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Abstract
Attention-based pre-trained language models
such as GPT-2 brought considerable progress
to end-to-end dialogue modelling. However,
they also present considerable risks for task-
oriented dialogue, such as lack of knowledge
grounding or diversity. To address these is-
sues, we introduce modified training objec-
tives for language model finetuning, and we
employ massive data augmentation via back-
translation to increase the diversity of the train-
ing data. We further examine the possibilities
of combining data from multiples sources to
improve performance on the target dataset. We
carefully evaluate our contributions with both
human and automatic methods. Our model
substantially outperforms the baseline on the
MultiWOZ data and shows competitive perfor-
mance with state of the art in both automatic
and human evaluation.

1 Introduction

Unlike traditional task-oriented systems based on
modularized pipelines (Young et al., 2013; Gao
et al., 2019), end-to-end dialogue systems inte-
grate nearly all functionality required to hold a
dialogue into a single neural network (Wen et al.,
2017; Eric et al., 2017; Lei et al., 2018), reduc-
ing error-propagation and data annotation require-
ments. While these systems are not yet ready for
production use, they made considerable progress
in recent years, especially with the advent of pre-
trained neural language models (LMs) (Devlin
et al., 2019; Radford et al., 2019; Zhang et al.,
2020c). Systems such as GPT-2 finetuned by
Budzianowski and Vulić (2019) show that with
an LM pre-trained on a large number of general-
domain dialogues without annotation, only small
amounts of data are required to perform well in a
given task-oriented domain.

On the other hand, the pre-trained LMs run enor-
mous risks. First, solely training for response
generation may result in a lack of grounding for

the responses, where the LM hallucinates words
without any relation to the database. This has
been addressed by multi-task training and auxil-
iary training objectives (Peng et al., 2021) to an
extent. Second, finetuning on small datasets may
reduce response diversity and fluency due to neural
networks’ known propensity for catastrophic for-
getting (Greco et al., 2019) – the model overfits
the finetuning dataset too tightly, “forgetting” the
pre-trained language modeling capabilities.

This paper presents an end-to-end model for
multi-domain task-oriented response generation on
the MultiWOZ data (Budzianowski et al., 2018),1

where we address the above problems with pre-
trained LMs. AuGPT is based on the GPT-2 LM
and Peng et al. (2021)’s basic approach. Our con-
tributions can be summarized as follows:
• We introduce a new dialogue consistency classi-

fication task based on subtle changes to the dia-
logue state (instead of fully random resampling)
used as an auxiliary training objective, and we
demonstrate its performance improvements.

• We present a novel application of token un-
likelihood loss (Welleck et al., 2020) in task-
oriented dialogue to further improve diversity of
our model’s responses.

• We apply pre-training on additional datasets
and massive data augmentation using back-
translation via multiple languages (Sennrich
et al., 2016) and demonstrate that both markedly
improve task-oriented dialogue performance.

• We compare our model to multiple baselines
on MultiWOZ in a corpus-based and simulated
evaluation. We also include human evaluation
results from a shared task competition, as well
as detailed manual error analysis.

We publish our augmented training data, source
code, and pre-trained models on GitHub.2

1https://convlab.github.io
2https://github.com/ufal/augpt

https://convlab.github.io
https://github.com/ufal/augpt
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2 Related Work

While the first attempts to build generative end-
to-end task-oriented systems mimicked the tradi-
tional dialogue system components (Wen et al.,
2017), the task was soon recast as a sequence pre-
diction problem in a two-stage setup. A sequence-
to-sequence (seq2seq) model first generates the be-
lief state based on dialogue context, then generates
the system response based on the context and the
belief state (Sequicity; Lei et al., 2018).

Recently, large-scale multi-domain task-oriented
datasets were proposed (Budzianowski et al., 2018;
Byrne et al., 2019; Rastogi et al., 2020). To ad-
dress multiple domains, Zhang et al. (2020a) intro-
duce the LABES-S2S model that – in addition to a
two-stage seq2seq approach – models belief states
as discrete latent variables. Zhang et al. (2020b)
present DAMD, a three-stage seq2seq architecture
which explicitly decodes the system action. They
optimize for multiple good actions given a single
belief state. Qin et al. (2020) investigate sharing of
domain knowledge and performance on unseen do-
mains. Lubis et al. (2020)’s LAVA model employs
reinforcement learning over latent system actions
initialized using a variational autoencoder.

