
Proceedings of the Third Workshop on Natural Language Processing for Conversational AI, pages 179–188
November 10, 2021. ©2021 Association for Computational Linguistics

179

Personalized Search-based Query Rewrite System for Conversational AI

Eunah Cho Ziyan Jiang Jie Hao Zheng Chen
Saurabh Gupta Xing Fan

Amazon Alexa AI
{eunahch, ziyjiang, jieha, zgchen,
gsaur, fanxing, guochenl}@amazon.com

Chenlei Guo

Abstract

Query rewrite (QR) is an emerging compo-
nent in conversational AI systems, reducing
user defect. User defect is caused by vari-
ous reasons, such as errors in the spoken dia-
logue system, users’ slips of the tongue or their
abridged language. Many of the user defects
stem from personalized factors, such as user’s
speech pattern, dialect, or preferences. In this
work, we propose a personalized search-based
QR framework, which focuses on automatic
reduction of user defect. We build a person-
alized index for each user, which encompasses
diverse affinity layers to reflect personal pref-
erences for each user in the conversational AI.
Our personalized QR system contains retrieval
and ranking layers. Supported by user feed-
back based learning, training our models does
not require hand-annotated data. Experiments
on personalized test set showed that our per-
sonalized QR system is able to correct system-
atic and user errors by utilizing phonetic and
semantic inputs.

1 Introduction

With the increased popularity of virtual assistant
agents such as Alexa, Cortana and Siri, millions of
users interact with spoken dialog system on daily
basis. Some of the user interactions lead to defect
experiences, where users do not get what they re-
quested for, or the AI agent has to engage with the
user again to clarify the user request. Such errors
originate either from the spoken dialogue system
itself (e.g. automatic speech recognition (ASR) er-
ror, natural language understanding (NLU) error,
etc.) or the user. For example, an ASR error can
lead to “play son in dance” instead of the correct
query “play stolen dance”. Often users’ slips of
the tongue can lead to the similar issue. It can be
also the case that a partial song name is used in the
request, or lyrics instead of the song name. The
goal of QR component is to automatically recover
from the defect and achieve better user experience.

Figure 1: Search-based personalized rewrite frame-
work

In production spoken dialogue systems, QR com-
ponent is often triggered when the conversational
AI cannot process user requests with a good con-
fidence. For example, if ASR confidence score is
low or named entity tagger (NER) confidence score
for NLU is low, QR component can be triggered to
automatically map a user query to another form, so
that the dialog system can be more robust.

A crucial nature of QR is that often it needs
to reflect personal preference or personalized er-
ror types to recover from the defect. While cer-
tain generic defect patterns may occur globally for
many users, personalized error recovery is often
expected to correctly fulfill each individual user’s
request. For example, a query “turn on the moon”
might be a mis-recognized utterance requesting
for the Moonlight Sonata. For other users who
have a smart light device called “the moon lamp”,
this might be a request to turn on the lamp. Per-
sonalized QR can be leveraged for such scenario,
providing rewrites such as “turn on the moonlight
sonata” or “turn on the moon lamp”.

Inspired by Fan et al. (2021), we approach the
personalized QR task here with a search-based so-
lution. A search system mainly comprises of two
stacks operating sequentially: retrieval and rank-
ing. Figure 1 shows the overall framework of our
search-based personalized rewrite system. Person-
alized index contains successful utterances from
each user. Given the user query, retrieval model
first retrieves top N candidates from the user’s per-
sonalized index. In the retrieval stage, we aim to
obtain the most relevant rewrite candidates with a

180

good recall. The retrived candidates are ranked by
the ranking model, utilizing personalized features
extracted from personalized index. Top 1 ranked
candidate is returned as a final rewrite for the query.
In the example shown in Figure 1, we observe that
the rewrite does not only correct the song name,
but also finds the correct artist name based on the
personalization for the user.

We utilize semi-supervised learning to obtain
data and create the personalized index for each user
in the conversational AI system. The personalized
index primarily serves as a search pool for each
user in the retrieval component. In our work, the in-
dex encompasses diverse affinity layers, which are
utilized further as features in the ranking process.
In Section 3, we describe how the documents are
constructed for personalization index. In Section 4,
we present the retrieval models we explored. Sec-
tion 5 describes the ranker model and its diverse
set of features.

