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Abstract

Widespread adoption of deep models has
motivated a pressing need for approaches to
interpret network outputs and to facilitate
model debugging. Instance attribution meth-
ods constitute one means of accomplishing
these goals by retrieving training instances
that (may have) led to a particular prediction.
Influence functions (IF; Koh and Liang 2017)
provide machinery for doing this by quan-
tifying the effect that perturbing individual
train instances would have on a specific test
prediction. However, even approximating
the IF is computationally expensive, to the
degree that may be prohibitive in many cases.
Might simpler approaches (e.g., retrieving
train examples most similar to a given test
point) perform comparably? In this work,
we evaluate the degree to which different
potential instance attribution agree with
respect to the importance of training samples.
We find that simple retrieval methods yield
training instances that differ from those
identified via gradient-based methods (such
as IFs), but that nonetheless exhibit desirable
characteristics similar to more complex
attribution methods. Code for all methods
and experiments in this paper is available at:
https://github.com/successar/
instance_attributions_NLP.

1 Introduction

Interpretability methods are intended to help users
understand model predictions (Ribeiro et al., 2016;
Lundberg and Lee, 2017; Sundararajan et al., 2017;
Gilpin et al., 2018). In machine learning broadly
and NLP specifically, such methods have focused
on feature-based explanations that highlight parts
of inputs ‘responsible for’ the specific prediction.
Feature attribution, however, does not communi-
cate a key basis for model outputs: training data.
Recent work has therefore considered methods for
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input prediction

Attribution methods 
e.g.: IF, GD, NN (dot)

IF, GD: … interested in nothing 
more than sucking you in …

Important positive examples Important negative examples

NN (dot):  if you can get past 
the taboo subject …

REP:  … a canny crowd pleaser …

IF, GD, REP: eerily accurate 
depiction of depression.

NN (dot): insufferably naive.

Figure 1: Attribution methods score train examples in
terms of their importance to a particular prediction. In
this work, we compare several such methods, e.g., In-
fluence Functions (IF) and its variants (GD), Represen-
ter Points (REP) and similarity measures (NN).

surfacing training examples that were influential
for a specific prediction (Koh and Liang, 2017; Yeh
et al., 2018; Pezeshkpour et al., 2019; Charpiat
et al., 2019; Barshan et al., 2020; Han et al., 2020).
While such instance-attribution methods provide
an appealing mechanism to identify sources that
led to specific predictions (which may reveal po-
tentially problematic training examples), they have
not yet been widely adopted, at least in part be-
cause even approximating influence functions (Koh
and Liang, 2017)—arguably the most principled at-
tribution method—can be prohibitively expensive
in terms of compute. Is such complexity neces-
sary to identify ‘important’ training points? Or
do simpler methods (e.g., attribution scores based
on similarity measures between train and test in-
stances) yield comparable results? In this paper,
we set out to evaluate and compare instance attri-
bution methods, including relatively simple and
efficient approaches (Rajani et al., 2020) in the con-
text of NLP (Figure 1). We design qualitative eval-
uations intended to probe the following research
questions: (1) How correlated are rankings induced
by gradient and similarity-based attribution meth-
ods (assessing the quality of more efficient approx-
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imations)? (2) What is the quality of explanations
in similarity methods compared to gradient-based
ones (clarifying the necessity of adopting more
complex methods)?

We evaluate instance-based attribution methods
on two datasets: binarized version of the Stan-
ford Sentiment Treebank (SST-2; Socher et al.
2013) and the Multi-Genre NLI (MNLI) dataset
(Williams et al., 2018). We investigate the correla-
tion of more complex attribution methods with sim-
pler approximations and variants (with and without
use of the Hessian). Comparing explanation quality
of gradient-based methods against simple similar-
ity retrieval using leave-one-out (Basu et al., 2020)
and randomized-test (Hanawa et al., 2021) analy-
ses, we show that simpler methods are fairly com-
petitive. Finally, using the HANS dataset (McCoy
et al., 2019), we show the ability of similarity-based
methods to surface artifacts in training data.