The line of research closest to our work makes
use of large pre-trained LMs based on the trans-
former architecture (Vaswani et al., 2017) such as
GPT-2 (Radford et al., 2019) or BERT (Devlin
et al., 2019). For example, Wu et al. (2020) pro-
pose finetuning BERT (Devlin et al., 2019) for task-
oriented dialogue, Zhang et al. (2020c) extended
the GPT-2 LM to model open-domain chit-chat.

We follow research initiated by Budzianowski
and Vulić (2019), who use GPT-2 to model multi-
domain task-oriented dialogues. Recently, three
similar modifications to their model were proposed,
namely SOLOIST (Peng et al., 2021), SimpleTOD
(Hosseini-Asl et al., 2020), and the approach by
Ham et al. (2020). Our work extends these models
and proposes a novel training approach and data
augmentation strategies based on back-translation
(Edunov et al., 2018; Federmann et al., 2019). Ear-
lier works used a single pivot language (Jin et al.,
2018; Einolghozati et al., 2019), whereas our work
applies 10 languages to increase variability.

3 Method

The task-oriented setting requires the dialogue sys-
tem to respond adequately to the user’s input and
fulfill its goal, e.g., booking a train or request-

ing restaurant details. The system must process
the user’s input, keep track of the belief state
(user preferences regarding individual slots, i.e., in-
domain attributes) and generate a relevant response
in natural language. It must also interact with a
database to incorporate external information into
its responses (see Figure 1 for an example). Fol-
lowing Budzianowski and Vulić (2019), we choose
the GPT-2 LM as our backbone and use the LM to
model both the belief state and the response.

3.1 Model Representation
The training instances for an LM-based task-
oriented dialogue system can be considered as tu-
ples (c,b,d,r), where c is the context (i.e., a con-
catenation of all previous utterances in the dialogue
– both system’s and user’s), b is the system’s be-
lief state (used to query the database), d are the
database results, and r is the system’s response.

In our case, the dialogue system handles mul-
tiple domains and the belief state is a set of pairs
(domain name, domain belief ), where the domain
belief is an assignment of values into slots, i.e.,
a set of pairs (slot name, value) (see Example 1).
Similarly, the database results d are a set of pairs
(domain name, domain database results), where
the domain database results are an ordered list of
entities returned by the database. We further define
the database result counts dc denoting the number
of results in d for each domain.

Ideally, we would like our system to model the
probability distribution over possible responses
conditioned on the context p(r|c). To simplify com-
putation and model external database queries, we
factorize this distribution as follows:

p(r|c) = ∑
d

p(r|d,c)p(d|c)

= ∑
d

∑
b

p(r|d,b,c)p(d|b)p(b|c)

= ∑
b

p(r|Query(b),b,c)p(b|c) ,

(1)

where p(d|b) is a deterministic distribution over the
database results, and Query is a function returning
database results.

Using this factorization allows the model to pro-
cess the context, query the database and generate
a response based on database results. However,
generating responses directly would result in data
sparsity issues with rare tokens (e.g., venue names
or reference numbers). To maximally reuse the
training samples, we choose to train our model
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Figure 1: The architecture of AuGPT. The pipeline runs in two stages. First, a finetuned GPT-2 LM is used to
predict a belief. Then the database results are obtained and everything is passed to the GPT-2 again to predict a
final delexicalized response, along with possible auxiliary tasks (belief consistency, intent classification, system
action classification). Unlikelihood loss is used for response prediction training.

on delexicalized responses denoted r̄, where slot
values are replaced with placeholders (Wen et al.,
2015). During inference, the responses are lexical-
ized back deterministically using the belief state
and the database results. We assume perfect lexi-
calization, i.e., always being able to lexicalize the
response r̄ back based on d and b.3

Both the database lookup and the lexicalization
are deterministic, and the delexicalized response
r̄ does not depend on the database results d, but
only on their counts dc. Therefore, the distribution
p(r|d,b,c) is equal to the distribution p(r̄|dc,b,c),
and by maximizing its likelihood we are achieving
the goal of maximizing the likelihood of p(r|c).

We use the same language model p̂ to model
the belief state and to generate the delexicalized
prediction. That is,

p(r̄|dc,b,c) ≈ p̂(r̄|dc,b,c,θ) (2)

p(b|c) ≈ p̂(b| /0, /0,c,θ) , (3)

where we denote the model’s parameters as θ .
In the MultiWOZ dataset (Budzianowski et al.,

2018; Eric et al., 2020, see Section 4), responses
are delexicalized by replacing concrete values with
placeholder tokens of the form domain_slot. For
better generalization across domains, we chose to
only use slot instead as responses rarely involve
more than one domain. We train our model to pre-
dict the active domain by outputting it first in the

3We found in our experiments on the MultiWOZ data (see
Section 4) that this assumption was almost always fulfilled.

belief state (remaining domains follow in lexico-
graphical order). The predicted active domain is
then used during lexicalization.4

Belief state: train { leave at=15:30,
arrive by=17:15 },
hotel { price range = cheap }

DB: train 23 matches, hotel no match

Example 1: String format for AuGPT’s belief state and
database result count.

