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Abstract
Multilingual question answering over knowl-
edge graph (KGQA) aims to derive answers
from a knowledge graph (KG) for questions in
multiple languages. To be widely applicable,
we focus on its zero-shot transfer setting. That
is, we can only access training data in a high-
resource language, while need to answer mul-
tilingual questions without any labeled data in
target languages. A straightforward approach
is resorting to pre-trained multilingual mod-
els (e.g., mBERT) for cross-lingual transfer,
but there is a still significant gap of KGQA
performance between source and target lan-
guages. In this paper, we exploit unsupervised
bilingual lexicon induction (BLI) to map train-
ing questions in source language into those
in target language as augmented training data,
which circumvents language inconsistency be-
tween training and inference. Furthermore, we
propose an adversarial learning strategy to al-
leviate syntax-disorder of the augmented data,
making the model incline to both language-
and syntax-independence. Consequently, our
model narrows the gap in zero-shot cross-
lingual transfer. Experiments on two multi-
lingual KGQA datasets with 11 zero-resource
languages verify its effectiveness.

1 Introduction

With the advance of large-scale human-curated
knowledge graphs (KG), e.g., DBpedia (Auer et al.,
2007) and Freebase (Bollacker et al., 2008), ques-
tion answering over knowledge graph (KGQA)
has become a crucial natural language processing
(NLP) task to answer factoid questions. It has been
integrated into real-world applications like search
engines and personal assistants, so it attracts more
attention from both academia and industry (Liang
et al., 2017; Hu et al., 2018; Shen et al., 2019).

Recently, a rising demand of KGQA systems is
to answer the multilingual questions, motivating us
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to focus on multilingual KGQA. However, building
a large-scale KG, as well as annotating QA data,
is costly for each new language, not to mention
many minority languages with a few native annota-
tors. Therefore, we adopt a zero-shot cross-lingual
transfer setting – a KGQA model is developed to
perform inference on multilingual questions with
the only access to training data and associated KG
in a high-resource language (e.g., English).

Providing the success of pre-trained monolin-
gual encoders (Peters et al., 2018; Liu et al., 2019),
some works (e.g., mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020)) pre-train a Trans-
former encoder (Vaswani et al., 2017) on large-
scale non-parallel multilingual corpora in a self-
supervised manner. Then given an NLP task, a
general paradigm for zero-shot cross-lingual trans-
fer is to fine-tune a pre-trained multilingual encoder
on the data in a data-rich (source) language. And
the fine-tuned model is generalizable enough to per-
form inference in other low-resource (target) lan-
guages with surprising quality of prediction. This
paradigm can be adapted to KGQA to build sym-
bolic logical forms (e.g., query graph (Yih et al.,
2015)) for KG query. However, it is witnessed that
there is a considerable KGQA performance gap
between source and target languages, which is con-
sistent with the empirical results on a wide range of
other tasks by prior works (Conneau et al., 2020).

To bridge the gap, translation approaches are
proven effective on multilingual benchmarks (Hu
et al., 2020; Liang et al., 2020). As a way of data
augmentation, they perform source-to-target trans-
lation to obtain multilingual training data. Further
with advanced techniques (Cui et al., 2019; Fang
et al., 2020), they achieve state-of-the-art effec-
tiveness. But these approaches rely heavily on a
well-performing translator. The translator is not
always available especially for a minority language
since its training requires a large volume of parallel
bilingual corpus. Therefore, to be applicable to
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more languages, we assume that neither translators
nor parallel corpora are available in this work.

In this paper, to adapt the translation approaches
in our zero-resource scenario, we naturally pro-
pose to replace the full-supervised machine transla-
tor with unsupervised bilingual lexicon induction
(BLI) for word-level translation. Specifically, as in
prior works (Lample et al., 2018b; Artetxe et al.,
2018), a BLI model is first trained on non-parallel
bilingual corpora. Then, via bilingual word align-
ments in BLI, we map the training questions in
source language into those in target languages to
obtain augmented multilingual training data. Con-
sequently, even simply learning a KGQA model
on the augmented data can circumvent language
inconsistency between training and inference and
thus bridge the performance gap in zero-shot cross-
lingual transfer. To explain why BLI is competent,
it is observed that KGQA mainly involves phrase-
level semantics (Berant et al., 2013). Compared to
other tasks depending on sentence-level contextu-
alization, KGQA is insensitive to long-term depen-
dency but benefits from the language consistency.

Moreover, we propose an adversarial strategy to
mitigate the syntax-disorder caused by BLI. Specif-
ically, we present a discriminator on top of the
encoder, which is trained to distinguish whether
the input is a grammatical question in source lan-
guage or a BLI-translated one in target language.
Meanwhile, jointly with KGQA goal, the encoder
is fine-tuned to fool the discriminator so that the
questions’ representations are both language- and
syntax-agnostic. So the trained KGQA model is
robust to syntax-disorder and becomes insensitive
to the question language, leading to superior per-
formance on multilingual KGQA.

