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Abstract

The robustness and security of natural lan-
guage processing (NLP) models are signifi-
cantly important in real-world applications. In
the context of text classification tasks, adver-
sarial examples can be designed by substitut-
ing words with synonyms under certain se-
mantic and syntactic constraints, such that a
well-trained model will give a wrong predic-
tion. Therefore, it is crucial to develop tech-
niques to provide a rigorous and provable ro-
bustness guarantee against such attacks. In
this paper, we propose WordDP to achieve cer-
tified robustness against word substitution at-
tacks in text classification via differential pri-
vacy (DP). We establish the connection be-
tween DP and adversarial robustness for the
first time in the text domain and propose a
conceptual exponential mechanism-based al-
gorithm to formally achieve the robustness.
We further present a practical simulated expo-
nential mechanism that has efficient inference
with certified robustness. We not only provide
a rigorous analytic derivation of the certified
condition but also experimentally compare the
utility of WordDP with existing defense al-
gorithms. The results show that WordDP
achieves higher accuracy and more than 30⇥
efficiency improvement over the state-of-the-
art certified robustness mechanism in typical
text classification tasks.

1 Introduction
Deep neural networks (DNNs) have achieved state-
of-the-art performance in many natural language
processing (NLP) tasks, such as text classification
(Zhang et al., 2015), sentiment analysis (Bakshi
et al., 2016), and machine translation (Bahdanau
et al., 2014), making the robustness and security of
NLP models significantly important. Recent stud-
ies have shown that DNNs can be easily fooled by
adversarial examples, which are carefully crafted

⇤J. Lou is the corresponding author.

by adding imperceptible perturbations to input ex-
amples during inference time (Szegedy et al., 2013).
In the context of text classification tasks, adversar-
ial examples can be designed by manipulating the
word or characters under certain semantic and syn-
tactic constraints (Ren et al., 2019; Jin et al., 2019;
Zang et al., 2020; Gao et al., 2018). Among all
the attack strategies, word substitution attacks, in
which attackers attempt to alter the model output
by replacing input words with their synonyms, can
maximally maintain the naturalness and semantic
similarity of the input. Therefore, in this paper,
we consider such word substitution attacks and fo-
cus on defending against such attacks. Figure 1
shows an example of the word substitution attack
where the clean input text is changed into adversar-
ial text by substituting input words from a synonym
list. Various mechanisms have been developed to

Figure 1: Word Substitution Attack and Certified Ro-
bustness via WordDP.

defend against adversarial examples in text classifi-
cation models. Miyato et al. (2016) applied adver-
sarial training to the text domain that involves ad-
versarial examples in the training stage. Data aug-
mentation in the training phase is another defense
approach to improve model robustness. For exam-
ple, Synonyms Encoding Method (SEM) proposed
by Wang et al. (2019), Dirichlet Neighborhood En-
semble (DNE) proposed by Zhou et al. (2020), and
Robust Encodings (RobEn) proposed by Jones et
al. (2020) are different data augmentation methods
on either embedding space or word space. How-
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ever, all the above-mentioned works are only eval-
uated empirically and have no theoretical analysis
or guarantee on the robustness of the methods in
that they may be broken by other adaptive attacks.
Therefore, it is important to provide rigorous and
provable certified defense.

There are several attempts to achieve certified
robustness for word substitution attacks. Jia et
al. (2019) and Huang et al. (2019) utilize Inter-
val Bound Propagation (IBP) to compute an up-
per bound on the model’s loss in the forward pass
and minimize this bound via backpropagation. Al-
though IBP gives a theoretical bound, it does not
provide any certification condition. Another limi-
tation is that it is not applicable to character-level
DNNs, because IBP is limited to continuous space
so that model input should be the word-level em-
bedding. SAFER (Ye et al., 2020) achieves certi-
fied robustness with a new randomized smoothing
technique. However, its computation of synonym
set intersection greatly reduces the computation
speed in the inference stage. Besides, SAFER only
provides a theoretical certified accuracy and its em-
pirical effectiveness on adversarial examples has
not been evaluated.