2 Attribution Methods

Similarity Based Attribution Consider a text
classification task in which we aim to map inputs
xi to labels yi ∈ Y . We will denote learned repre-
sentations of xi by fi (i.e., the representation from
the penultimate network layer). To quantify the
importance of training point xi on the prediction
for target sample xt, we calculate the similarity
in embedding space induced by the model.1 To
measure similarity we consider three measures: Eu-
clidean distance, Dot product, and Cosine similar-
ity. Specifically, we define similarity-based attribu-
tion scores as: NN EUC = −‖ft − fi‖2, NN COS
= cos(ft, fi), and NN DOT = 〈ft, fi〉.

To investigate the effect of fine-tuning on these
similarity measures, we also derive rankings based
on similarities between untuned sentence-BERT
(Reimers et al., 2019) representations.

Gradient Based Attribution Influence Func-
tions (IFs) were proposed in the context of neural
models by Koh and Liang (2017) to quantify the
contribution made by individual training points on
specific test predictions. Denoting model parameter
estimates by θ̂, the IF approximates the effect that
upweighting instance i by a small amount—εi—
would have on the parameter estimates (here H is

1To be clear, there is no guarantee that similarity reflects
‘influence’ at all, but we are interested in the degree to which
this simple strategy identifies ‘useful’ training points, and
whether the ranking implied by this method over train points
agrees with rankings according to more complex methods.

the Hessian of the loss function with respect to our
parameters): dθ̂

dεi
= −H−1

θ̂
∇θL(xi, yi, θ̂). This es-

timate can in turn be used to derive the effect on a
specific test point xtest: ∇θL(xtest, ytest, θ̂)

T · dθ̂dεi .
Aside from IFs, we consider three other similar

gradient-based variations:
(1) RIF = cos(H−

1
2∇θL(xtest), H

− 1
2∇θL(xi)).

(2) GD = 〈∇θL(xtest),∇θL(xi)〉, and
(3) GC = cos(∇θL(xtest),∇θL(xi)).
RIF was proposed by Barshan et al. (2020),

while GD and GC by Charpiat et al. (2019).
Representer Points (REP; Yeh et al. 2018) in-

troduced to approximate the influence of train-
ing points on a test sample by defining a classi-
fier as a combination of a feature extractor and
a (L2 regularized) linear layer: φ(xi, θ). Yeh
et al. (2018) showed that for such models the out-
put for any target instance xt can be expressed as
a linear decomposition of “data importance” of
training instances: φ(xt, θ

∗) =
∑n

i αif
>
i ft =∑n

i k(xt, xi, αi), where αi = 1
−2λn

∂L(xi,yi,θ)
∂φ(xi,θ)

.

3 Experimental Setup

Datasets To evaluate different attribution meth-
ods, we conduct several experiments on sentiment
analysis and NLI tasks, following prior work in-
vestigating the use of IF specifically for NLP (Han
et al., 2020). We adopt a binarized version of the
Stanford Sentiment Treebank (SST-2; Socher et al.
2013), and the Multi-Genre NLI (MNLI) dataset
(Williams et al., 2018). For fine-tuning on MNLI,
we randomly sample 10k training instances. Fi-
nally, to evaluate the ability of instance attribution
methods to reveal annotation artifacts in NLI, we
randomly sampled 1000 instances from the HANS
dataset (more details in the Appendix).

Models We define models for both tasks on top
of BERT (Devlin et al., 2019), tuning hyperparame-
ters on validation data via grid search. Our models
achieve 90.6% accuracy on SST and 71.2% accu-
racy on MNLI (more details in the Appendix).

Computing the IF for BERT Deriving the IF
for all parameters θ of a BERT-based model re-
quires deriving the corresponding Inverse Hessian.
We compute the Inverse Hessian Vector Product
(IHVP) H−1∇θL(x, y, θ) directly because storing
the entire matrix of |θ|2 elements is practically im-
possible (requiring ∼12 PB of storage). We ap-
proximate the IHVP using the LiSSa algorithm
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(b) Spearman Correlation on MNLI

Figure 2: The similarity between influence of training samples for different pairs of attribution methods on the SST
and MNLI datasets was measured via Spearman Correlation. 1© = Using Hessian does not change the ordering of
training examples. 2© = Using more layers of BERT in IF approximation does not much affect the ordering. 3© =
NN metrics are not well correlated with gradient-based ones.