2 Related Work

Many previous work focused on solving the QR
problem in a non-personalized use case. In Pon-
nusamy et al. (2020), authors proposed a markov
chain model as a collaborative filtering mechanism
to mine users’ reformulation patterns. Once the
patterns are discovered, rewrite pairs are extracted
(i.e. ASR recognition of defect query - detected
reformulation interaction). At runtime, if a query
is an exact text match with a defect query, a rewrite
will be triggered using the offline mined pairs. Dif-
ferent from the Markov chain model, Chen et al.
(2020) proposed a retrieval model for QR task, uti-
lizing a query encoder that incorporates contextual
language modeling pre-training.

At the same time, QR problem has been explored
for other tasks as well. In Bonadiman et al. (2019),
authors explored paraphrase retrieval for defect re-
duction on question answering task. A machine
translation based method (Riezler and Liu, 2010)
was explored for a QR problem in a search engine.

Fan et al. (2021) further extended previous work
on search-based QR in spoken dialogue system
to both global layer (serving non-personalized,
generic rewrites) and personalized layer. They uti-
lize the search based methods and metrics such
as similarity measures. Compared to the markov
chain model (Ponnusamy et al., 2020), this work
provided a further flexibility to generalize over un-
seen input queries. For global layer, authors ex-

plore the importance of a ranking layer leveraging
a neural feature extractor and a tree model. In
Roshan-Ghias et al. (2020), authors present a re-
trieval model compared with a pointer-generator
network with hierarchical attention to perform per-
sonalized rewrites within smart home domain. In
our work, we focus on the search-based QR sys-
tem that utilizes retrieval and ranking components.
One strength of the search-based QR is that as
the rewrite candidate pool is defined in the index,
rewrite quality can be tightly controlled. Compared
to generation-based methods, which may provide
enhanced flexibility and diversity of the rewrites,
this provides an advantage for system stability, es-
pecially for a task like QR which is strongly rele-
vant with runtime production setup.

Our work distinguishes itself from previous work
from the following aspects. First, we significantly
extend the personalized index to incorporate di-
verse affinities and associated personal preferences.
Our QR system is not limited to certain domains or
usage, but capable of providing rewrites across all
domains and functionalities within the spoken dia-
logue system (e.g. playing music, reading books,
weather forecast, handling smart home devices,
etc.). The retrieval component is further extended
so that not only it utilizes the utterance informa-
tion, but it incorporates phonetic information as
well as ASR n-best information. While personal-
ized search-based QR system in Fan et al. (2021)
only leveraged a retrieval component, we introduce
a ranking model with personalized features.

3 Personalized Index

In order to support personalized rewrites, we build
an index for each user, leveraging individual in-
teraction history. Personalized index reflects non-
defect experiences for each user1 observed within
last 30 days of time window. We utilize a defect de-
tection model such as Ling et al. (2020); Gupta et al.
(2021) as well as rule-based criteria to obtain non-
defect turns. The rule-based criteria utilizes both
users’ response (if user barged in or stopped agent’s
response, the turn is defect) as well as agent’s re-
sponse (if agent responds as “sorry, I do not know
that” or similar, the turn is defect). To better define
the search space and consider runtime aspects, we
limit the personalized index size, by selecting top
l history utterances based on utterance count and
recency from the user. In order to control runtime

1All user information is in a de-identified format.

181

latency, we use l = 100 in this work.
Our personalized index contains different layers

to represent fine-grained affinities; utterance (with
NLU hypothesis), entity, intent, and template. The
utterance layer directly serves as the search space
for the personalized retrieval. The other layers
provide personalized features utilized for ranking
process. In the following sections, we describe
each of them in detail.

3.1 Utterance Layer
As mentioned, personalized index is constructed
for each user of the conversational AI system. Ut-
terance layer can be considered as an entry point,
where we trace non-defect utterances spoken by
each user. Figure 2 shows an example personalized
index.