To fully exploit natural language pre-training of
our LM, we represent the belief state and database
result counts as strings containing as few special
tokens as possible (see Example 1).

3.2 Model Training
Although parameters are shared for the belief state
predictor and the delexicalized response predictor,
the training objectives differ slightly. We use cross-
entropy loss for both; response prediction uses un-
likelihood loss (Welleck et al., 2020; Li et al., 2020)
as an additional objective. Unlikelihood loss penal-
izes repeated tokens, which helps the model avoid
repetitions and increases output diversity.

To help the model learn a better internal rep-
resentation from the data, we employ additional
auxiliary tasks. Similarly to Devlin et al. (2019)

4A disadvantage of this approach is that we cannot deter-
mine the active domain if the belief state is empty. However,
in such a case the lexicalization would fail anyway, so the
system’s performance is not affected by this decision.
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and Peng et al. (2021), we train a binary classifier
to detect dialogue inconsistencies. In each training
batch, we corrupt half of the samples by randomly
applying one or more of the following changes with
the same probability:

1. We replace the belief state b with another be-
lief state, sampled uniformly randomly from
the training data.

2. We replace the delexicalized response r̄ with a
different randomly chosen one. If this change
is applied in combination with the first one,
the delexicalized response and the belief state
are taken from the same random sample.

3. A different valid value is uniformly sampled
for each slot in the belief state. In this case,
the domain names and domain order are un-
changed (i.e., the active domain is the same).

The first two changes are identical to Peng et al.
(2021). The third one is a new one which we find
very useful – it is much more challenging to detect
if the belief state was changed when the domain
stays the same. Consistency detection employs an
affine binary classifier on top of last response token
logits, trained using binary cross-entropy (BCE).

We also experiment with additional two clas-
sifiers predicting the user intent and the system
action. These are implemented as two fully-
connected layers attached to the last context token
and the last database result token logits, respec-
tively. However, based on our experimental results
(see Table 4), we decided not to use these tasks in
the final model.

We train the whole pipeline by optimizing the
non-weighted sum of individual component losses,
i.e., cross-entropy for belief state and response pre-
diction, unlikelihood loss for the response, and
BCE for consistency detection.

3.3 Response Generation

For each user input, the system goes through sev-
eral stages (see Figure 1): (1) Previous dialogue
context is passed to the LM, which greedily gener-
ates the string representation of the belief state. (2)
The belief state is parsed and passed to the database
handler. (3) The database handler returns a set of
results for each domain. (4) A string representation
of database result counts is created (see Example 1).
(5) The context, belief state and database results are
concatenated and passed again to the LM. We use
nucleus sampling (Holtzman et al., 2020) to gener-

ate the delexicalized response.5 (6) Placeholders in
the delexicalized response are replaced by values
from the database results and the belief state.

3.4 Data Augmentation

Following its successful usage in other NLP tasks,
(Konstas et al., 2017; Elder et al., 2020), we exper-
iment with data augmentation using paraphrases.
In our setup, we generate multiple paraphrases for
each training utterance and use them to augment
the training data. This way, we effectively increase
the variability of the data.

Various data-driven approaches for paraphrasing
were proposed, the majority of them corpora-based
(Madnani and Dorr, 2010). Recently, machine
translation systems showed strong performance
in generating paraphrases using back-translation
(Sennrich et al., 2016; Edunov et al., 2018; Fed-
ermann et al., 2019), i.e., translating an English
text into an intermediate language and then trans-
lating the result back into English. We use two
different Transformer-based machine translation
systems to paraphrase our data. We used Edunov
et al. (2018)’s system with French and the system
of Macháček et al. (2020); Zouhar et al. (2021)
with additional 40 pivot languages. Based on em-
pirical analysis of translation quality, we chose 10
pivot languages for our data – we obtain 10 differ-
ent paraphrases for each input utterance.6 When
training, we choose the input user utterance uni-
formly at random from the set of all 10+1 variants
of the utterance (backtranslation outputs and the
original one).