(Agarwal et al., 2017). This method is still expen-
sive to run and is sensitive to the norm of the IHVP
approximation. Therefore, for computational rea-
sons we consider IF with respect to the subset of
parameters that correspond to the top five layers [IF
(Top-5)], and only the last linear layer [IF (linear)],
resulting in a few orders of magnitude faster proce-
dure (the algorithm becomes increasingly unstable
as we incorporate additional layers). We also use a
large scaling factor to aid convergence.

4 Experiments

In this section, we first investigate the correlation
between different methods. Then, to study the qual-
ity of explanations we conduct leave-some-out ex-
periments, and further analyze attribution methods
on HANS data. We consider four evaluations (more
analyses and experimental details in the Appendix).

(1) Calculating the correlation of each pair of attri-
bution methods, assessing whether simple methods
induce rankings similar to more complex ones.

(2) Removing the most influential samples accord-
ing to each method, retrain, and then observe the
change in the predicted probability for the origi-
nally predicted class, with the assumption that more
accurate attribution methods will cause more drop.

(3) We follow randomized-test from (Hanawa et al.,
2021) and measure the ranking correlation of meth-
ods for (a) randomly initialized and (b) trained
models, under the assumption that high correlation
here would suggest less meaningful attribution.

(4) We measure the degree to which the methods

recover examples that exhibit lexical overlap when
tested on the HANS dataset (McCoy et al., 2019).
This extends a prior analysis of IF (Han et al.,
2020), considering alternative attribution methods.

Attribution Methods’ Correlation We calcu-
late the Spearman correlation between scores as-
signed to training samples by different methods,
allowing us to compare their similarities. More
specifically, we randomly sample 100 test and 500
training samples from datasets and calculate the
average resultant Spearman correlations.

We report attribution methods’ correlation on
SST and MNLI datasets in Figure 2 (a more com-
plete version of these figures is in the Appendix).
We make the following observations. (1) Gradient
methods w/wo normalization appear similar to each
other, e.g., GC is similar to RIF and IF is similar
to GD, suggesting that Hessian information may
not be necessary to provide meaningful attributions
(GD and GC do not use the Hessian). (2) There is
a high correlation between IF calculated over the
top five layers of BERT and IF over only the last
linear layer. (3) There is only a modest correlation
between similarity-based rankings and gradient-
based methods, suggesting that these do differ in
terms of the importance they assign to training in-
stances. We report a proportion of common top
examples between IF (Top-5) and IF (Linear) in
the Appendix, providing further evidence of the
high correlation between these methods.

Removing ‘Important’ Samples In Table 1 we
report the average results of removing the top-k
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Method avg(∆)-SST avg(∆)-MNLI Spearman

Remove-50 Remove-500 Remove-50 Remove-500 SST MNLI

Random (50 runs) -0.028 -0.021 -0.039 -0.029 - -

Similarity
NN EUC -0.028 -0.540 -0.102 -0.266 0.056 0.023
NN COS -0.072 -0.430 -0.088 -0.306 0.045 0.018
NN DOT -0.059 -0.513 -0.106 -0.273 0.005 -0.002

Gradient

IF -0.054 -0.526 -0.042 -0.407 -0.296 0.018
REP -0.114 -0.490 -0.002 -0.230 -0.217 0.053
RIF -0.071 -0.537 -0.068 -0.347 -0.021 0.013
GD -0.058 -0.516 -0.022 -0.446 -0.290 0.017
GC -0.082 -0.528 -0.030 -0.279 -0.021 0.012

Table 1: Average difference (∆) between predictions made after training on (i) all data and (ii) a subset in which
we remove the top-50/top-500 most important training points, according to different methods (Random on both of
the benchmarks has standard deviation around 0.02). We also report the Spearman correlation between the ranking
induced by each approach using a trained model and the same ranking when a randomly initialized model is used.