The documents in the index are constructed us-
ing NLU hypothesis information. Using NLU hy-
pothesis information, we aim to represent a group
of queries sharing a similar goal in a dialogue sys-
tem. NLU hypothesis is generated from the NLU
component in the spoken dialog system, and can
be represented in the following format “domain |
intent | slot_type:slot_value”. For example, given
a query “put on cocomelon”, we have an NLU
hypothesis of “Music | PlayMusicIntent | Artist-
Name:cocomelon”. The domain is the general
topic of a query, e.g. “Music”, “Weather”. The
intent reflects the action the user wants to take, e.g.
“PlayRadio”, “WeatherInfo”; The slot-types/values
are results of entity labeling task. In the exam-
ple, we can see that two queries spoken by the
user “play cocomelon” and “put on cocomelon”
are grouped together as they led to the same NLU
hypothesis. For each NLU hypothesis and query,
we trace how often the user has used this (user
count) as well as how often this led to a defect
experience (user defect).

3.2 Entity Layer
We further expand the affinity to include entity in-
formation so that the entity affinity information can
be used during the ranking process. By entity, we
refer to the slot values that we can observe in the
NLU hypothesis. In the example index shown in
Figure 2, we can extract the information that the
user uses the entity “cocomelon” 30 times within
the time window, and among them the defect expe-
rience was 3 times. To obtain an index with fine-
grained affinity representation, we further gather
the information on the joint occurrences between

Figure 2: Example of utterance layer in personalized
index

the slot types and the entity. Using this, we can
reflect different usage pattern from each user. For
example, for the users who frequently listen to “co-
comelon” using an audio device, the entity would
appear more frequently with ArtistName slot type.
On the other hand, for the users who frequently
watch videos of “cocomelon”, the entity would ap-
pear more frequently as a VideoName enity. Such
fine-grained usage pattern is leveraged as personal-
ized features in the ranking layer (Section 5).

3.3 Intent Layer

Similarly to entity layer, we extract intent usage
information. For each intent used by each user (e.g.
“PlayMusic”, “PlayVideo”), we trace user count as
well as defect information.

3.4 Template Layer

By template, we refer to the utterance structure.
For example, for a same-goal request, certain users
may say “In my kitchen put John Lennon’s song
Imagine” while others may say “play Imagine by
John Lennon on my kitchen device”. We find those
syntactic differences another way to represent user
affinity and introduce the template layer. For tem-
plate, entities are replaced to their slot-type and
we only utilize the carrier phrase (e.g. “play Song-
Name by ArtistName on my DeviceLocation de-
vice”). For each template, same as other affinity
layers, we trace user count and user defect informa-
tion.

4 Retrieval Component

In a search system, retrieval layer aims to retrieve
a set of relevant documents from a great amount of
documents. The goal is to retrieve them with good
recall, with low latency and computational cost.

182

Following the work in Chen et al. (2020); Fan
et al. (2021), we use a Deep Structured Semantic
Models (DSSM) (Huang et al., 2013) based em-
bedder. The learning objective is to project the em-
bedding of input query (e.g. “turn on tape timer”)
and that of target rewrite (e.g. “turn on tea timer”)
closely.

4.1 Training Data Selection
For training data, as a baseline, we use weak-
labeled data similar to Fan et al. (2021). We first
find two consecutive user utterances, where the first
turn was defect, but the second turn was successful.
We utilized a DNN-based defect detection model
such as Ling et al. (2020). In order to decrease po-
tential noise in the data and find the pairs where the
second utterance is indeed a rephrase of the first
utterance, we further apply filters based on edit-
distance and ASR n-best. For edit-distance based
rephrases, we filter so that the utterance pairs have
an edit distance smaller than d, and the time gap
between the two utterances are shorter than t sec-
onds. Additionally, we harvest ASR n-best-based
rephrases. Two consecutive user utterances whose
time gap is shorter than t seconds, if the first turn’s
ASR n-best (n > 1) is same as the following second
turn’s ASR 1-best, we consider them as rephrase
as well. After preliminary experiments to control
the trade-off between noise level and training data
size, we chose t = 45 and d = 5. Maximum size
for n is 5.