4 Experiments

4.1 Datasets

As our primary dataset, we use MultiWOZ 2.1, a
de-noised version of MultiWOZ 2.0 (Budzianowski
et al., 2018). We also used the 2.0 version to
compare to previous works. The dataset contains
7 distinct domains (all related to tourist informa-
tion, e.g., hotels, restaurants) and 10,438 dialogues,
7,032 of which are multi-domain.

We experiment with pre-training our model on
additional datasets. For the pre-training phase, we
use Taskmaster-1 (Byrne et al., 2019) and Schema-

5We found nucleus sampling useful for generating the
response since it increases diversity, but we prefer greedy
decoding for the belief state with a fixed structure.

6Pivot languages used: Albanian, Arabic, Bulgarian,
Bosnian, French, German, Russian, Spanish, Slovak, Swedish.
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MultiWOZ 2.0 MultiWOZ 2.1
method inform success BLEU inform success BLEU

Human 91.0 82.7 – 86.3 79.1 –

AuGPT 83.1 70.1 17.2 83.5 67.3 17.2
SOLOIST (Peng et al., 2021) 85.5 72.9 16.5 – – –
SimpleTOD (Hosseini-Asl et al., 2020) 84.4 70.1 15.1 85.0 70.5 15.2
LABES-S2S (Zhang et al., 2020a) – – – 78.1 67.1 18.3
DAMD (Zhang et al., 2020b) 76.3 60.4 16.6 – – –
MD-Sequicity (Zhang et al., 2020b) 86.6 71.6 16.8 – – –
LAVA (Lubis et al., 2020) 91.8 81.8 12.0 – – –

Table 1: Comparison with previous works on the MultiWOZ dataset (see Section 4.4 for a description of the
metrics). MD-Sequicity is a variant of Lei et al. (2018)’s model, extended for a multi-domain setting.

inform turn
method complete success book P R F1 succ all

AuGPT 89.4 60.1 85.7 64.5 82.1 70.3 12.7 14.6
DAMD (Zhang et al., 2020b) 39.5 34.3 51.4 60.4 59.8 56.3 15.8 29.8
Sequicity (Lei et al., 2018) 23.1 9.8 4.1 33.0 32.7 29.9 12.2 32.6

Table 2: ConvLab evaluation comparison with other works (see Section 4.5 for a description of the metrics).

Guided Dialogue (Rastogi et al., 2020).7 Both
Taskmaster-1 and Schema-Guided Dialogue are
multi-domain, task-oriented, large dialogue cor-
pora consisting of 12,215 and 22,825 dialogues,
respectively. Taskmaster-1 was obtained using the
Wizard-of-Oz and self-dialogue methods, while the
collection of Schema-Guided Dialogue is some-
what artificial – humans are only employed to para-
phrase machine-generated utterances.

4.2 Data Preprocessing

Although the MultiWOZ 2.1 dataset was collected
by humans, it contains a lot of inconsistencies. We
hypothesize that when using only clean samples
which are consistent with the database, the bene-
fit of using higher quality training data outweighs
the decrease in the number of training samples.
This claim is further supported by experiments (see
Section 6). To filter the training data, we choose
only those dialogues where the annotated dialogue
goal corresponds with the turn-level annotated data.
When using the clean samples, we omit about 30%
of the training data.

To effectively combine all our datasets, we
unified the data ontologies. Since the datasets
use different naming conventions (e.g., leaveAt
vs. leave_at) and different domain and slot
names to describe the same concepts (e.g.,
restaurant-food vs. restaurant-type), we

7There are also other large-sized task-oriented datasets
such as MetalWOZ (Lee et al., 2019), however, their annota-
tion is not detailed enough for our setup.

manually designed a mapping between domain and
slot names. Notably, we decided to rename some
slots so they use natural language tokens, as we
base our model on the GPT-2 LM which is pre-
trained on natural language texts (e.g. “leaveAt”
→ “leave at”). Our final ontology that unifies all
three datasets contains 22 domains and 135 slots.

We use our own implementation of delexicaliza-
tion, which directly produces our belief state string
representation (see Section 3.1 and Example 1).

4.3 Training Details

We implement our model in PyTorch (Paszke et al.,
2019), based on GPT-2-small. It uses 12 layers
with a size of 768. For all auxiliary tasks, we use
a dropout of 0.1 with label smoothing 0.1. We
use the AdamW optimizer (Loshchilov and Hutter,
2019). The finetuning runs for 8 epochs on the
MultiWOZ 2.1 data when all the training examples
are used, and for the same number of minibatches
when using only clean samples. The training takes
less than one day when using 4 GPUs.