In this paper, we propose a novel approach
WordDP to certified robustness against word substi-
tution attacks in text classification via differential
privacy (DP) (Dwork, 2008). Figure 1 is a high-
level illustration. In the inference phase, the input
go through a randomized mechanism WordDP. If
a clean input satisfies the certification condition of
WordDP, its adversarial counterpart is guaranteed
to predict the same output label. DP is a privacy
framework that protects the information of individ-
ual record in the database by randomized computa-
tions, such that the change of the computation out-
put is bounded when small perturbation is applied
on the database. This stable output guarantee is in
parallel with the definition of robustness: ensuring
that small changes in the input will not result in
dramatic shift of its output. The idea of providing
robustness certification via DP was originally intro-
duced in PixelDP (Lecuyer et al., 2019) which is
specifically designed for norm-bounded adversarial
examples in the continuous domain for applications
like image classification. However, it is challenging
to directly apply such an idea against word substi-
tution attack, due to the discrete nature of the text
input space. Therefore, in this work, we develop
WordDP to achieve the DP and robustness connec-

tion in the discrete text space by exploring novel ap-
plication of the exponential mechanism (McSherry
and Talwar, 2007), conventionally utilized to real-
ize DP for answering discrete queries. To achieve
this, we present a conceptual certified robustness
algorithm that randomly samples word-substituted
sentences according to the probability distribution
designated by the exponential mechanism and ag-
gregates their inference result as the final classifi-
cation for the input.

A fundamental barrier limiting the conceptual
algorithm from being applied in practice is that
the sampling distribution of the exponential mech-
anism requires an exhaustive enumeration-based
sub-step, which needs to repeat the model infer-
ence for every neighboring sentences with word
substitutions from the input sentence. To overcome
this computational difficulty, we develop a practical
simulated exponential mechanism via uniform sam-
pling and re-weighted averaging, which not only
lowers the computational overhead but also ensures
uncompromising level of certified robustness.
Our contribution can be summarized as follows:
1) We propose WordDP to establish the connection
between DP and certified robustness for the first
time in text classification domain (Sec.4.1).
2) We leverage conceptual exponential mechanism
to achieve WordDP and formally prove an L-word
bounded certified condition for robustness against
word substitution attacks (Sec.4.2).
3) We develop a simulated exponential mechanism
via uniform sampling and weighted averaging to
overcome the computation bottleneck of the con-
ceptual exponential mechanism without compro-
mising the certified robustness guarantee (Sec.4.3).
4) Extensive experiments validate that WordDP out-
performs existing defense methods and achieves
over 30⇥ efficiency improvement in the inference
stage than the state-of-the-art certified robustness
mechanism (Sec.5).

2 Related Work
Word Substitution Attacks. Various attacks have
been developed to fool DNNs in text classification,
including substituting a word with its synonyms
(Ren et al., 2019; Jin et al., 2019; Zang et al., 2020;
Alzantot et al., 2018), manipulating the characters
(Gao et al., 2018; Ebrahimi et al., 2018), and per-
turbation on the embedding space (Papernot et al.,
2016; Liang et al., 2018; Sato et al., 2018; Cheng
et al., 2019).

In word substitution attacks, attackers replace
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words in a sentence with their synonyms according
to a synonym table, including PWWS (Ren et al.,
2019), TEXTFOOLER (Jin et al., 2019), among
others (Zang et al., 2020). In particular, PWWS is
the most widely used attack algorithm to evaluate
defense mechanisms (Zhou et al., 2020; Jia et al.,
2019; Ye et al., 2020). PWWS uses WordNet to
build synonym set and only replaces named entities
(NEs) with similar NEs in order to flip the predic-
tion. It incorporates word saliency to determine the
replacement order and selects the synonym that can
cause the greatest prediction probability change.

Empirical Defenses to Word Substitution At-
tacks. Several existing empirical defenses are ef-
fective for adversarial word substitution. Miyato et
al. (2016) applied adversarial training to the text
domain. Wang et al. (2019) proposed Synonyms
Encoding Method (SEM), which finds a mapping
between the words and their synonyms before the
input layer. Jones et al. (2020) proposed robust
encodings (RobEn) that involves an encoding func-
tion to map sentences to a smaller, discrete space.
Dirichlet Neighborhood Ensemble (DNE) (Zhou
et al., 2020) creates virtual sentences by mixing
the embedding of the original word with its syn-
onyms’ embedding via Dirichlet sampling, which
is randomized smoothing based data augmentation.

Certified Robustness. Certified robustness has
been first studied in image domain, which certifies
that a model is robust to adversarial examples when
its prediction result is stable when applying small
perturbations to the input (Lecuyer et al., 2019;
Cohen et al., 2019; Lee et al., 2019). In text do-
main, Jia et al. (2019) and Huang et al. (2019) both
applied Interval Bound Propagation (IBP) for cer-
tification. The intuition is to compute an upper
bound on the model’s loss through the network in
a standard forward pass and minimize this upper
bound via backpropagation. One major limitation
of IBP certification is that it is not applicable to
character-level DNNs, because IBP is limited to
continuous space (word-level embedding).

SAFER (Ye et al., 2020) is a certified robust
method based on randomized smoothing. The cer-
tification is based on the intersection of synonym
sets between perturbed examples and clean exam-
ples. However, its computation of synonym set in-
tersection greatly reduces the inference efficiency.
Besides, it lacks thorough evaluation of empirical
effectiveness on adversarial examples.