In order to decrease potential noise in above data,
we apply another data selection method by adding a
constraint on transitioning probability. From inter-
action history of each user, we calculate the proba-
bility of two utterances occurring one after another.
We then apply a constraint so that P (u2|u1) > p,
where u1 denotes the first turn, and u2 denotes the
following turn. This helps to clean up the data
further and filter out noise introduced in the train-
ing data for the personalized model. This way of
data selection led to a smaller amount (60%) of
rephrases as training data, compared to the base-
line approach. In our experiments, we empirically
set the d = 7 and p = 0.5.

4.2 Phonetic Information into Retrieval
We observe that user defects often stem from ASR
error as well as users’ slip of the tongue. For exam-
ple, a query “did humidifier on” is an ASR error of
“dehumidifier on”. Another example includes an
erroneous recognition “can you play alien bridges”,

Figure 3: Illustration of DSSM model with phoneme
sequence

which was rephrased by the user into “can you play
leon bridges”. While the baseline retrieval model
(Fan et al., 2021) utilizes surface form representa-
tion of user utterances and their embedding space,
we aim to further expand this to also incorporate
phonetic information.

In order to obtain the phoneme sequence of each
utterance, we utilize a grapheme to phoneme (G2P)
model based on the Transformer (Vaswani et al.,
2017)2. Baseline DSSM model uses the textual
representation of the query (e.g. “did humidifier
on”) and the target rewrite (e.g. “dehumidifier on”).
While still utilizing the DSSM structure, we in-
troduce another layer to fuse textual input repre-
sentation and the phonetic sequence representation
(e.g. “d I d h j u m I d @ f aI @‘ A n”), for both
query and target rewrite. Standard G2P outputs
phoneme sequence in their monophone sequence.
Our preliminary experiment showed that augment-
ing word boundaries in phoneme sequences (e.g.
“dId hjumId@faI@‘ An”), making the phoneme se-
quence more comparable to the utterance sequence
length, leads to better performance. Figure 3 de-
picts how the phoneme sequence is incorporated
into the DSSM model.

The neural encoder, thus, learns to capture latent
syntactic, semantic and phonetic information for
the query and the rewrite candidates. For the final
similarity comparison, we use the scoring function
shown in Eq. 1, where cos represents cosine dis-
tance.

S(x, y) = cos (h, r) (1)

h is the embedding of input query x and r is the
embedding of the rewrite candidate y, generated
by passing them through the neural encoder respec-
tively.

2We utilized Sockeye package (Hieber et al., 2017)

183

We calculate the score S given the input query
and rewrite candidates (utterances) from personal-
ized index. Top N candidates are chosen by their
score S and passed down to the ranker component.

4.3 Utilizing ASR n-best

The QR system is triggered when the conversa-
tional AI cannot process user queries with a good
confidence. Many previous designs for QR compo-
nent, such as Fan et al. (2021); Chen et al. (2020),
consume ASR 1-best as an input query to the QR
system. Instead of consuming only ASR 1-best to
our QR system, in this work, we expand our re-
trieval component to also consume the full ASR
n-best list. By expanding the input query to a list
of ASR hypotheses, we aim to boost the recall in
the retrieval layer. For example, for a query (ASR
1-best) “turn on prayer lights”, considering its ASR
n-best such as “turn on foyer lights” in addition
might be helpful to retrieve the correct rewrite “turn
on party lights”.

We expand the scoring function to consider input
query’s ASR n-best, x0, x1, ..., xn−1. Rewrite
candidates are retrieved based on the maximum
score S obtained between them and any of the input
ASR n-best. In order to consider runtime latency,
we limit the n to 5.

4.4 Model Training

The neural encoder in the retrieval layer takes
character-level trigram and word-level as input. We
sum the embeddings of all tokens and pass through
three layers of fully connected MLP with 512 hid-
den layer size. The final embedding size is 300.
The experiments are performed using AllenNLP3.

5 Ranking Model

Given retrieved rewrite candidates, ranking layer
aims to rank the most desired rewrite to the top.
Thus, precision is critical in the ranking layer. In
this work, we build a gradient boosting model that
utilizes both global level features as well as person-
alized features.

