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Abstract

User intent discovery is a key step in develop-
ing a Natural Language Understanding (NLU)
module at the core of any modern Conversa-
tional AI system. Typically, human experts
review a representative sample of user input
data to discover new intents, which is subjec-
tive, costly, and error-prone. In this work, we
aim to assist the NLU developers by present-
ing a novel method for discovering new in-
tents at scale given a corpus of utterances. Our
method utilizes supervised contrastive learn-
ing to leverage information from a domain-
relevant, already labeled dataset and identifies
new intents in the corpus at hand using unsu-
pervised K-means clustering. Our method out-
performs the state-of-the-art by a large margin
up to 2% and 13% on two benchmark datasets,
measured by clustering accuracy. Furthermore,
we apply our method on a large dataset from
the travel domain to demonstrate its effective-
ness on a real-world use case.

1 Introduction

Conversational AI systems such as chatbots and
virtual assistants are widely used in a variety of
applications to assist users. Natural Language Un-
derstanding (NLU), as an integral part of a conver-
sational AI system, is the process of classifying
the user’s input into a set of pre-defined categories,
generally referred to as intents. In most applica-
tions, the task of NLU is achieved by developing a
supervised text classification model. Understand-
ing and identifying user intents is key to developing
intent classification models as it directly impacts
the performance of the system.

Generally, the set of intents that can be recog-
nized by the model is defined by human experts
based on domain knowledge and business require-
ments. This process usually requires a significant
amount of effort to manually review large-scale

user input data. In addition, this task becomes
increasingly complex as the number of potential
intents in the dataset grows.

To address these challenges, intent discovery
methods that aim to detect new user intents, ei-
ther automatically or semi-automatically, from a
large number of unlabeled utterances, have been
developed in recent years.

A popular approach for intent discovery is based
on unsupervised clustering algorithms. For in-
stance, Shi et al. (2018) conduct hierarchical clus-
tering on sentence representations from autoen-
coder based on a combination of word embed-
dings, POS tagging, keywords, and topic modeling.
Vedula et al. (2019, 2020) establish a multi-stage
procedure which detects out-of-domain utterances
with a classification model and then group the text
with unknown intents by clustering. Chatterjee
and Sengupta (2020) extend DBSCAN (Ester et al.,
1996) to discover intents in conversations based on
sentence embeddings from universal sentence en-
coder (Cer et al., 2018). However, the unsupervised
approaches often fail to produce highly accurate
and granular intents. As such, researchers have
developed semi-supervised methods to leverage
existing domain-relevant labeled data in order to
improve the intent discovery results. Zhang et al.
(2021) propose deep aligned clustering (DAC) in
a semi-supervised framework to leverage the prior
information of known intents. DAC uses BERT to
generate sentence representations. However, BERT
has poor performance with respect to generating
semantically meaningful sentence representations
(Reimers and Gurevych, 2019; Li et al., 2020). Al-
ternatively, Sahay et al. (2021) use sentence-BERT
(SBERT) to learn sentence representations but fail
to achieve significantly better results using the DAC
algorithm without adjusting their training methods
for SBERT.
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Figure 1: The architecture of the proposed method. First, we use labeled data to pair utterances based on their
labels. Then, we train the sentence transformer, MPNet, in the Siamese Network structure with contrastive loss to
learn sentence representations using sentence pairs in a supervised way. Next, we encode unlabeled data by the
trained model. Finally, we estimate the optimal values of the number of clusters and perform K-means to discover
new intents from identified clusters.