3 Preliminaries

3.1 Adversarial Word Substitution and
Certified Robustness

Adversarial Word Substitution. Consider a sen-
tence of ! words X = (x1, x2, ..., xi, ..., x!),
where each word xi belongs to a synonym
set of (i) number of synonyms S(xi) =

{x1i , x
2
i , ..., x

(i)
i }. Following common practice

(Ye et al., 2020), we also assume the synony-
mous relation is symmetric, such that xi is in the
synonym set of all its synonyms x2i , ..., x

(i)
i and

S(xji ) = S(xki ) for all j, k 2 [(i)]. The synonym
set S(xi) can be built by following GLOVE (Pen-
nington et al., 2014b).
Definition 3.1. (L-Adversarial Word Substitu-
tion Attack) For an input sentence X, an L-
adversarial word substitution attack perturbs the
sentence by selecting at most L (L  !) words
x⌧1 , ..., x⌧L and substitutes each selected word x⌧i
with one of its synonyms x0⌧i 2 S(x⌧i). We de-
note an attacked sentence by X

0 and the set of all
possible attacked sentences by S (L).

Certified Robustness. In general, we say a model
is robust to adversarial examples when its predic-
tion result is stable when applying small perturba-
tions to the input.
Definition 3.2. (Certified Robustness to Word
Substitution Attack) Denote a multiclass classifi-
cation model by f(X) : X 7! c 2 C, where c is
a label in the possible label set C = {1, ..., C}. In
general, f(X) outputs a vector of scores fy(X) =
(fy1 , ..., fyC ) 2 Y , where Y = {y :

PC
i=1 f

yi =
1, fyi 2 [0, 1]}, and c = argmaxi2C fyi . A
predictive model f(X) is robust to L-adversarial
word substitution attack on input X, if for all
X

0
2 S (L), it has f(X) = f(X0), which is equiv-

alent to
yc(X

0) > max
i2C:i 6=c

yi(X
0). (1)

In the following, we refer to the above robustness
as L-certified robustness for short.

3.2 Differential Privacy and Exponential
Mechanism

Differential Privacy. The concept of DP is to pre-
vent the information leakage of an individual record
in the database by introducing randomness into the
computation. More specifically, DP guarantees
the output of a function over two neighbouring
databases are indistinguishable.
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Definition 3.3. (Differential Privacy (Dwork
et al., 2006)) A randomized mechanism A is ✏-
differentially private if, for all neighboring datasets
D ⇠ D

0 that differ in one record or are bounded by
certain distance and for all events O in the output
space O of A, we have

P[A(D) 2 O]  e✏P[A(D0) 2 O]. (2)

Exponential Mechanism. The exponential mech-
anism is a commonly utilized DP mechanism in the
discrete domain, which consists of the utility score
function, sensitivity, and sampling probability dis-
tribution as its key ingredients.

Definition 3.4. (Exponential Mechanism (Mc-
Sherry and Talwar, 2007)) Denote the score func-
tion u(D, r) : D ⇥ R 7! R, which maps each
pair of input dataset D ⇠ D and candidate result
r 2 R to a real valued score. Denote the sensitivity
by �u := maxr2RmaxD⇠D0 |u(D, r)�u(D0, r)|.
The exponential mechanism ME(D, u,R) selects
and outputs an element r 2 R with probability pro-
portional to e

✏u(D,r)
2�u . The exponential mechanism

is ✏-differentially private.

4 Proposed Method
4.1 WordDP for Certified Robustness
WordDP. We expand the intuition that DP can be
applied to provide certified robustness against tex-
tual adversarial examples like word substitution
attack by regarding the sentence as a database and
each word as a record. If the randomized predictive
model satisfies ✏-DP during inference, then the out-
put of a potentially adversarial input X0

2 S (L)
and the output of the original input X should be
indistinguishable. Thus, our proposed approach is
to transform a multiclass classification model’s pre-
diction score into a randomized ✏-WordDP score,
which is formally defined below.

Definition 4.1. (Word Differential Privacy) Con-
sider any input sentence X and its L-word sub-
stitution sentence set S (L). For a randomized
function fA(X), let its prediction score vector be
y 2 Y . fA(X) satisfies ✏-word differential privacy
(WordDP), if it satisfies ✏-differential privacy for
any pair of neighboring sentences X1,X2 2 S (L)
and the output space y 2 Y .

Remark 1. We stress that WordDP does not seek
DP protection for the training dataset as in the con-
ventional privacy area. Instead, it leverages the DP
randomness for certified robustness during infer-
ence with respect to a testing input.