In our personalized QR system, we retrieve top
10 rewrite candidates in the retrieval component
and pass them down to the ranking component.
The top 1 rewrite whose ranking score is higher
than an empirically chosen θ is selected as the final
rewrite.

3https://github.com/allenai/allennlp

5.1 Global Features

By global features, we refer to non-personalized,
generic features that we can consider for a rewrite
ranking model. Even though the major use case
of the model is for personalization, our intuition is
that there are generic features that the model can
learn to boost good rewrites (e.g. how similar query
and rewrite utterances are).

Global features include the followings. Global
IR features includes many of traditional infor-
mation retrieval (IR) features, including TF-IDF,
BM25 (Robertson et al., 1995), (weighted) number
of queries, (weighted) number of tokens and n-
gram probability. To extract global IR features, we
utilize a document aggregated in global level, simi-
larly to Fan et al. (2021). Per each NLU hypothe-
sis, we aggregate relevant queries, their frequency
and defect information. To obtain embedding fea-
tures, we use two utterance encoders; one based
on utterance string, another based on phonetic se-
quence. Each model is used to represent utterance
strings (query and rewrite candidate) in their em-
bedding space. We then obtain similarity metrics
between the query and the rewrite candidate, such
as cosine distance, Euclidean distance, Manhat-
tan distance, etc. The utterance encoder follows
the DNN-based baseline retrieval model (Huang
et al., 2013; Fan et al., 2021). Phonetic sequence
encoder follows the model described in Section 4.2
but CNN-based (Shen et al., 2014). For both en-
coders, we use three layers of fully connected MLP
with 512 hidden layer size. The final embedding
size for both DNN and CNN is 300.

To obtain phonetic features, we first represent
query and rewrite candidates in their phonetic se-
quence. Similar as in Section 4.2, we use G2P
model to translate the utterance sequence to their
phonetic sequence. Their textual similarity is cal-
culated in Jaccard distance, edit-distance, as well
as BLEU (Papineni et al., 2002). In addition, we
utilize utterance popularity information as one
of the global features. For this, we look into the
number of users who spoke the utterance in a time
window (i.e. 30 days).

Finally, defect features trace defect metrics for
query and rewrite candidate. In order to build de-
fect metrics, we observe production traffic utter-
ances within a certain time window (i.e. 30 days)
and obtain average defect metrics per utterance.
Defect metrics consists rule-based ones (e.g. av-
erage termination, representing how often users

184

follow up with “stop” or such after the query, aver-
age barge-in, representing how often users barged
in right after they make a query, etc.) and model-
based ones. Model-based ones include rephrase
score from a rephrase detection model, indicating
whether the query has been rephrased by the next
turn. Rephrase detection model is a BERT (Devlin
et al., 2018) based model, fine-tuned with human
annotated rephrase pairs, and outputs the proba-
bility that the second query is a rephrase of the
first query. Another model-based metric is defect
score obtained from a DNN model for estimating
dialogue quality (Ling et al., 2020).

5.2 Personalized Features

The ranker further utilizes rich personalized fea-
tures. For user affinity features, we extensively
used the affinity layer information from the person-
alized index (Section 3). For example, utilizing the
entity layer in the personalized index, we extract
user count and user defect information for an entity
within the rewrite candidate. Intent and template
layers are utilized in the similar manner. Intuition
is that if the user hardly uses “PlayVideo” relevant
intents but “PlayMusic” relevant intents more fre-
quently with a certain entity (e.g. “cocomelon”),
the ranker should be able to leverage this informa-
tion to further promote the correct rewrite candi-
date. User embedding is obtained by utilizing per-
sonalized index described in Section 3, specifically
utterance layer. We use the DNN based utterance
encoder and obtain utterance embedding of 300
dimension for each utterance in user’s personalized
index. Each utterance embedding is weighted by
user’s utterance count and averaged. The averaged
utterance embedding is used as the user’s embed-
ding. The intuition is that users’ utterance usage
will be reflected to the averaged embeddings. Simi-
larly to the global features, we also construct user
IR features by building a document for each user,
extracting utterance frequency and defect informa-
tion. Utilizing the document, we extracted the IR
features comparable to the global IR features, such
as TF-IDF, BM25, etc.