4.4 Corpus-based Evaluation

To compare with previous results on MultiWOZ,
we evaluate the model performance with a set of
corpus-based intrinsic metrics on both versions of
the data. For MultiWOZ 2.0, we use the origi-
nal delexicalization used by compared baselines
(Peng et al., 2021; Hosseini-Asl et al., 2020; Zhang
et al., 2020b). For MultiWOZ 2.1, we use our own
delexicalization. We employ the original evalua-
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Average Success Success NLU Response
Method Success w/ DB w/o DB score appropriateness Turns

Baseline 69.6 56.8 82.4 4.34 4.18 18.5
Winner 74.8 70.2 79.4 4.54 4.47 18.5
Our submission 72.3 62.0 82.6 4.53 4.41 17.1

Table 3: Human evaluation results obtained during the DSTC9 shared task using Amazon Mechanical Turk. Note
that only 4 out of 10 submissions outperformed the Baseline according to the average success metric.

tion scheme by Budzianowski et al. (2018), which
provides two metrics – the inform rate and the suc-
cess rate. The inform rate is the percentage of
dialogues in which the system mentioned a name
or ID of an entity which does not contradict the
current dialogue state and the user’s goal, whereas
the success rate is the percentage of dialogues in
which the system outputted all the requested infor-
mation. Moreover, we compute BLEU (Papineni
et al., 2002) between the generated system utter-
ances and the ground truth to get an approximation
of the output fluency.

4.5 ConvLab 2 Evaluation

We use the ConvLab 2 platform (Zhu et al., 2020)
for automatic evaluation with a simulated user
agent. We run the evaluation component 1,000
times, i.e. on 1,000 simulated conversations. The
agent mimics user behavior, interacts with the sys-
tem under evaluation, and computes multiple met-
rics: The complete rate reflects the ratio of dia-
logues that are completed, i.e. all the user requests
have been met. The success rate computes the per-
centage of dialogues which are successful, meaning
the system captures correct informed entities and
provides a valid booking if requested. Finally, the
book rate is the proportion of dialogues where the
system was able to book the correct entity (hotel,
restaurant, train) if it was asked to. We also com-
pute precision, recall and F1 score for the informed
entities and the average number of turns in the dia-
logue.

4.6 Human Evaluation and Error Analysis

Thanks to our participation in the DSTC9 task-
oriented dialogue shared task (Gunasekara et al.,
2020; Li et al., 2021), a variant of our model (with-
out pre-training on additional dialogue datasets,
see Table 4) was selected for evaluation by human
judges on the Amazon Mechanical Turk platform.8

8The selection was done based on ConvLab 2 performance,
but probably used a different version of the tool and thus
arrived at different results – the chosen variant is not the best

The judges communicated with the agent in natu-
ral language and rated the system afterward with
respect to the success/failure of the dialogue, lan-
guage understanding score, and response appro-
priateness. Information provided by the system
was additionally checked for consistency with the
database, and the average of success rates given by
the judges and by database grounding is used as
the main metric.

In addition to the crowdsourced evaluation, we
perform a detailed in-house error analysis based
on human interactions with our final system. Ex-
pert annotators followed randomly chosen dialogue
goals accompanying the MultiWOZ test set and
recorded any incorrect system behavior.

5 Results

We first discuss quantitative results for both corpus-
based and crowdsourced human evaluation, then
include a qualitative analysis of the model behavior.

5.1 Corpus-based Evaluation on MultiWOZ
Table 1 shows a comparison between our meth-
ods and current state-of-the-art systems (cf. Sec-
tion 2). Since some of the compared methods do
not provide results with on MultiWOZ 2.1, we re-
port results on both MultiWOZ 2.0 and MultiWOZ
2.1. As we can see, AuGPT compares favorably
to other approaches. The chosen variant of our
model is not the best-scoring variant on corpus-
based metrics (see Table 4). It was chosen based
on the ConvLab evaluation, which may not be op-
timal for corpus-based evaluation. LABES-S2S
produces higher BLEU scores, which would indi-
cate a better fluency of the model, but scores lower
on inform and success rates. LAVA, SOLOIST,
SimpleTOD, and MD-Sequicity, on the other hand,
provide slightly higher inform and success scores
while doing worse in terms of fluency.