To address the limitations in the methods men-
tioned above and to further improve the results,
we propose a novel semi-supervised method as
illustrated in Figure 1. We use a Siamese Net-
work (Reimers and Gurevych, 2019) to learn se-
mantically meaningful sentence representations, in
which a model is trained to differentiate pairs of
sentences with the same intent and those with dif-
ferent intents. A pre-trained model that achieves
the state-of-the-art performance among sentence
transformers, MPNet (Song et al., 2020), is used
in the Siamese Network structure combined with
contrastive learning to learn similar and dissimilar
representations for sentences with the same and
different intents respectively. K-means algorithm
is then applied to cluster the unlabeled utterances
based on their sentence representations for discov-
ering new intents at scale. In addition, we propose a
novel way to determine the optimal number of clus-
ters k based on the concept of clustering stability,
where k selection solely depends on the dataset at
hand as opposed to relying on any prior knowledge.
Inspired by self-supervised learning with aligned
pseudo labels introduced in DAC (Zhang et al.,
2021), we further propose and experiment with four
different pseudo label training (PLT) strategies in
the setting of Siamese Network, and examine the
impact of PLT in our experiments.

The contributions of our work are summarized as

follows. First, we propose a novel semi-supervised
framework that learns sentence representations ef-
fectively via supervised contrastive learning and
discovers new intents at scale via unsupervised
clustering. Second, we propose a simple and robust
method based on clustering stability to determine
the optimal number of clusters for K-means. Third,
we conduct extensive experiments to show that our
method achieves state-of-the-art performance on
two public benchmark datasets, widely used for
intent discovery. In addition, we successfully ap-
ply our methods to a real-world dataset from an
application in the travel domain.

2 Related Work

In this section we review the previous work focused
on the main components of the intent discovery
process in more detail.

2.1 Sentence Representation
Sentence representation has a significant impact on
the quality of the intent discovery results. A simple
method is to employ mean pooling of word em-
beddings such as word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), but it does
not capture the information in the order of words.
InferSent (Conneau et al., 2017) obtains sentence
embeddings from pre-training bidirectional LSTM
and max-pooling the output. Cer et al. (2018) in-
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troduce universal sentence encoder (USE) which
trains a transformer network on multiple tasks and
achieves great performance on tasks through trans-
fer learning.

A common approach to generate sentence em-
beddings using pre-trained transformer networks
such as BERT (Devlin et al., 2019) is to extract
the embeddings of CLS token, a special token in-
serted at the beginning of the input, from the last
layer. However, this approach leads to anisotropic
semantic space and performs poorly on textual
similarity tasks (Reimers and Gurevych, 2019).
Reimers and Gurevych (2019) demonstrate that av-
eraging over the embeddings of all tokens improves
the performance and further present a fine-tuned
BERT in Siamese network architecture (SBERT)
pre-trained on sentence pairs. Li et al. (2020) tackle
the anisotropy issue and transform the embeddings
to Gaussian distribution through a normalizing flow.
Su et al. (2021) provide an even simpler solution to
boost the performance based on the whitening of
embeddings from BERT.

2.2 Contrastive Learning
Contrastive learning has demonstrated its ability to
learn effective representations primarily in the com-
puter vision field. In recent years, several studies
have explored constructing sentence embeddings
using contrastive learning. The core idea of con-
trastive learning is to create positive and negative
sentence pairs such that representations of posi-
tive pairs are pulled together while negative pairs
are pushed apart. Different strategies have been
proposed to achieve this goal. Fang et al. (2020)
utilize back-translation to perform sentence aug-
mentation. Giorgi et al. (2020) sample text seg-
mentations within the same document to construct
sentence pairs. Gao et al. (2021) create positive
instances by simply adding dropout masks to the
original sentences.

2.3 Clustering
Clustering as an essential part of the intent discov-
ery process identifies and groups similar sentence
representations in an unsupervised setting. Popu-
lar algorithms include density-based methods (e.g.,
DBSCAN (Ester et al., 1996)) and centroid-based
methods (e.g., K-means (MacQueen et al., 1967;
Arthur and Vassilvitskii, 2006)). DBSCAN is not
scalable for large datasets and not efficient for high-
dimensional data. In contrast, K-means is a fast and
scalable algorithm. Therefore, it is more suitable

for identifying clusters from large datasets (usu-
ally thousands of or even hundreds of thousands of
utterances) with high dimensional sentence repre-
sentations (e.g., 768).