In practice, for a base model f , a DP mechanism
A will be introduced to randomize it to fA. For
an ✏-WordDP model fA, its expected prediction
E[fA(X)] is certified robust. Denote the predic-
tion score vector of E[fA(X)] by E[fy

A(X)] =
(E[fy1

A (X)], ...,E[fyC
A (X)]) 2 Y . Lemma 4.2

shows E[fy
A(X)] satisfies the certified robustness

condition in eq.(1), based on Lemma 4.1 that shows
each expected prediction score E[fyi

A (X)] is stable.
Lemma 4.1. For an ✏-WordDP model fA, its pre-
diction score satisfies the relation, 8i 2 [C],

E[fyi
A (X1)]  e✏E[fyi

A (X2)], 8X1,X2 2 L . (3)

From the above property, we can derive the cer-
tified robustness condition to adversarial examples.
Lemma 4.2. For an ✏-WordDP model fA and an
input sentence X, if there exists a label c such that:

E(fyc
A (X)) > e2✏ max

i 6=c
E(fyi

A (X)), (4)

then the multiclass classification model fA based
on the expected label prediction score vector
E[fy

A(·)] is certified robust to L-adversary word
substitution attack on X.

The proofs of the above two lemmas can be
adapted from the pixelDP to WordDP context based
on Lemma 1 and Proposition 1 in Lecuyer et
al. (2019). We relegate the proofs to Appendix A.
Our focus is how to design the DP mechanism A to
achieve WordDP (Subsection 4.2), and how to im-
plement it for efficient inference that still ensures
certified robustness (Subsection 4.3).
4.2 WordDP with Exponential Mechanism
In this subsection, we present the conceptual ex-
ponential mechanism-based algorithm to achieve
WordDP and the certification procedure.
Exponential Mechanism for WordDP. To obtain
the DP classifier fA given the base model f , we
introduce the exponential mechanism ME as the
randomization mechanism A and define fA :=
f(ME). Given an input example, the mechanism
selects and outputs L-substitution sentences with
a probability based on exponential mechanism. It
then aggregates the inferences of these samples by
an average as the estimated prediction of the input.
Figure 2 illustrates the algorithm.
Definition 4.2. (Exponential Mechanism for
WordDP and L-Certified Robustness) Given the
base model f , for any input sentence X and poten-
tial L-substitution sentence set S (L), we define
the utility score function as:

u(S (L),X0) = e�kfy(X0)�fy(X)k1 , (5)
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Figure 2: WordDP with Exponential Mechanism.

which associates a utility score to a candidate out-
put X0

2 S (L). The sensitivity of the utility score
is �u = 1 � e�1. Then, the exponential mecha-
nism selects and outputs X0 with probability PX0

PX0 =
1
⇢
exp(

✏ · u(S (L),X0)
2�u

), (6)

where ⇢ =
P|S (X,L)|

i=1 exp(
✏·u(S (L),X0

i)
2�u ) is the nor-

malization factor.

Proposition 4.1. The exponential mechanism
M(E) satisfies ✏-DP. The composition model func-
tion fME (X) := f(ME(X)) is ✏-DP and its pre-
diction score vector E[fy

ME
(X)]-based classifica-

tion is certified robust to L-adversary word substi-
tution attack on X.

Proof. To show ME is ✏-DP, we prove the sensi-
tivity of the utility score (maximum difference be-
tween the utility scores given any two neighboring
input) �u is indeed 1� e�1 and the remaining fol-
lows the definition of the exponential mechanism
(c.f.Definition 3.4). Since kfy(X0

i)� fy(X)k1 is
the prediction probability change which is in [0, 1],
we have u(S (L),X0

i) 2 [e�1, 1], which leads to
�u = 1�e�1. Next, since ME(X) is ✏-DP, by the
post-processing property (i.e., any computation on
the output of the DP mechanism remains DP, Propo-
sition 2.1 in (Dwork et al., 2014).), fME (X) is also
✏-DP. Subsequently, by Lemma 4.2, E[fME (X)] is
L-certified robust on X.

Remark 2. 1) The design of the utility function
has the intuition that we wish to assign higher prob-
ability to sentences that have minimal impact on the
prediction score function. 2) The privacy budget
✏ influences whether the sampling probability dis-
tribution is flat (lower ✏) or peaky (greater ✏). Too
small of an ✏ value will clearly affect the prediction
accuracy. For certification purpose, according to
the certified condition Lemma 4.2, too large of an
✏ value will result in none certified, so ✏ can only
be searched within a limited range.

Certification Condition. It is a common prac-
tice in certified robustness literature to esti-
mate E[fy

ME
(X)] via Monte Carlo estimation

(Lecuyer et al., 2019; Cohen et al., 2019) in
the form of bE[fy

ME
(X)]. That is, we re-

peat the exponential mechanism-based inference
to draw n samples of fy

ME
(X0

⌧ ), for ⌧ 2

[n] and let bE[fy
ME

(X)] = 1
n

Pn
⌧=1 f

y
ME

(X0
⌧ ).