Table 2 shows a comparison with two other mod-
els in the ConvLab evaluation scheme with a sim-
ulated user. The compared systems were chosen

one according to our own measurements.
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[...]
user: I want to make a booking at sitar tandoori

belief: restaurant {name = sitar tandoori}
train {arrive by = 18:00, day = sunday, depar-
ture = cambridge, destination = london liverpool
street, people = 1}

system: What day would you like the booking for?
user: the same day, 13:30

belief: restaurant {day = sunday, name = sitar tandoori,
people = 1, time = 13:30}
train {arrive by = 18:00, day = sunday, depar-
ture = cambridge, destination = london liverpool
street, people = 1}

system: Booking was successful. The table will be re-
served for 15 minutes. Reference number is:
00000200.

Example 2: A dialogue where the system did not ask
for necessary information. The user previously booked
a train trip for one person (cf. the belief state in the first
turn shown). When they went on to book a restaurant,
the system took over the number of persons from the
train ride and did not ask again.

because they both implement fully trainable end-to-
end methods. Our system outperforms both com-
pared systems by a wide margin. Our model is
able to perform well not just in a single-turn re-
sponse generation scenario, but over the course of
the whole dialogue. As the example of DAMD
shows, this is not always guaranteed.

5.2 Human Evaluation

We show the DSTC9 human evaluation results in
Table 3. Our model outperformed the baseline on
the main average success metric (along with only
3 other submissions out of 10). We did not match
the winning submission on average success, but
we achieved the best overall success rate based on
human judgments (without checking consistency
with the database). This suggests that the main
drawback of our model lies in database grounding.
This could have been caused by our new delexical-
ization (Section 4.2). Finally, our model needed the
smallest number of turns on average to complete
the dialogues.

Note that the model variant chosen for human
evaluation did not include pre-training on addi-
tional data (cf. Section 4.6 and Footnote 8), which
could improve performance in human evaluation.

5.3 Error Analysis

Our expert annotators evaluated 130 dialogues in
total, 50 of which contained at least one error. How-
ever, in most cases, the system was able to recover
from the errors, resulting in an overall success rate

user : I am looking for a cheap chinse restaurant.
belief: restaurant {food = chinese, price range = cheap}

system: I have 4 cheap chinese restaurants. What area of
town would you like to dine in?

user: downtown
belief: restaurant {area = centre, food = chinese, price

range = cheap}
system: I have 3 cheap chinese restaurants in the centre.

Would you like to book at Charlie Chan?
...

Example 3: A snippet from a challenging but suc-
cessful dialogue. The system deals with input noise
(“chinse”) as well as with paraphrases (“downtown”).

of 86.9% (i.e., 17 unsuccessful dialogues). The
purpose of this analysis was to identify different
types of errors occurring during full dialogues.

By far the most common error (21 counts) were
hallucinated values, i.e., lack of grounding for
some of the information provided (see the end of
Example 2). Another frequent error type is missing
information (5 counts), i.e., not asking for informa-
tion that is required (and e.g. reusing information
from a different domain without user confirmation).
Example 2 also demonstrates another common er-
ror type, which is bad domain (4 counts). Here,
the system does not react to the user’s request for a
different search (hotels instead of attractions in the
example). This might be caused by a less frequent
wording of the request in the given context, and
usually gets resolved by rephrasing the request.

The analysis also found many examples of cor-
rect system behavior in non-trivial cases. As il-
lustrated in Example 3, the model is able to deal
with paraphrases and is robust to a certain amount
of noise in the data. Specifically, it handles typos,
various time formats, etc. Interaction between do-
mains is also successful in most cases – the system
is able to resolve references to another domain’s be-
lief state (e.g., make a booking for the same group
of people as done before in a different venue).

6 Ablation Study

We tested many variants of our method with differ-
ent combinations of components to evaluate their
contributions. The results are presented in Table 4.
Namely, we are interested in the following compo-
nents: (1) unlikelihood loss, (2) auxiliary tasks, (3)
data augmentation, (4) modified consistency task
and (5) unclean data filtering.

We can see that all proposed contributions which
are a part of our final system, except for the un-
likelihood training, have a positive effect on the
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MultiWOZ 2.1 ConvLab 2
inform

method inf suc BLEU comp suc book P R F1 turns

AuGPT 83.5 67.3 17.2 89.4 60.1 85.7 64.5 82.1 70.3 14.6

w/o. unlikelihood 84.1 66.9 17.1 89.2 59.3 90.8 63.9 81.6 69.5 14.6
w/o. clean 81.9 64.0 15.8 85.0 57.7 85.6 65.6 79.1 69.6 14.5
w/o. unlikelihood, w/o. clean 86.5 69.1 17.5 85.9 58.4 81.3 62.2 79.8 67.5 14.1
w. all auxiliary 83.1 66.2 17.0 88.7 59.2 86.0 64.6 81.1 69.9 14.4

w/o. pre-training 81.0 62.7 15.1 88.1 59.8 83.7 68.1 80.9 72.1 15.6
w/o. back-translations 79.8 61.7 15.2 88.9 58.2 87.4 68.0 81.6 72.2 14.9
w. old consistency 81.4 65.8 17.0 85.5 57.8 86.0 65.2 80.0 69.8 14.6
w/o. consistency 81.9 64.5 16.3 86.4 57.1 84.1 66.3 81.2 70.9 14.6