The K-means algorithm requires the number of
clusters (k) to be provided by the user. There
are several methods proposed in the literature
that aim to identify the optimal k. The elbow
method (Thorndike, 1953), the silhouette method
(Rousseeuw, 1987), and the information criterion
methods, such as Akaike information criterion
(Akaike, 1974) and Bayesian information crite-
rion (Schwarz, 1978), use simple measures to se-
lect k based on the tightness or separation of clus-
ters. Ben-David et al. (2007); Levine and Domany
(2001) introduce the notion of clustering stability
to determine k that produces the most stable clus-
tering results. DAC (Zhang et al., 2021) selects k
by eliminating low confidence clusters from K ′ (a
large pre-determined value), however, this method
produces unstable clustering results that are highly
dependent on the pre-determined value.

3 Our Approach

In this section, we describe the proposed method in
detail. As shown in Figure 1, we start by construct-
ing the sentence pairs from our labeled dataset.
Then, we train a binary classifier with contrastive
loss in a Siamese network structure which uses a
pre-trained MPNet model to identify if two utter-
ances have the same intent or not. Next, we encode
a large number of unlabeled utterances using the
trained MPNet. Finally, we find the optimal k for
K-means based on the concept of clustering sta-
bility and group the utterances using K-means to
obtain new intents.

3.1 Sentence Representation

To construct effective sentence embeddings, we
train a MPNet with contrastive loss as a bi-
nary encoder using the labeled data. MPNet is
a transformer-based language model which im-
proves the pre-trained BERT model by introducing
masked and permuted language models. The new
pre-training technique maintains the advantages
of the masked language modeling (MLM) from
BERT as well as the permuted language modeling
(PLM) from XLNet (Yang et al., 2019). In this
study, we employ a pretrained version of MPNet
model ‘paraphase-mpnet-base-v2’ from Reimers
and Gurevych (2019).
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While feeding a sentence with m different
tokens to BERT or MPNet, token embeddings
are extracted from the last hidden layer as
[CLS, T1, T2, ·, Tm] where CLS is a special token
and short for classification. Then the sentence rep-
resentation is obtained by applying mean-pooling
of the token embeddings with fixed length:

u = mean-pooling([CLS, T1, T2, ·, Tm])

A binary classifier is added on the top of a sentence
pair with representation u and v obtained from the
MPNet model with the same weights. The binary
classifier identifies if two sentences have the same
intent or not. We transform the labeled utterances
into sentence pairs in a way that sentences with
the same intent are labeled 1 and labeled as 0 oth-
erwise. In this case, a total number of N labeled
utterances will lead to N(N − 1)/2 sentence pairs.
The supervised contrastive learning objective is to
minimize the contrastive loss:

L = y∗(D(u, v))2+(1−y)∗(max(0,m−D(u, v))2

Where D(u, v) is the distance of u and v. This
supervised contrastive learning (SCL) method aims
to pull together utterances with the same intent and
push apart utterances with different intents.

In the next step, we feed unlabeled utterances
into the trained MPNet to obtain sentence embed-
dings for K-means clustering.

3.2 K-means Clustering
We use K-means to group sentences with similar
sentence embeddings into clusters. Each resulting
cluster consists of sentences with the same intent
(either known or unknown). However, a key hyper-
parameter in K-means, the number of clusters k,
is often unknown in practice due to lack of infor-
mation about the corpus, e.g., the total number of
intents in the corpus in our case. Therefore, we
propose a novel method to determine the optimal
value of k.