The estimation error between bE[fy
ME

(X)] and
E[fy

ME
(X)] can be bounded based on Hoeffd-

ing’s inequality with probability ⌘, which guar-
antees that bE[fy

ME
(X)] 2 [E[fy

ME
(X)] �q

1
2n ln(

2C
1�⌘ ),E[f

y
ME

(X)] +
q

1
2n ln(

2C
1�⌘ )] :=

[bElb[fy
ME

(X)], bEub[fy
ME

(X)]]. The next proposi-
tion shows that the inference based on the estimated
bE[fy

ME
(X)] (as versus E[fy

ME
(X)]) can still en-

sure certified robustness.

Proposition 4.2. Under the same condition with
Proposition 4.1, if there exists a label c such that

bElb[fyc
ME

(X)] > e2✏ max
i 6=c

bEub[fyi
ME

(X)], (7)

the prediction score vector bE[fy
ME

(X)]-based clas-
sification is certified robust with probability ⌘ to
L-adversary word substitution attack on X.

4.3 Simulated Exponential Mechanism

Simulated Exponential Mechanism. The con-
ceptual exponential mechanism in Definition 4.2
is computationally impractical. The bottleneck is
the need to enumerate the entire S (L) in order
to calculate the probability distribution of PX0 for
each X

0
2 S (L) and the normalization factor ⇢,

which essentially requires us to perform inference
for S (L) � n times (n is the number of samples)
for certifying a single input sentence X.

In the following, we show that we can signifi-
cantly reduce the computation cost by sampling via
a simulated exponential mechanism, which suffices
to sample n candidate L�substitution sentences



1107

and calculate only n times, i.e., the same repeti-
tions as the Monte Carlo estimation. The key in-
sight is based on the different purpose of applying
the exponential mechanism between the conven-
tional scenario for achieving DP and our certified
robustness scenario. For the former, in order to
ensure DP of the final output fME (X

0
⌧ ), the inter-

mediate X0
⌧ is forced to satisfy DP, i.e., drawn from

the exact probability distribution designated by the
exponential mechanism. For the latter, while the
derivation of the certified robustness relied on the
randomness of DP and the exponential mechanism,
we do not actually require the DP of the interme-
diate X

0
⌧ . As a result, it allows us to sample X

0
⌧

from other simpler distributions without calculat-
ing the probability distribution of the exponential
mechanism, as long as the alternative approach
can obtain the equivalent bE[fy

A(X)] for robustness
certification.

We develop a simulated exponential mechanism
via uniform sampling and re-weighted average pre-
diction score calculation. Figure 2 shows the sim-
ulated mechanism in contrast to the conceptual
mechanism. In detail, we sample from S (L) with
uniform probability, which can be efficiently im-
plemented without generating S (L). Denoting a
sample by X

0
⌧ , we calculate its scaled exponential

mechanism probability by

PX0
⌧
= exp(

✏ · u(S (L),X0
⌧ )

2�u
), (8)

which can be obtained via a single inference on
X

0
⌧ and the inference on X due to the omission of

the normalization factor ⇢ that requires the entire
S (L). The inference on X only needs to be com-
puted once and shared by all n Monte Carlo rep-
etitions. Such uniform sampling and scaled prob-
ability calculation is repeated for n times, which
requires only n + 1 inferences. Finally, we use
the following re-weighted average prediction score
(weighted by the scaled exponential mechanism
probability) for certified robust prediction,

E[fy
ME

(X)] =
nX

⌧=1

PX0
⌧
· fy

ME
(X0

⌧ ). (9)

The following theorem shows that E[fy
ME

(X)]-
based prediction guarantees certified robustnessand
the conceptual exponential mechanism-based infer-
ence in Proposition 4.2 is certified robust provided
E[fy

ME
(X)] is so.

Theorem 4.1. For any input X, let E[fy
ME

(X)]

be calculated by eq.(9). Denote Elb[fy
ME

(X)]

and Eub[fy
ME

(X)] be ⌘-confidence lower and up-

per bounds, respectively, i.e., Elb[fy
ME

(X)] =

E[fy
ME

(X)]�
q

1
2n ln(

2C
1�⌘ ) and Eub[fy

ME
(X)] =

E[fy
ME

(X)] +
q

1
2n ln(

2C
1�⌘ ). If there exists a label

c such that
Elb[fyc

ME
(X)] > e2✏ max

i 6=c
Eub[fyi

ME
(X)], (10)

the prediction score vector E[fy
ME

(X)]-based clas-
sification is certified robust with probability ⌘ to
L-adversary word substitution attack on X.

