 96.18 90.43
no MLM 93.49 75.65
MLM→ SimCSE 92.00 74.39

Table 6: Ablation study for MLM adaptation by remov-
ing it or replacing it with SimCSE (a contrastive learn-
ing method). All training samples are used here.

Dimensions Zero-shot Ten-shot Full-shot

Top 5 65.67 76.64 78.38
Top 50 71.04 82.23 92.40
Top 500 77.16 91.73 96.32
All (768) 77.05 92.37 96.09

Table 7: F1 score on test set for top 5, 50, 500, and
all principle components under three different settings:
zero-shot (PCA over non-knowledge-seeking turns),
ten-shot (PCA over ten knowledge-seeking turns), and
full-shot (PCA over all knowledge-seeking turns).
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Estimator Test Set (%) Contrast Set (%)
P R F1 Inference Time (s) P R F1

OC-SVM 92.30 88.34 90.28 74.36 68.81 88.33 77.36
KDE-Gaussian 92.81 91.17 91.98 377.43 72.49 88.82 79.83
KDE-Exponential 92.29 91.87 92.08 373.76 73.18 88.01 79.91
GMM 97.76 94.65 96.18 0.07 86.98 94.17 90.43

Table 8: Comparison of different density estimators. Inference time is measure on the whole test set using the
same machine. We have also tried other kernels for the KDE estimator, such as ‘tophat’, ‘epanechnikov’, ‘linear’,
and ‘cosine’, but they all perform poorly.
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Figure 2: Scatter plot using top two principle compo-
nents of PCA on test samples. F1 score is measured on
the test set with top two dimensions only.

5.2.2 Understanding PCA Transformation

In Section 3.2, the sentence representation is trans-
formed with PCA learned from knowledge-seeking
turns. Table 7 shows the F1 score on the test
set using top L principle components with PCA
learned using different data. Overall, we can see
that PCA with knowledge-seeking turns achieves
better performance, and using more principle com-
ponents is always beneficial. PCA is well-known
to help construct new subspaces by maximizing
the global variance. Intuitively, by learning PCA
over knowledge-seeking turns, we expect the man-
ifolds on knowledge-seeking turns to spread out
and non-knowledge seeking turns condense. Fig-
ure 2 shows the scatter plot of the top two prin-
ciple components of transformed features. In Fig-
ure 2a, we learn PCA from non-knowledge-seeking
turns, which results in the manifold of knowledge-
seeking turns (red dots) to be within that of non-
knowledge-seeking turns (blue dots). It hurts the
performance since the density estimation is per-
formed over non-knowledge-seeking turns, as con-
firmed by the zero shot result in Table 7 in compar-
ison to that in Fig 1. In contrast, in Figure 2b, we
learn PCA with knowledge-seeking turns, which
makes knowledge-seeking turns (red dots) spread
out and non-knowledge-seeking turns (blue dots)

Components # Dev Set F1 Test Set F1 Contrast Set F1

1 98.71 96.18 90.43
2 98.88 95.82 90.61
3 98.97 96.12 90.35
4 99.03 96.04 89.72

Table 9: Comparison of performance (in percentage)
by using different number of components for the GMM
estimator.

condense. By estimating the density of this con-
densed blue area, we obtain higher F1 score be-
cause all the red dots falling outside of the region
of blue dots will be classified as out-of-distribution
correctly.
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Figure 3: Development set F1 scores by retraining dif-
ferent values of first L columns of W . Full dimension
is 768.

5.2.3 Comparison of Density Estimators
For the density estimator, we have tried OC-SVM,
KDE with various kinds of kernels, and GMM,
which are summarized in Table 8. All these estima-
tors are implemented using Scikit-Learn library.5

From Table 8, we see that GMM performs the best
while being the fastest for inference, therefore we
chose it as the density estimator in our work.

5https://scikit-learn.org/stable/



287

Table 9 shows the performance under different
number of components for the GMM density esti-
mator. From it, we see that the number of compo-
nents has minor influence on the performance so
we decide to use 1 as the number of components in
this work.

5.2.4 Effects of L
We can retrain only the first L columns of W for
the PCA transformation, which can help us reduce
the dimension of transformed representation vector
ẽ. Figure 3 shows the development set performance
under different values of L when all knowledge-
seeking turns are used for training. We see that the
first 50 dimensions can achieve over 95% F1 score
and 300 dimensions are already enough to realize
the peak performance, whereas the full dimension
is 768.

6 Conclusion
In this work, we propose a novel method REDE
based on domain-adapted representation learning
and density estimation for knowledge-seeking turn
detection in tasked-orientated dialogue systems.
Compared with previous SOTA models, REDE
can achieve comparable performance in the full
supervised setting and significantly superior per-
formance for the low-resource setting. Besides,
REDE has much better generalization capability
onto a new contrast set we curated.
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