Table 4: Ablation study (inf = inform, suc = success, book = book rate; see Section 4.4). The model version with the
best ConvLab 2 success rate is chosen as our best model. Variants are denoted with their respective modifications
compared to the default: “w/o. unlikelihood” = unlikelihood loss was not used; “w/o. clean” uses all training
samples as opposed to using only the ones consistent with the database; “w/o. pre-training” = Taskmaster-1 and
Schema-Guided datasets were not used for training (this variant was selected for human evaluation); “all auxiliary”
= using two additional auxiliary tasks (see the Method section); “w/o. consistency” = dialogue consistency task is
not used; “old consistency” refers to the consistency task by Peng et al. (2021) (see the Section 3.2).

system performance. In the ConvLab evaluation,
our final system performs best. Removing either
pre-training or back-translations decreases BLEU,
inform and success rates substantially. Further-
more, we notice the positive effect of using our
improved consistency detection task over the one
used in SOLOIST (Peng et al., 2021), which in turn
scores better than no consistency detection.

Training on all data as opposed to using only
“clean” samples clearly reduces performance. On
the other hand, unlikelihood training improves per-
formance only in ConvLab while causing a per-
formance drop in corpus-based metrics. This can
be caused by the fact that the unlikelihood train-
ing promotes diversity and reduces repetitions on
the token level, and thus does not play well with
corpus-based evaluation. We did not notice any
increase in performance when the user intent pre-
diction and system action prediction auxiliary tasks
were used (cf. Section 3.2). The reason for this
behavior could be that the model learns to repre-
sent the actions well enough implicitly, without
the need for these additional objectives. Therefore,
these tasks are not a part of our final model.

7 Conclusions & Future Work

We present a dialogue modeling pipeline based on
the pre-trained GPT-2 language model. AuGPT
uses modified training objectives and employs data
augmentation to increase the diversity of gener-
ated utterances. Our experiments show that the
proposed approach outperforms baselines and is

competitive with state of the art on the MultiWOZ
dataset. We also run a series of ablation exper-
iments to assess the individual contributions of
the modifications. According to our detailed abla-
tion study, training data augmentation using back-
translation via multiple languages and a modified
auxiliary training objective for dialogue consis-
tency detection are the features that contribute most
to our system’s performance. Additionally, we per-
form a qualitative analysis of the outputs to give a
better insight into our model behavior.

In the future, we plan to construct a latent repre-
sentation of the belief state and optimize it jointly
with the language model. We will replace the deter-
ministic lexicalization with a trainable alternative,
and possibly even integrate the database module
into the model. To improve the transfer to new do-
mains, we will learn a domain embedding and opti-
mize it jointly with the model, unifying all datasets.
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A Additional Results

A.1 Detailed Error Analysis
Our expert annotators evaluated 130 dialogues in
total, 50 of which contained at least one error. How-
ever, in most cases, the system was able to recover
from the errors, resulting in an overall success rate
of 86.9% (i.e., 17 unsuccessful dialogues). The
purpose of this analysis was to identify different
types of errors occurring during full dialogues. The
annotators were familiar with the model architec-
ture and were instructed to categorize the errors
according to the cause of the problem. Specifically,
they identified which component caused the respec-
tive error and annotators categorized the errors into
more specific types.

The overall results are given in Table 5. We
observe that the most common reason for a failed
dialogue is an error related to the belief state (30
errors, 10 failed dialogues). Also, although policy
errors happen relatively often (21x), they rarely
cause the whole dialogue to fail (2 dialogues). We
observe that we have a slightly higher number of
successful dialogues compared to the 82.6% suc-
cess rate (without checking database consistency)
found in human evaluation (cf. Table 3). The most
likely cause is that our expert annotators were more
motivated to recover from erroneous system behav-
ior and finish the dialogue.