The proof of Theorem 4.1 requires the following
lemma, which is adapted from Lemma 4.1 from
the accurate expectation of E[fy

ME
(X)] to the sim-

ulated expectation E[fy
ME

(X)]. We stress that dur-
ing both proofs, we do not use the DP property
of E[fy

ME
(·)], but only its equivalent relation to

bE[fyi
ME

(·)].
Lemma 4.3. For any label i 2 [C] and any
X1,X2 2 S (L), let E[fy

ME
(X)] be computed by

eq.(9). Then, we have

E[fyi
ME

(X1)]  e✏E[fyi
ME

(X2)]. (11)

Proof. First, we notice that for any X 0
2 S (L),

it has E[fyi
ME

(X0)] = ⇢
|S (L)|

bE[fyi
ME

(X0)] by
P[X0] = ⇢P[X0] and the uniform sampling prob-
ability 1

|S (L)| . Second, since bE[fyi
ME

(X0)] is ✏-
WordDP , we can show that it satisfies Lemma 4.1
by switching E[fyi

ME
(·)] there to bE[fyi

ME
(·)] here.

It follows that:

E[fyi
ME

(X1)] = bE[fyi
ME

(X1)] · (
⇢

|S (L)| )

 e✏bE[fyi
ME

(X2)] · (
⇢

|S (L)| ) = e✏E[fyi
ME

(X2)],

which proves the lemma.
Proof. (Proof of Theorem 4.1) For any X

0
2

S (L), by eq.(11), we have

e✏E[fyc
ME

(X0)] � E[fyc
ME

(X)]

> E[fyc
ME

(X)]�
r

1
2n

ln(
2C

1� ⌘
) = Elb[fyc

ME
(X)];

as well as
E[fyi

ME
(X0)]  e✏E[fyi

ME
(X)]  e✏ max

i 6=c
E[fyi

ME
(X)]

 e✏ max
i 6=c

(E[fyi
ME

(X)] +

r
1
2n

ln(
2C

1� ⌘
))

= e✏ max
i 6=c

Eub[fyi
ME

(X)].

Equipped with the above two relations, we can
prove the claim in Theorem 4.1. We show that
E[fyi

ME
(X)] is certified robust for any X

0
2 S (L),

as follows,

E[fyc
ME

(X0)] > Elb[fyc
ME

(X)]/e✏

> e✏ max
i 6=c

Eub[fyi
ME

(X)] > e✏ max
i 6=c

E[fyi
ME

(X0)].
(12)
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which is E[fyc
ME

(X0)] > e2✏maxi 6=c E[fyi
ME

(X)].
For completeness, we can also show that the cer-
tified robustness of E[fy

A(X)] implies the certified
robustness of bE[fy

A(X)]:

bE[fyc
ME

(X0)] = (
|S (L)|

⇢
) · E[fyc

ME
(X0)]

> (
|S (L)|

⇢
)Elb[fyc

ME
(X)]/e✏

> (
|S (L)|

⇢
)e✏ max

i 6=c
Eub[fyi

ME
(X)]

> (
|S (L)|

⇢
)max

i 6=c
E[fyi

ME
(X0)] = max

i 6=c

bE[fyi
ME

(X0)],

which proves bE[fyc
ME

(X0)] > maxi 6=c
bE[fyi

ME
(X0)].

Training procedure. To achieve a better certifica-
tion result, we involve randomness in the training
stage, which is also adopted by almost all certified
robustness approaches. To do so, we use the data
augmentation strategy that utilizes the perturbed
sentences for training, i.e., X0

2 S (L) \X given
the original training sample X. In practice, we first
train the model without data augmentation for sev-
eral epochs to achieve a reasonable performance,
followed by training with perturbed X

0. For each
training data point, we randomly draw one neigh-
bour sentence during training (as opposed to multi-
ple draws during certified inference).

5 Experiments
We evaluate WordDP on two classification datasets:
Internet Movie Database (IMDB) (Maas et al.,
2011) and AG News corpus (AGNews) (Zhang
et al., 2015). IMDB is a binary sentiment classi-
fication dataset containing 50000 movie reviews.
AGNews includes 30,000 news articles categorized
into four classes. The target model architecture we
select is a single-layer LSTM model with size of
128. We use Global Vectors for Word Representa-
tion (GloVe) (Pennington et al., 2014a) for word
embedding. The LSTM model achieves 88.4% and
91.8% clean accuracy on IMDB and AGNews, re-
spectively. We use PWWS (Ren et al., 2019) to
generate adversarial examples on the test dataset.
PWWS is a state-of-the-art attack method which
uses WordNet to build synonym set and incorpo-
rates word saliency to replace selected named enti-
ties (NEs) with their synonyms in order to flip the
prediction. The details about the datasets, model
training and attack algorithm are in Appendix C.
5.1 Evaluation Metrics and Baselines
We use four metrics to evaluate the effective-
ness of WordDP: certified ratio, certified accu-
racy, conditional accuracy, and conventional ac-

curacy. Certified Ratio represents the fraction of
testing set that the prediction satisfies the certifi-
cation criteria:

PT
t=1 certifiedCheck(Xt,L,✏)

T , where
certifiedCheck returns 1 if Theorem 4.1 is satis-
fied and T is the size of the test dataset. Certi-
fied accuracy (CertAcc) denotes the fraction of
the clean testing set on which the predictions are
both correct and satisfy the certification criteria.
This is a standard metric to evaluate certified robust
model (Lecuyer et al., 2019). Formally, it is defined
as:

PT
t=1 certifiedCheck(Xt,L,✏)&corrClass(Xt,L,✏)

T ,
where corrClass returns 1 if the classification out-
put is correct. When the accuracy of a model is
close to 100%, certified accuracy largely reflects
certified ratio. Conventional accuracy (Con-
vAcc) is defined as the fraction of testing set that is
correctly classified,

PT
t=1 corrClass(Xt,L,✏)

T , which
is a standard metric to evaluate any deep learning
systems. Note that the input Xt can be both ad-
versarial or clean inputs. We use this metric to
evaluate how WordDP empirically works on adver-
sarial examples.

Besides the above standard metrics, we in-
troduce a new accuracy metric called Condi-
tional accuracy (CondAcc) to evaluate the fol-
lowing: when a clean input Xt is certified within
bound L, whether its corresponding L-word sub-
stitution adversarial example X

adv
t is indeed cor-

rectly classified. The CondAcc can be formulated
as:

PT
t=1 certifiedCheck(Xt,L,✏)&corrClass(Xadv

t ,L,✏)PT
t=1 certifiedCheck(Xt,L,✏)

.

While certified accuracy is typically evaluated on
clean inputs in the literature to show the certified ro-
bustness property, conditional accuracy is evaluated
on adversarial inputs and provides an informative
measure of the classification result of adversarial
examples when its counterpart clean input can be
certified. This metric is aligned with the defini-
tion and purpose of certified robustness. Ideally,
if a clean example is successfully certified, adver-
sarial examples created from this clean example
should have the same prediction. Therefore, the
accuracy of adversarial examples is influenced by
the ConvAcc of clean examples.

Comparison Methods. We compare WordDP
with the state-of-the-art certified robust method
SAFER for text classification. We note that SAFER
only reports certified accuracy, without accuracy
on adversarial examples. To conduct a fair com-
parison with WordDP, we rerun SAFER on the
adversarial examples and report the comparison
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(a) CertAcc on IMDB (b) CondAcc on IMDB (c) ConvAcc on IMDB

(d) CertAcc on AGNews (e) CondAcc on AGNews (f) ConvAcc on AGNews
Figure 3: Certified Accuracy, Conditional Accuracy and Conventional Accuracy on IMDB and AGNews

in CertAcc and CondAcc. Besides SAFER, we
also compare the ConvAcc on adversarial exam-
ples with two state-of-the-art defense methods, i.e.,
IBP (Jia et al., 2019) and DNE (Zhou et al., 2020),
which do not provide certified robustness guaran-
tee. Thus, their defense may be broken by more
powerful word substitution attacks in the future.

5.2 Certified Results

Certified Accuracy. Figure 3 presents the Cer-
tAcc, CondAcc and ConvAcc under different ✏ and
L, respectively. Each line in the figures represents
a certified bound L, which allows L number of
words to be substituted. The first row is the results
on IMDB, and the second row is on AGNews.

Figures 3(a) and 3(d) show the certified accuracy
on the two datasets. Since the conventional accu-
racy on the clean examples of our mechanisms is
close to 100% (as shown in Figures 3(c) and 3(f)),
the certified accuracy mainly reflects the certified
ratio (which we skip in the results). As shown,
higher ✏ can result in lower CertAcc. This is in-
tuitive as the condition in Theorem 4.1 is more
difficult to satisfy when given higher epsilon, i.e.
weaker requirement of indistinguishability of the
output, hence results in lower certified ratio. As
illustrated in 3(a), when ✏ is around 1.5, the mecha-
nism will approach 0 certified ratio. This indicates
that ✏ can only be searched within a limited range.