Our selection of k is based on the concept of clus-
tering stability inspired by Ben-David et al. (2007);
Levine and Domany (2001). The stability refers to
the robustness of a clustering model to small pertur-
bations in the data. Intuitively, the optimal number
of clusters should generate a clustering model with
high stability. In other words, if we repeat a clus-
tering algorithm on different samples of the data,
then the clustering results on those samples with
the optimal k should be similar. We measure the

Algorithm 1 Select the number of clusters k
1: Draw r random samples (without replacement)

from the complete training data, each contain-
ing β% messages.

2: for k in kmin to kmax with increment of s do
3: Apply K-means with k clusters on the com-

plete training data.
4: for i in 1 to r do
5: Apply K-means with k clusters on the
ith sample.

6: Calculate ACC between the clustering
labels from the complete training data and
those from the ith sample.

7: Calculate stability score for k.
8: Fit s pairs of (k, stability score at k) to a Gaus-

sian Process model MGP .
9: for t in 1 to T do

10: Predict knew by model MGP .
11: Calculate stability score at knew (step 3-7

with k = knew).
12: Update model MGP with (knew, stability

score at knew).
13: Select k with the highest stability score.

similarity between a pair of different clustering re-
sults (taking one clustering result in the pair as the
ground truth) by ACC, an unsupervised equivalent
of classification accuracy. Given that different clus-
tering results may have different labels for the same
cluster, the Hungarian algorithm (Kuhn, 1955) is
employed in the process of calculating ACC to map
labels from one clustering to those from the other.
We then define the stability score as the mean ACC
across all pairs (the number of pairs is equal to the
number of samples r), which is a function of k.
The optimal value of k is estimated by the k with
the highest stability score from a pre-defined range
of [kmin, kmax].

To further speed up the process of selecting
the optimal value of k described above, we use
Bayesian Optimization (BO), which is an efficient
method to optimize functions of any forms and
thus is suitable for hyperparameter tuning when the
objective function is expensive to compute (Snoek
et al., 2012). In BO, a surrogate model of the ob-
jective function is an easy-to-optimize probability
model (commonly Gaussian Process) of hyperpa-
rameters. It is easy to find its extreme point (the hy-
perparameters that reach the minimum/maximum
of the surrogate model) and then update the model
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with the value of objective function at the extreme
point. Such BO process conducts optimization-
update at each step and thus enables faster conver-
gence. We adopt Discrete-BO proposed in Luong
et al. (2019) as the hyperparameter, number of clus-
ters k, is a discrete variable. More specifically,
instead of calculating the stability score (i.e., the
objective function) for each k in [kmin, kmax], we
only calculate at k from [kmin, kmax] in increments
of s and build a surrogate model based upon those
calculated values. Then we repeat the optimization-
update step for T times. The procedure (named
Clustering Stability with Bayesian Optimization)
is summarized in Algorithm 1.

4 Experimentation

4.1 Datasets

We conducted experiments using two benchmark
datasets, CLINC (Larson et al., 2019) and BANK-
ING (Casanueva et al., 2020), which are also used
by Zhang et al. (2021) and Sahay et al. (2021).

For our use case in travel domain, we collected
utterances sent by travelers to Expedia virtual assis-
tant. We used a labeled dataset of 3082 utterances
as the training set and 512 utterances as the vali-
dation set. A random sample of 100,000 English
utterances from one month in 2021 was used for
intent discovery. Those utterances are minimally
preprocessed by removing invalid characters and
lowercasing letters.

The detailed statistics of the datasets is shown in
Table 1.

4.2 Evaluation Setup

To evaluate the effectiveness of SCL on two bench-
mark datasets, we split the datasets into training,
validation, and test sets, and use different known in-
tent class ratios of 25%, 50%, and 75% to compare
the performance of different methods. For each
known intent, 10% of training data is randomly
sampled and used as labeled data. We use the la-
beled training set to train MPNet, and select the
best model with the validation set. While Zhang
et al. (2021) uses a validation set which is much
larger than the labeled training set, our validation
set is a smaller portion of the original validation
set. More specifically, we use 30% of the original
validation data within known intents to maintain
the number of sentence pairs with a training vali-
dation ratio around 9:1. We use the trained MPNet
to calculate sentence embeddings for the test set

and evaluate K-means clustering performance on
the test set. The number of clusters is fixed as the
ground-truth number of intents for fair compari-
son. We report the average results over five runs of
experiments with different random seeds.