5.3 Training Data and Model Training

For model training, we obtained an adequate
amount of rephrases from production traffic4, fol-
lowing the methods described in Section 4. We run
each rephrase through the personalized retrieval

4all user data is processed to be de-identified.

Table 1: Retrieval model performance in precision and
trigger rate. All performance is reported in relative im-
provement compared to the Baseline.

No. System Precision Trigger Rt.
1. Data Selection +3.35% +18.88%
2. + Phoneme +6.56% +55.94%
3. + ASR n-best +6.32% +119.85%

layer (Section 4) and obtain top 10 retrievals. If
the retrieval matches rewrite label, it will serve
as a positive label during the training. If not, the
retrieval becomes a negative example.

In addition, we run the rephrases through a
global retrieval model and obtain top 10 retrievals
as well. Global index building follows the work in
Fan et al. (2021), and we use the baseline retrieval
model described in Section 4. By incorporating
retrievals from both personalized and global layer,
we aim to enhance model robustness. As personal-
ized index reflects each user’s preference and usage
pattern, the retrievals are already rather distinctive
for each other, leading to a relatively easier ranking
problem. On the other hand, a global index con-
tains documents aggregated from many users and
can provide a relatively more challenging ranking
problem. For example, given an input query “play
shooting the sheriff”, personalized index may have
one strong rewrite candidate “play I shot the sher-
iff by Eric Clapton”, reflecting user’s previously
shown preferences. However, global index can pro-
vide multiple relevant candidates, such as “play I
shot the sheriff by Bob Marley” or “play sheriff”.
The global and personalized features together reach
∼730 dimensions of feature vector.

The ranker is trained using LightGBM (Ke et al.,
2017) with DART (Vinayak and Gilad-Bachrach,
2015), where we set the max tree depth to be 20,
learning rate to be 0.1, and the number of leaves to
be 300.

6 Experiments and Results

In order to build the test set, we first find potential
rephrase pairs that fulfill the following conditions:
a) for the two consecutive utterances, the second
turn utterance y is followed by the first turn utter-
ance xwithin a short time window (i.e. 45 seconds)
and their minimum edit distance is below an empir-
ically chosen threshold, b) we can observe y in the
user’s personalized index with successful interac-
tion indicated by the defect detection model. These

185

Table 2: Top 1 retrieval from retrieval model. “Retrieval sys.” denotes the systems in Table 1.

Query Top 1 retrieved rewrite Retrieval sys.
Play my first hertz playlist Play my first church playlist 1, 2, 3
Play 104 WKQR Play 104.1 WTQR 2, 3
What’s the weather in Wharton beach What’s the weather in Boynton beach 2, 3
Turn on huel Turn on newel 3

samples are further annotated by human annotators
to only select the true rephrases. After each test
case is annotated by three human annotators, we
have 6k test cases with the annotator agreement.

6.1 Evaluation Metrics

Evaluation is performed on the NLU hypothesis
level, in precision and trigger rate. The preci-
sion here measures how often the triggered top
1 rewrite’s NLU hypothesis matches the correct
rewrite y’s NLU hypothesis. Since our test set rep-
resents personalization opportunity, we also mea-
sure trigger rate, the ratio between rewrite-triggered
test cases and all test cases. The QR component
is triggered when the prediction score of the top 1
rewrite score is above an empirically chosen thresh-
old. Trigger rate represents how often we can trig-
ger the rewrite given personalization opportunities.

In this paper, performance is reported in terms
of relative improvement over baseline. For ex-
ample, given the precision of baseline system,
we calculate the relative precision performance
changes and report this in %. It is calculated as
100× (pc− pb)/pb− 100, where pb is the baseline
precision, and pc denotes any comparing system’s
precision.

6.2 Results and Analysis

Table 1 shows the retrieval component performance
on the personalized test set. To evaluate the per-
formance of retrieval component, we take the top 1
retrieved candidate whose score exceeds a thresh-
old θ, same as Fan et al. (2021). The threshold is
carefully chosen empirically to avoid bad rewrites
in production system. Thus, Table 1 represents
the scenario where only the retrieval component is
available for the personalized QR task.