Method Lexical Overlap Rate

top-1 top-10

Random 0.40 0.40

Sen-Bert
NN EUC 0.39 0.41
NN COS 0.38 0.39
NN DOT 0.39 0.40

Sim
NN EUC 0.56 0.57
NN COS 0.56 0.56
NN DOT 0.44 0.44

Gradient

IF 0.43 0.44
REP 0.43 0.35
RIF 0.55 0.56
GD 0.43 0.44
GC 0.55 0.56

Table 2: Average lexical overlap rate between premise
and hypothesis in top-k most influential samples for
test instances mispredicted as entailment.

most important training samples for 50 random
test samples using different attribution methods.
We only consider the linear version of methods in
the remainder of the paper. All methods seem ef-
fective, compared to random sampling. Perhaps
surprisingly, for both tasks at least one of the
similarity-based approaches performs comparably
or better than gradient-based methods, in the sense
that removing the top examples according to simi-
larity yields reductions in the predicted probability
(which is what one would intuitively hope). Fi-
nally, it seems that the models applying some form
of normalization to the gradient (i.e., RIF and GC)
perform more consistently. This is consistent with
contemporaneous work of Hanawa et al. (2021)
which argues that this is a consequence of large
gradient magnitudes for some samples dominating
when normalization is not used. Upon investigating
high influential training samples, we observed that
similarity-based approaches seem to yield more di-
verse “top” instances compared to gradient-based

ones. We also found that normalization in gradient-
based methods made a large difference. Generic IF-
based ranking tends to be dominated by high loss
training examples across test examples, whereas
normalization provides more diverse top training
examples. Further, proportions of shared top exam-
ples between methods is provided in the Appendix,
clarifying their similar performance.

Randomized-Test We report the Spearman cor-
relation between trained and random models for
SST and MNLI data in Table 1. This would ideally
be small in magnitude (non-zero values indicate
correlation). Curiously, gradient-based methods
(IF, REP, GD) exhibit negative correlations on the
SST dataset. Overall, these results suggest that
gradient-based approaches without gradient nor-
malization may be inferior to alternative methods.
The simple NN-DOT method provides the ‘best’
performance according to this metric.

Artifacts and Attribution Methods To investi-
gate whether attribution methods can correctly iden-
tify training samples with specific artifacts respon-
sible for model predictions we follow Han et al.
(2020): This entails randomly choosing 10k sam-
ples from MNLI and treating neutral and contra-
diction as a single non-entailment label for model
fine-tuning. More specifically, we are interested in
target samples that the model mispredicts as entail-
ment because of the lexical overlap artifact (lexical
overlap is an artifactual indicator of entailment;
McCoy et al. 2019).

The average lexical overlap rate for 1000 ran-
dom samples from the HANS dataset is provided
in Table 2. As a baseline, we also apply similarity-
based methods on top of sentence-BERT embed-
dings, which as expected appear very similar to ran-
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dom correlation. One can observe that similarity-
based approaches tend to surface instances with
higher lexical overlap, compared to gradient-based
instance attribution methods. Moreover, gradient-
based methods without normalization (IF, GD, and
REP) perform similar to selecting samples ran-
domly and based on sentence-BERT representa-
tions, suggesting an inability to usefully identify
lexical overlap.

Computational Complexity The computational
complexity of IF-based instance attribution meth-
ods constitutes an important practical barrier to
their use. This complexity depends on the num-
ber of model parameters taken into consideration.
As a result, computing IF is effectively infeasible
if we consider all model parameters for modern,
medium-to-large models such as BERT.

If we only consider the parameters of the last
linear layer—comprising O(p) parameters—to ap-
proximate the IF, the computational bottleneck will
be the inverse Hessian which can be approximated
with high accuracy in O(p2). There are ways to
approximate the inverse Hessian more efficiently
(Pearlmutter, 1994), though this results in worse
performance. Similarity-based measures, on the
other hand, can be calculated in O(p).