In addition, to evaluate the performance of our
proposed method on the selection of k, we set kmin

to 0.5 ·ktrue and kmax to 1.5 ·ktrue to cover a wide
range of possible values of k. We set the incre-
ment s = 10 in Algorithm 1 to reduce the number
of times the stability score needs to be calculated
to 10%. We set T = 10 as we observe 1 usually
converges in a few steps. We try various numbers
of random samples r (i.e., 10, 20, 30, 40, 50) and
observe similar trends and peaks for the stability
scores. Therefore, we set r = 10 for all exper-
iments to reduce the computation cost. In each
of the random samples, we set the sampling ratio,
β = 80 to ensure each sample is representative of
the entire dataset.

We also evaluate the effectiveness of pseudo la-
bel training (PLT) inspired by Zhang et al. (2021).
In PLT, labels are updated at the end of each epoch
to learn better sentence representations over the
course of training. We compare different strategies
for PLT with our proposed baseline SCL. More
specifically, we experiment with 4 strategies.

• Inclusive pairing: pair up all sentences from
the entire training data by pseudo labels from
K-means to continue training.

• Exclusive pairing: pair up sentences from the
labeled training set by true labels and pair up
sentences from the unlabeled training set by
pseudo labels to continue training.

• Alignment-A: align pseudo labels from K-
means to the true labels of the labeled training
set by maximizing ACC between pseudo la-
bels and true labels, and then replace aligned
pseudo labels of the labeled training set with
true labels to pair up sentences and continue
training.

• Alignment-C: align pseudo labels from K-
means to the true labels of the labeled training
set by minimizing cluster centroid distance
between pseudo labels and true labels, and
then replace aligned pseudo labels of the la-
beled training set with true labels to pair up
sentences and continue training.
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Dataset #Classes #Training #Validation #Test Vocabulary Length (mean/max)
CLINC 150 18,000 2,250 2,250 7,283 8.31/28
BANKING 77 9,003 1,000 3,080 5,028 11.91/79
TRAVEL 18 3,082 512 – 2,624 12.98/184

Table 1: Statistics of datasets.

CLINC BANKING
Method ACC ARI NMI ACC ARI NMI

25%

BERT 58.28 44.91 80.23 40.92 27.64 61.53
DAC 75.20 65.36 89.12 47.58 35.49 68.88
SMPNET 68.37 58.54 87.68 56.97 45.11 76.33
SCL 71.23 62.02 88.30 58.73 47.47 76.79

50%

BERT 70.75 59.61 86.33 57.48 44.20 73.02
DAC 80.70 72.26 91.50 59.44 47.07 76.14
SMPNET 73.49 64.81 89.75 62.80 50.94 78.28
SCL 78.36 70.71 91.38 67.28 55.50 80.25

75%

BERT 80.62 72.17 91.06 67.11 54.20 78.59
DAC 86.40 79.56 93.92 63.68 52.11 78.77
SMPNET 83.24 74.28 93.39 71.82 58.82 82.22
SCL 86.91 81.64 94.75 76.55 65.43 85.04

Table 2: The clustering results on two datasets at known class ratio of 25%, 50% and 75%.

The difference between inclusive pairing and exclu-
sive pairing is that the former does not utilize the
information of true labels from the labeled training
set while the latter does but it never pairs up sen-
tences from the labeled training set with sentences
from the unlabeled training set due to the mismatch
between true labels and pseudo labels. In addi-
tion, alignment-A and alignment-C are two ways
to tackle the mismatch problem and then leverage
the true label information and to train with all pairs.
We freeze the first 11 layers of MPNet to speed
up the pseudo label training process and preserve
universal features learned from SCL.