For baseline, we utilize the utterance-based re-
trieval model following the weak-labelled training
data selection described in Fan et al. (2021). As
described, all performance is reported as relative
performance against the baseline.

We can see that utilizing the utterance-based

Table 3: Ranking model performance. Baseline is best
performant retrieval system’s top 1 retrieval.

Precision Trigger Rt.
Ranker: global features -1.17% +7.39%
Ranker: all features +7.60% +19.10%

Table 4: Final top 1 rewrite examples.

Query Final rewrite
Show me news room Show me Indee’s room
Burns office on Marin’s office on
Olana soundtrack Play Moana sound-

track
Start my working Start my work day
Lights sports show Lights for show

retrieval model with data selection based on transi-
tion probability (row 1 in Table 1) improves both
precision and trigger rate, even though the model is
trained with a smaller amount of training data. Fur-
ther significant improvement is achieved utilizing
phoneme sequence on top of utterance sequence
(row 2), and ASR n-best extension of input queries
(row 3). It is especially noticeable that the baseline
retrieval system’s trigger rate is relatively low for
the personalized test set. With all advancements
(row 3), we can significantly improve the overall
triggering rate with improved precision.

Table 2 shows examples of the top 1 retrieval
from the retrieval component. We clarify which re-
trieval system achieved the rewrite by showing the
system number corresponding to Table 1. We ob-
serve that the advancements in the retrieval compo-
nent (data selection, phoneme sequence, and ASR
n-best) led to the retrieval of personalized rewrites
with a good confidence for many test cases. We can
recover errors in user’s playlist (hertz to church),
frequently used radio station 104 WKQR to 104.1
WTQR). Other examples show that the retrieval
system can correctly retrieve user’s weather loca-
tion (Boynton beach, Florida) for a mis-recognized

186

location (Wharton beach, Australia).
Table 3 shows the ranking component perfor-

mance. As Baseline, we took the best performing
retrieval component configuration (last row system
in Table 1). When utilizing ranker with only global
features, we observe a slight degradation in preci-
sion, but a great improvement in trigger rate. Utiliz-
ing both global and personalized features, both pre-
cision and trigger rates are significantly improved.
Examples of top 1 ranked rewrites are shown in
Table 4. In this table, we show the examples where
the retrieval component could not trigger a rewrite
with a good confidence score, but the ranking com-
ponent can trigger the final rewrite. In addition
to correcting errors in user’s smart device setups
(e.g. room name, device name), it is also notice-
able that the personalized QR corrects errors in
users’ routine setups (last two examples in Table
4). Many conversational AI systems support such
routine phrase setups, where user can preset certain
phrases (e.g. “start my work day”) for specific ac-
tions from the agent (e.g. turning on lights and fans
in user’s office). During our analysis, we observe
many of such corrections on routine phrases. The
examples showcase that personalized QR system
can enable AI agents to perform desired actions
upon corrected utterances, rather than causing de-
fect for the users (e.g. “Sorry, I don’t know that.
Can you repeat?”).

We further looked into feature weight and ana-
lyzed the feature importance in the ranker model
(See Appendix). We learned that 40% of user affin-
ity features are ranked in the top 50 important fea-
tures. Global features had shown importance as
well. For example, 80% of defect features made
into the top 50 important features out of all features,
showing that the generic, non-personalized defect
information is still required for the ranking process.

7 Conclusions

In this paper, we introduced a personalized search-
based query rewrite system for conversational AI
system. In order to fulfill personalization, the indi-
vidualized index tracks each user’s successful in-
teraction history and is further expanded to reflect
diverse affinities. Retrieval model leverages both ut-
terance and phoneme information, and retrieves top
10 rewrite candidates. The candidates are ranked
by the ranking model, utilizing highly personal-
ized features based on the affinity layers as well
as generic features for the query rewrite task. Ex-

periments demonstrated that the search-based QR
system with personalization advancements brings
a significant improvement on both precision and
trigger rate on the personalized rewrite test set.