With respect to wall-clock running time, calcu-
lating the influence of a single test sample with
respect to the parameters comprising the top-5 lay-
ers of a BERT-based model for SST classification
running on a reasonably modern GPU2 requires
∼5 minutes. If we consider the linear variant, this
falls to < 0.01 seconds. Finally, similarity-based
approaches require < 0.0001 seconds. Extrapo-
lating these numbers, it requires about 6 days to
calculate IF (top-5 Layer) for all 1821 test samples
in SST, while it takes only around 0.2 seconds for
similarity-based methods.

5 Conclusions

Instance attribution methods constitute a promising
approach to better understanding how modern NLP
models come to make the predictions that they do
(Han et al., 2020; Koh and Liang, 2017). However,
approximating IF to quantify the importance of
train samples is prohibitively expensive. In this
work, we investigated whether alternative, simpler
and more efficient methods provide similar instance
attribution scores.

2Maxwell Titan GPU (2015).

We demonstrated high correlation between
(1) gradient-based methods that consider more
parameters [IF and GD (top-5)] and their simpler
counterparts [IF and GD (linear)], and (2) methods
without Hessian information, i.e., IF vs GD
and RIF vs GC. We considered even simpler,
similarity-based approaches and compared the im-
portance rankings over training instances induced
by these to rankings under gradient-based methods.
Through leave-some-out, randomized-test, and
artifact detection experiments, we demonstrated
that these simple similarity-based methods are
surprisingly competitive. This suggests future
directions for work on fast and useful instance
attribution methods. All code necessary to repro-
duce the results reported in this paper is available
at: https://github.com/successar/
instance_attributions_NLP.

6 Ethical Considerations

Deep neural models have come to dominate re-
search in NLP, and increasingly are deployed in
the real world. A problem with such techniques is
that they are opaque; it is not easy to know why
models make specific predictions. Consequently,
modern models may make predictions on the basis
of attributes we would rather they not (e.g., demo-
graphic categories or ‘artifacts’ in data).

Instance attribution—identifying training sam-
ples that influenced a given prediction—provides
a mechanism that might be used to counter these
issues. However, the computational expense of ex-
isting techniques hinders their adoption in practice.
By contrasting these complex approaches against
simpler alternative methods for instance attribution,
we contribute to a better understanding and char-
acterization of the tradeoffs in instance attribution
techniques. This may, in turn, improve the robust-
ness of models in practice, and potentially reduce
implicit biases in their predictions.
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A Experimental Details

Datasets To evaluate different attribution meth-
ods, we conduct several experiments on sentiment
analysis and NLI tasks, following prior work inves-
tigating the use of influence functions specifically
for NLP (Han et al., 2020). We adopt a binarized
version of the Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013), consisting of 6920 training
samples and 1821 test samples. As our NLI bench-
mark, we use the Multi-Genre NLI (MNLI) dataset
(Williams et al., 2018), which contains 393k pairs
of premise and hypothesis from 10 different gen-
res. For model fine-tuning, we randomly sample
10k training instances. To evaluate the utility of
different instance attribution methods in helping
to unearth annotation artifacts in NLI, we use the
HANS dataset (McCoy et al., 2019), which com-
prises examples exhibiting previously identified
NLI artifacts such as lexical overlap between hy-
potheses and premises.We randomly sampled 1000
instances from this benchmark as test data to ana-
lyze the behavior of different attribution methods.

Models As discussed in the paper, we define
models for both tasks on top of BERT, tuning hy-
perparameters on validation data via grid search.
These hyperparameters include the regularization
parameter λ = [10−1, 10−2, 10−3]; learning rate
α = [2 × 10−3, 2 × 10−4, 2 × 10−5, 2 × 10−6];
number of epochs ∈ {3, 7, 10, 15}; and the batch
size ∈ {8, 16}. Our final models achieve 90.6%
accuracy on SST and 71.2% accuracy on MNLI

B Attribution Methods’ Correlation

The complete version of Spearman correlation be-
tween attribution methods (containing the sentence-
BERT) is provided in Figure 3. As expected,
similarity-based approaches based on sentence-
BERT show a very small correlation with other
methods.