Experiments conducted on two multilingual
KGQA datasets with 11 zero-resource languages
verify the effectiveness of our approach.

2 KGQA Task Definition

We give a background of monolingual KGQA, fol-
lowed by multilingual KGQA and its data format.

Monolingual KGQA. A knowledge graph G is
comprised of a set of directed triples (h, p, t),
where h ∈ E denotes a head entity, t ∈ E

⋃
L

denotes a tail entity or literal value, and p ∈ P
denote a predicate between h and t. KGQA aims at
generating answers for a natural language question
q based on G. Usually a modelM first parses the
question q into an intermediate logical form, which

is then transformed into a SPARQL query, and the
answer is derived by executing the SPARQL query
on G. An example is shown in Figure 1: the ques-
tion in the bottom, intermediate logical form in the
upper right and the corresponding SPARQL query
in the top. Following Maheshwari et al. (2019), we
take a restricted subset of λ-calculus – query graph,
as the intermediate logical form. Typically, a query
graph consists of four types of nodes: grounded en-
tity(s) (in rounded rectangle), existential variable(s)
“?y” (in circle), a lambda variable “?x” (in shaded
circle), and an aggregation function (in diamond).

Considering entity-linking is a standalone sys-
tem and there are many tools, we assume grounded
entities in a question are given. This avoids uncer-
tainty caused by entity-linking, and facilitates us to
focus on the query graph construction process.

Multilingual KGQA. We focus on a zero-shot
cross-lingual transfer setting of KGQA. That
is, we only have a labeled dataset Dsrc =
{(qsrcl , ssrcl )Nl=1}, as well as the associated knowl-
edge graph G, in a high-resource language src,
where qsrcl and ssrcl denote a natural language ques-
tion and a formal query, respectively. We will omit
subscript l of example index in Dsrc. Multilingual
KGQA is to learn a modelM which can answer
questions qtgt in multiple target languages tgt. A
recent baseline is to fine-tune pre-trained multi-
lingual models (e.g. mBERT) in src and directly
perform inference in tgt.

3 Methodology

This section starts with a base framework for mono-
lingual KGQA, followed by our proposed multilin-
gual solutions. Lastly, details about training and
inference are elaborated.

3.1 Base Monolingual Framework

Following Maheshwari et al. (2019), we present a
base pipeline framework as in Figure 1 to construct
query graphs. It consists of three modules: 1) in-
ferential chain ranking, 2) type constraint ranking,
and 3) aggregator classification.

Inferential Chain Ranking. An inferential
chain (IC) refers to a sequence of directed pred-
icate from a grounded entity to lambda variable ?x.
Given an entity e grounded from the question q, we
first search its chain candidates Ce = (ce1, . . . , c

e
n)

by exploring legitimate predicate sequences start-
ing from e in G. Following previous works (Yih
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Figure 1: Base framework for monolingual KG, consisting of three modules to construct a query graph.

et al., 2015; Maheshwari et al., 2019), we fetch the
chains whose length ≤ 2. For example, as in the
middle left of Figure 1, chain candidates are gen-
erated from the entity “<dbr:Ven.-Ram.>” within
2-hop on G. Then, a model is presented to measure
the semantic relatedness between the question q
and each candidate of inferential chain cei , i.e.,

aei =SemMatch(q, cei ; θ
(IC)),∀i=1, . . . , n, (1)

where aei is a score for their relatedness, and θ(IC)-
parameterized SemMatch(·) can be any model for
pairwise relatedness, such as Co-Attention network
(Chen et al., 2019) and BERT-based Matching (De-
vlin et al., 2019). Finally, the resulting of this mod-
ule is the top-1 ranked inferential chain, i.e.,

c̄e = arg maxcei (a
e
i , ∀i = 1, . . . , n). (2)

Note, if there are multiple grounded entities in q,
we will predict an inferential chain for each entity.

Type Constraint Ranking. Type constraints
(TC) refer to the entity types specified in the ques-
tion for each variable on an inferential chain. They
can be used to disambiguate the entities and thus
boost KGQA performance. For example, answer
entity(s) to the example question in Figure 1 are
constrained by type Scientist. Hence, type con-
straint ranking is proposed to capture such informa-
tion, which is also achieved by a semantic matching
model. Specifically, given the resulting inferen-
tial chain c̄e, we first enumerate type candidates

T ey = {tey1, . . . } for the existential variable and
T ex = {tex1, . . . } for the lambda variable. Then,
because there is scarcely overlap of gold type con-
straints between the two variables, a single seman-
tic matching model is adequate for both. Thus, we
define the model to derive relatedness scores as

be∗j = SemMatch(q, te∗j ; θ
(TC)), (3)

where, ∀∗ ∈ {y, x}, and ∀j = 1, . . .