For future work, we will focus on improving the
model components further, including incorporation
of richer prior information into the system (e.g. pre-
trained contextual language modeling). Another
future direction is to include richer contextual and
personalized information into the retrieval process.
The goal is to utilize contextual, cohort information
and expand the QR experience to the functionalities
that the user has not explored yet. Also, we will
explore including external common knowledge into
the ranking process.

References
Daniele Bonadiman, Anjishnu Kumar, and Arpit Mittal.

2019. Large scale question paraphrase retrieval with
smoothed deep metric learning. In EMNLP 2019,
W-NUT.

Zheng Chen, Xing Fan, Yuan Ling, Lambert Math-
ias, and Chenlei Guo. 2020. Pre-training for query
rewriting in a spoken language understanding sys-
tem. In ICASSP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
MaL).

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interaction quality estimation of di-
alogue systems. 2nd International Workshop on
Data-Efficient Machine Learning (DeMaL).

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint arXiv:1712.05690.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information
processing systems, 30:3146–3154.

187

Yuan Ling, Benjamin Yao, Guneet Kohli, Tuan-Hung
Pham, and Chenlei Guo. 2020. Iq-net: A DNN
model for estimating interaction-level dialogue qual-
ity with conversational agents. In Proceedings of
the KDD 2020 Workshop on Conversational Systems
Towards Mainstream Adoption co-located with the
26TH ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (SIGKDD 2020), Virtual
Workshop, August 24, 2020, volume 2666 of CEUR
Workshop Proceedings. CEUR-WS.org.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Pragaash Ponnusamy, Alireza Roshan-Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2020. Feedback-based self-
learning in large-scale conversational ai agents. In
The Thirty-Second Annual Conference on Innovative
Applications of Artificial Intelligence.

Stefan Riezler and Yi Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569–582.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Alireza Roshan-Ghias, Clint Solomon Mathialagan,
Pragaash Ponnusamy, Lambert Mathias, and Chen-
lei Guo. 2020. Personalized query rewriting
in conversational ai agents. arXiv preprint
arXiv:2011.04748.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Gregoire Mesnil. 2014. A convolutional latent
semantic model for web search.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Rashmi Korlakai Vinayak and Ran Gilad-Bachrach.
2015. Dart: Dropouts meet multiple additive regres-
sion trees. In Artificial Intelligence and Statistics,
pages 489–497. PMLR.

A Appendix

Ranker model utilizes ∼ 730 dimensions of fea-
tures. Among them, Table 5 lists the most impor-
tant features, sorted by their feature weight.

http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_12.pdf
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_12.pdf
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_12.pdf

188

Table 5: List of important ranker features, sorted by importance.

Category Feature description
Global IR Number of character changes between query and rewrite candidate
Global IR Number of NLU slot types in rewrite candidate
Utterance popularity Number of users who spoke query
Utterance popularity Number of users who spoke rewrite candidate
Defect Average defect score for rewrite candidate
Global IR Character level BLEU score between query and rewrite candidate
Global IR TF-IDF
User affinity User count for the rewrite candidate
Phonetic Edit-distance on phoneme sequence of query and rewrite candidate
User affinity User count for the NLU slot type and entity combination
Global IR Entity overlap between query and rewrite candidate
Defect Global count for rewrite candidate
Defect How often users barged-in for the rewrite candidate
User affinity User count for the NLU intent for the rewrite candidate
Defect How often users rephrased for the rewrite candidate
User IR TF-IDF based on user document
Global IR Unigram jaccard distance between query and rewrite candidate
User affinity Template user count for the rewrite candidate
Phonetic Character level BLEU score for phonetic sequences of query and rewrite

candidate
Global IR Bi-gram jaccard distance between query and rewrite candidate
Defect How often the rewrite candidate was not actionable by the agent
Embedding DNN-based Euclidean distance between query and rewrite candidate
Embedding DNN-based Manhattan distance between query and rewrite candidate
Defect How often users rephrased for the query
User affinity Whether user’s frequently used entity is in the query
Global IR Bi-gram edit-distance between query and rewrite candidate
Defect Average defect score for query
User affinity User count for the entity in the rewrite candidate
User affinity User count for the entity in the query
Global IR BM25
User IR Normalized defect score for the user utterance
User IR BM25 based on user document