Comparing each line in 3(a) and 3(d), we note
that greater L results in higher CertAcc in most
cases for the AGNews dataset. This can be ex-

ADV IBP DNE SAFER WordDP
IMDB 0.172 0.722 0.823 0.727 0.972
AGNews 0.194 0.823 0.909 0.647 0.719

Table 1: Empirical comparison on accuracy

(a) IMDB (b) AGNews
Figure 4: Certified Ration vs. Conditional Accuracy

plained by the fact that a greater L means more
word substitutions and randomness are introduced
in WordDP, making it easier to ensure the indis-
tinguishability of the output, and hence a higher
certified ratio.
Accuracy on Adversarial Examples. Figures
3(b), 3(e), 3(c) and 3(f) present CondAcc and Con-
vAcc of the two datasets on adversarial examples,
respectively. Note that we only test the adversar-
ial examples that are within the L bound. We also
show the CondAcc and ConvAcc for both clean and
adversarial examples without any defense mecha-
nisms as a reference. In addition, we show Con-
vAcc of WordDP with varying parameters on clean
examples to show the impact of the mechanism on
clean examples.

As shown in the figures, WordDP achieves sig-
nificantly higher accuracy on adversarial examples
compared to no defense while maintaining the close
to 100% accuracy on clean examples. Conditional



1110

(a) Fixed attack power 40 (b) Fixed defense power 40

Figure 5: The trend on accuracy under different defense
and attack power

accuracy is higher than conventional accuracy as
expected, since it is computed only on those adver-
sarial examples with a certified counterpart clean
example. Besides, we can observe that with higher
✏, higher CondAcc on adversarial examples can
be achieved. This is because less randomness is
introduced in the inference.

In addition, by comparing different L bound un-
der the same ✏, larger L can yield more accuracy
improvement on adversarial examples but less on
clean examples. Intuitively, using the aggregated
prediction of more distant neighbouring sentences
(higher L) can benefit adversarial examples more
than clean examples.

Trader-off between Certified Ratio and Con-
dAcc. We can see that ✏ has an opposite impact
on certified accuracy (certified ratio) and CondAcc,
we present the trade-off between the certified ratio
and CondAcc of WordDP in Figure 4 in compari-
son with the baseline method SAFER. Ideally, we
want both high certified ratio and high condAcc to
contribute to overall high accuracy. The black dot
represents the baseline SAFER, since the neigh-
bouring sentence generating method of SAFER
does not depend on L or ✏. As illustrated on these
two datasets, with L = 20 and L = 40,WordDP
can dominate SAFER and achieve a much better
performance in both certified ratio and condAcc.

Relation between certified bound L and adver-
sarial attack power Ladv. Figure 5 presents the
three accuracy metrics under different attack power
and defense power. In Figure 5(a), we fix the at-
tack power Ladv to 40, which means allowing less
than 40 word substitutions, and adjust the WordDP
defense power by using different certified bound
L. As discussed in Section 4, certified bound L
determines the size of neighbouring set. Greater L
leads to higher randomness and thus can benefit the
CondAcc and ConvAcc on adversarial examples.
On the other hand, greater L also makes the certi-
fied condition more difficult to be satisfied, which
result in lower CertAcc.

In Figure 5(b), we fix the certified bound L to 40,
which means using the same power of WordDP to
defend against adversarial examples generated by
varying attack power Ladv. As shown in the figure,
the performance increases with higher attack power.
This is because the adversarial examples with more
word changes (higher Ladv) are more difficult to
generate but easier to defend (due to the nature of
PWWS attack algorithm).
Comparison with Empirical Defense. Besides
certified robust method SAFER, we also compare
CondAcc of WordDP with baseline empirical de-
fense methods, IBP (Jia et al., 2019) and DNE
(Zhou et al., 2020). Table 1 compares the highest
CondAcc achieved by WordDP with the conven-
tional accuracy reported by the baselines (ADV
corresponds to no defense). WordDP achieves a
much higher accuracy on IMDB dataset compared
to IBP, DNE and SAFER. For AGNews, the accu-
racy of WordDP outperforms SAFER, but is lower
than the two empirical defenses. We stress, how-
ever, the empirical defense methods do not provide
any rigorous certified robustness guarantees and
the performance can be significantly dependent on
datasets and specific attacks.
Efficiency Comparison. We also compare the ef-
ficiency of WordDP with SAFER by computing
the average time cost for certifying one input and
producing the Monte Carlo sampling-based out-
put. It takes WordDP 6.25s and 3.21s on IMDB
and AGNews, respectively. As a comparison, it
costs SAFER 230.35s and 96.68s. Thus, WordDP
achieves more than 30⇥ efficiency improvement.

6 Conclusion
We proposed WordDP, a certified robustness
method to adversarial word substitution attacks
with the exponential mechanism-based algorithm.
Compared with previous work, WordDP achieves
notable accuracy improvement and 30⇥ efficiency
improvement. In the future, it would be interest-
ing to expand WordDP to other kinds of textual
adversarial examples, such as character-level at-
tacks. It is also worthwhile to study other certified
approaches such as random smoothing.
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