Fine-grained error types identified by annotators
are given in Table 6 and Examples 2, 4 and 3. To
extend the analysis from Section 5.3, we include
another frequent error type – missing information
(5 counts), i.e., not asking for information that is
required (Example 4). In this case, the system uses
information from a different domain without the
user explicitly confirming this. A most probable
cause of this is that most instances of the training
data carry over the information.

A.2 Individual Component Analysis
We have conducted additional tests to obtain a
deeper insight into each component’s performance
– DST and NLG. We have evaluated the accuracy
of the generated belief states. Joint accuracy, slot
accuracy, and F1 score were used. Joint accuracy
gives the percentage of successfully generated be-
lief states – with no error. Slot accuracy, on the
other hand, is the average accuracy of correctly
predicting the value for a domain-slot pair. To eval-
uate NLG, we compared the end-to-end system
where the generated belief state is used to query

user: I’m looking for a theatre in Cambridge
belief: attraction {type = theatre}

system: There are 5 theatres in Cambridge. Is there an
area of town you prefer?

user: no I don’t care
belief: attraction {type = theatre}

system: I recommend Adc Theatre in the centre. Would
you like more information?

user: no, I’m also looking for some place to stay
belief: attraction {type = theatre}

system: I have 5 theatres in the centre. Do you have a
price range?

user: I’m looking for a place to stay
belief: attraction {type = theatre}

system: There are 5 theatres in the centre. Do you have a
preference for area?

user: I’m looking for a hotel
belief: hotel {type = hotel}

attraction {type = theatre}
system: There are 9 hotels in the north. Do you have a

price range?

Example 4: Dialogue sample with a bad domain focus
and a hallucination. First, the system ignores that the
user switched from searching for a theater to searching
for a hotel. After accepting the new domain, the system
replies with hotels “in the north” even though the user
did not specify.

the database and generate the response with a vari-
ant of the pipeline, where the ground-truth belief
state and/or ground-truth database result counts
were used. The BLEU (Papineni et al., 2002) and
ROUGE-L (Lin, 2004) scores were used for evalu-
ation.

In Table 7, we can see the performance of each
individual component of the system. One can no-
tice that the performance of NLG is not decreased
when we use the generated belief state instead of
the oracle belief state. Since the belief state pre-
diction is not perfect, this suggests that the model
does not actually need belief states for generating
the delexicalized response. However, when the real
database result counts are used instead of oracle
database result counts, the performance decreases,
which implies that the database result counts are
important for NLG.
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Erroneous BS DB Policy Other
Dialogues Error Error Error Error

All dialogues 50 30 4 21 6
Unsuccessful dialogues 17 10 3 2 2

Table 5: Interactive analysis performed by human evaluators using 130 prepared dialogue goals. 17 of these
dialogues contained an error that caused the dialogue to fail. We show summary statistics regarding the number of
respective error sources (BS = belief state, DB = database). Note that some of the dialogues contain more than one
error.

Type Count Source Description

Hallucinated values 21 BS/Policy Used a slot value in the reply that is not grounded in the DB nor in the
context

Wrong lexicalization 6 Policy Repeats the same value in a list of choices during lexicalization
Missing information 5 Policy Makes booking while not all information is specified
Ignored input 5 BS Keeps asking for information that was provided
Bad domain 4 BS Fails to focus on the correct domain
False response 4 Policy States a different value of a slot than the value stored in DB
Repeated output 3 Policy Repeats the same slot twice on the output
Failed booking 3 DB/Policy Booking was unsuccessful due to DB mismatch
Other 10 BS/DB/P/Oth (Various rare errors that could not be categorized)

Table 6: Distribution of the most common error types encountered during the human evaluation of 130 dialogues.
Absolute counts of errors in the 50 erroneous dialogues are shown. The total error count is 61 as some dialogues
contained multiple errors. The most likely source of the error (cf. Table 5) and a short description are given for
each type.

oracle DST NLG
fine-tuned on bs db joint acc. slot acc. F1 BLEU ROUGE-L

MW 2.0
7 7

54.1 97.2 90.0
17.2 39.0

7 3 17.4 39.3
3 3 17.4 39.2

MW 2.1
7 7

56.5 97.2 90.6
17.4 38.6

7 3 17.6 38.8
3 3 17.6 38.8

Table 7: Performance of DST and NLG components. Joint and slot accuracies, as well as slot values F1 score, are
used to evaluate DST. For NLG, BLEU and ROUGE-L metrics are used. Apart from using the generated belief
states and database counts, we also evaluate the components with oracle values. Note that models were pre-trained
on Taskmaster-1 and Schema-Guided Dialogue datasets.