We also provide the proportion of shared exam-
ples in the top samples retrieved by IF (top-5) and
IF (linear) in Figure 4. One can see that there is a
very high correlation between these methods in top
samples, validating the high quality of simpler ver-
sion of IF (IF (linear)) in comparison to the more
complex method (IF (top-5)).

C Removing ‘Important’ Samples

In this experiment, we first select 50 random test
samples (for both MNLI and SST). Then, for each

one of these instances, we separately remove top-k
(we consider k = 50 and 500) training instances
for that test sample, retrain the model, and calcu-
late the change in the model’s prediction for that
sample. We report the average changed over the
prediction of the selected 50 random test samples in
Table 1. Moreover, the proportion of common ex-
amples in top samples between pairs of attribution
methods is depicted in Figures 5 and 6. The very
high rate between IF vs GD, RIF vs GC, and NN-
EUC vs NN-COS pairs, clarify the reason behind
the similar performance of these pairs of methods
in leave-some-out experiments.

D Near Training Samples Explanations

To further investigate the quality of the most influ-
ential sample based on different attribution meth-
ods, we conjecture that a data point very similar
to a training sample should recover that sample
as the most influential instance. We consider four
scenarios to create target points similar to training
data: (1) using training samples themselves as the
target instances for attribution methods; (2) adding
a random token to a random place in each training
samples; (3) randomly removing a token from each
training samples, and; (4) replacing a random token
in each training samples with a random token from
the dictionary of tokens. In the MNLI dataset, we
apply each modification to both the premise and
hypothesis in each training sample.

The result of this analysis is provided in Tables
3 and 4. We observe that similarity-based methods
demonstrate a greater ability to recover the origi-
nal training samples corresponding to the different
targets. Moreover, the very low performance of IF,
GC, and REP methods is due to the fact that there
are training points with high magnitude gradient,
which these methods choose as top instances for
any target sample.
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Figure 3: Complete version of correlation matrices.
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Figure 4: Proportion of common top examples between IF (Top-5) and IF (Linear) Methods. We selected 100 test
examples and 500 training examples to compute the attributions over.
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Figure 5: Proportion of common examples in top 10 samples between pairs of attribution methods.
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(a) Top-50 in SST.
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Figure 6: Proportion of common examples in top 50 samples between pairs of attribution methods.

Method Train ADD Remove Replace

HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10

Si
m

NN EUC 100 100 99.9 100 66.5 73.7 99.9 100
NN COS 100 100 99.8 100 67.3 74.6 99.8 100
NN DOT 0.73 2.06 0.73 2.06 0.47 2.19 0.73 2.06

G
ra

di
en

t IF 0.01 0.34 0.01 0.35 0.04 0.25 0.01 0.35
REP 0.01 0.27 0.01 0.27 0.04 0.22 0.01 0.27
RIF 95.8 96.0 95.9 96.0 65.0 72.2 95.8 96.0
GD 0.01 0.38 0.01 0.38 0.04 0.23 0.01 0.37
GC 95.9 96.0 95.9 96.0 65.3 72.3 95.9 96.0

Table 3: Treating the training samples and their modifications as the target samples for attribution methods over
the SST dataset.

Method Train ADD Remove Replace

HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10

Si
m

NN EUC 100 100 100 100 36.7 45.8 100 100
NN COS 100 100 100 100 38.1 46.8 100 100
NN DOT 1.30 6.44 1.30 6.44 3.49 10.7 1.30 6.44

G
ra

di
en

t IF 0.0 0.01 0.0 0.01 0.02 0.10 0.0 0.01
REP 0.0 0.01 0.0 0.01 0.01 0.09 0.0 0.01
RIF 92.5 92.5 92.5 92.5 32.6 41.2 92.5 92.5
GD 0.0 0.01 0.0 0.01 0.10 0.50 0.0 0.01
GC 92.5 92.5 92.5 92.5 32.8 41.2 92.5 92.5

Table 4: Treating the training samples and their modifications as the target samples for attribution methods over
the MNLI dataset.