When applying our method to travel domain data,
we first use the labeled data to train SCL. Then, we
run our k selection algorithm on 100,000 unlabeled
data to determine k. Finally, we apply K-means
with the selected k to unlabeled data to get the
intent clusters.

4.3 Evaluation Metrics

We employ three standard metrics for evaluating
the performance of clustering: Clustering Accuracy
(ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI). To calculate ACC,
Hungarian algorithm is used to map the clustering
labels to the true labels.

For our travel domain data, we visualize the clus-

tering results by t-SNE and manually review the
utterances within each cluster to discover new in-
tents.

5 Results and Discussion

5.1 Effectiveness of SCL

In this section, we compare our method SCL with
three baseline methods, BERT, DAC and SMPNet.
BERT refers to using the BERT model trained with
labeled data to generate sentence representations
on unlabeled data for K-means clustering. DAC
is considered as the current state-of-the-art in the
area of intent discovery. DAC uses pseudo labels
generated by clustering to train BERT iteratively in
a self-supervised learning way while BERT does
not use clustering predictions for further training.
SMPNet is simply trained by Siamese MPNet with
sentence pairs using cosine similarity loss instead
of contrastive loss used in SCL. SMPNet is in-
cluded here to show the effectiveness of contrastive
learning. We conduct experiments on two bench-
mark datasets described in Section 4.1. As shown
in Table 2, our method consistently achieves bet-
ter clustering performance compared to DAC by
a large margin on the BANKING dataset across
different known label ratios with respect to all 3
metrics. Our method also achieves comparable re-
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CLINC (k = 150) BANKING (k = 77)
Method k̂ Error ACC ARI NMI k̂ Error ACC ARI NMI

25%
DAC 123 18.00 67.22 59.28 87.50 63 18.18 47.13 35.83 69.09
SCL 131 12.67 66.05 57.86 87.09 47 38.96 48.41 39.81 73.07

50%
DAC 126 16.00 72.16 65.70 90.01 64 16.88 56.92 46.00 75.76
SCL 141 6.00 77.40 69.49 91.14 60 22.08 59.22 49.49 78.24

75%
DAC 129 14.00 77.03 71.88 92.35 65 15.58 61.94 51.35 78.73
SCL 151 0.67 86.90 81.57 94.72 69 10.39 73.03 62.45 84.25

Table 3: The results of k selection at known class ratio of 25%, 50% and 75%.

CLINC BANKING
PLT strategy ACC ARI NMI ACC ARI NMI

25%

SCL only - 71.23 62.02 88.30 58.73 47.47 76.79

SCL+PLT

Inclusive pairing 72.86 63.88 88.99 59.47 47.66 76.69
Exclusive pairing 73.01 64.05 89.15 60.29 48.89 77.26
Alignment-A 73.77 64.78 89.31 59.10 47.69 76.85
Alignment-C 72.68 63.82 89.04 61.09 48.91 77.25

50%

SCL only - 78.36 70.71 91.38 67.28 55.50 80.25

SCL+PLT

Inclusive pairing 79.58 72.36 91.91 66.12 55.14 80.24
Exclusive pairing 80.59 73.25 92.21 66.21 54.86 80.18
Alignment-A 79.89 72.62 91.96 66.81 55.45 80.40
Alignment-C 78.28 70.56 91.39 66.39 54.80 80.10

75%

SCL only - 86.91 81.64 94.75 76.55 65.43 85.04

SCL+PLT

Inclusive pairing 88.28 82.32 94.95 74.81 64.51 84.82
Exclusive pairing 88.68 83.44 95.25 75.18 64.44 84.77
Alignment-A 88.49 83.09 95.11 75.66 64.91 85.02
Alignment-C 84.58 78.99 94.04 73.09 62.18 83.52

Table 4: The results of 4 different strategies for pseudo label training on two datasets at known class ratio of 25%,
50% and 75%.

sults on the CLINC dataset in which each intent
has an equal number of utterances in training, vali-
dation, and test set. DAC performers slightly better
on two settings in this experiment when the true
k is provided. However, the advantages disappear
when k is unknown, as demonstrated in the next
subsection 5.2. In addition, it is to be noted that
SCL significantly outperforms the baseline by 10%
in ACC on the BANKING dataset, which is imbal-
anced and is more aligned with real-world cases.
In comparison, the CLINC dataset has a perfect
balance in terms of the number of data points for
each intent. Our method, SCL, which utilizes in-
formation from each sentence pair provides more
robust results when applied to imbalanced datasets.

We suppose the reasons for better results from
our method include the following. First, con-
structing sentence pairs to train the Siamese net-
work leverages the labeled data more effectively
than only using individual sentences with labels

to train a BERT classification model. Also, as the
base model in our training, the pre-trained MP-
Net(i.e., ’paraphase-mpnet-base-v2’) provides bet-
ter sentence embedding performance than ‘bert-
base-uncased’ with a similar model structure. Ad-
ditionally, the contrastive loss function fits the train-
ing task better than the cosine similarity loss.

5.2 Selection of k

We compare the performance on the selection of
k between our proposed method and DAC. More
specifically, we calculate the error rate of the pre-
dicted k (k̂) as well as ACC, ARI, and NMI for both
methods at different known class ratios (25%, 50%,
75%) on the CLINC dataset and the BANKING
dataset. Table 3 summarizes the average results
over five runs of experiments with different random
seeds. It shows our proposed method achieves sig-
nificantly better results on estimating k than DAC
by reducing the average error rate from 16.44%
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to 10.36%, except for the BANKING dataset with
25% known classes. The reason that our method
has a higher error rate on the BANKING dataset
with 25% or 50% known classes is mainly due to
the imbalance of the dataset in which small clus-
ters with related intents tend to be grouped together
as one large cluster. It is worth noting that the
ACC, ARI, and NMI derived from our predicted
k are much higher than those from DAC. In the
case of 75% known class ratio, the results are com-
parable to those from the ground-truth k. That
is compelling evidence that our proposed method
works better in real-world cases when the number
of intents is unknown.

5.3 Pseudo Label Training

Table 4 shows the results of SCL and PLT with
4 strategies at different known class ratios. The
performance on the CLINC dataset across 3 known
class ratios is further improved by PLT using the
first 3 strategies. The fourth strategy, alignment-
C, does not perform as well as the other methods.
There are two reasons that could explain this per-
formance drawback. First, matching by cluster cen-
troids does not achieve a high alignment ACC. Sec-
ond, the error induced by mismatching propagates
along with training epochs. In addition, the perfor-
mance on the BANKING dataset at 25% known
class ratio is further improved by all PLT strategies.

5.4 Performance on Travel Domain Data

Figure 2: Visualization of the clustering result in 2D
embeddings via t-SNE.

We apply our method to select k and obtain
k = 34. In Figure 2, we further visualize the
sentence representations of a large number of unla-
beled utterances learned by SCL via t-SNE. Dots
with different colors represent utterances in dif-
ferent clusters. Evidently, there is a clear margin
between clusters captured by the 2D sentence rep-
resentations learned by our model. We further an-
alyze utterances within clusters and define new
intents according to the business need. For confi-

dentiality reasons, we do not disclose the details of
new intents and example utterances.

6 Conclusion and Future Work

In this work, we propose a new semi-supervised
framework to discover new intents by a sentence
representation network via supervised contrastive
learning followed by unsupervised K-means clus-
tering. The method effectively leverages prior
knowledge of existing intents to learn sentence rep-
resentations and discovers new intents by grouping
utterances with similar sentence representation. In
the future, we will extend the work to discover
intents with inherent hierarchy and automatically
generate labels for new intents.
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