Finally, we get the type constraints for existential
and lambda variable with a threshold γ(thresh), i.e.,

T̄ e∗ = {te∗j |be∗j > γ(thresh), ∀j = 1, . . . }. (4)

Aggregator Classification Given several an-
swer formats in the dataset, aggregator classifica-
tion (AC) is presented to distinguish the format
among Bool, Count and Entity(s). The principle
of each is detailed in the middle right of Figure 1.
Formally, a simple text classifier can satisfy, i.e.,

p(AC) = Classifier(q; θ(AC)) ∈ R3, (5)

where the Classifier(·) is composed of a contextu-
alized encoder, a pooler and an MLP with softmax.

Once the above is completed, their results can
compose a query graph, which is transformed into
SPARQL and then executed on G for the answer.

3.2 Proposed Multilingual KGQA Approach
Built upon the base framework detailed before, we
extend it with a multilingual inference capability,
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Figure 2: Syntax-agnostic semantic matching between a BLI-
augmented multilingual q and its symbolic candidates.

i.e., multilingual KGQA. We are in line with a re-
cent popular zero-shot transfer paradigm (Conneau
et al., 2020; Fang et al., 2020) that: a pre-trained
multilingual encoder is only fine-tuned in src, and
a translation-based data augmentation technique is
integrated to narrow the performance gap between
src and tgt. To emphasize the gap in KGQA, 65%
F1 score in English (src) vs. 54% in Italian (tgt)
is observed by mBERT zero-shot transfer in our
pipeline without any multilingual augmenting.

Distinct from prior works in this paradigm re-
quiring well-trained translators, we propose a fully
unsupervised way for wide applicability with nei-
ther tgt KGQA data nor src-tgt parallel corpora.
It is natural to resort to bilingual lexicon induction
(BLI) with unsupervised training and acceptable
word-level translating quality. In the following, we
first present a BLI-based augmentation for multi-
lingual training data, followed by our adaptation
of the monolingual base framework (§ 3.1) to the
augmented data. Finally, we propose an adversarial
learning strategy coupled with BLI-based augmen-
tation for robust cross-lingual transfer. An illus-
tration of our proposed semantic matching model
with symbolic candidates is in Figure 2.

3.2.1 BLI-based Multilingual Augmentation
We leverage the BLI model by Lample et al.
(2018b). First, it pre-trains monolingual word em-
beddings U src ∈ Rd×|Vsrc| and U tgt ∈ Rd×|Vtgt|

in src and tgt respectively. Then, it learns a linear
transformation to unsupervisedly align the word
embeddings in two languages to one space, i.e.,

W̄= arg min
W∈Md(R)

∑
Distance(WU src

:,k ,U
tgt
:,l ). (6)

The unsupervised alignment between k-th src
word and l-th tgt word is captured by adversarial
learning, and Distance(·) is implemented by cross-
domain similarity local scaling (CSLS). Please re-
fer to (Lample et al., 2018b) for its details.

Based on the BLI model, we can build a word-by-
word translator, BLI

(trans)
src→tgt, from src to arbitrary

tgt, as long as its monolingual corpus is available.
Note, when performing word-level translation, we
also employ CSLS to mitigate the hubness problem
and find the most likely alignment. Then, we trans-
late each question qsrc in Dsrc to other languages:

qtgt = BLI
(trans)
src→tgt(q

src), (7)

where src denotes English (en) in our experiments
while tgt can be one of 11 other languages, such
Farsi (fa), Italian (it), etc. Consequently, qtgt is the
augmented multilingual data for model training.

Remark: Although BLI provides multilingual
data, open questions still remain. 1) Why is BLI
competent here: It is observed KGQA mainly in-
volves word-/phrase-level semantics of symbolic
candidates, rather than sentence-level one in most
other NLP tasks. As the Module 1 and 2 in Fig-
ure 1, the matching only involves morphological
similarity (e.g., scientist vs. <dbo:Scientist>), syn-
onym (e.g., won an award vs. <dbp:prizes>), etc.
Thus, KGQA is less sensitive to long-term con-
text than other tasks. This has been leveraged by
Berant et al. (2013) to propose a phrase matching
model for monolingual KGQA. 2) Will BLI lead
to error propagation: Since BLI model achieves
a high Precision@10 but a relatively low Preci-
sion@1, wrong translation and the corresponding
ground truth are semantically similar. Intuitively,
their word embeddings are spatially close to each
other, so wrong word-level translation is equivalent
to applying tiny noise to word embeddings, which
hardly leads to error propagation when robust pre-
trained Transformer-based encoder is used.

3.2.2 Multilingual Models
Symbolic Candidate Processing. For an infer-
ential chain, we enrich each predicate on the chain
by 1) transforming each camel-represented phrase
into sequence-formatted words 2) prefixing +/- for
directional information, and 3) concatenating top-
frequent types in local closed-world assumptions
(Krompaß et al., 2015). For a type constraint, we
simply transform each camel-represented phrase
into sequence-formatted words. In the following,
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we denote the text of a processed symbolic candi-
date as z no matter it is a chain or type.

Multilingual Semantic Matching Model. As
detailed in §3.1, both inferential chain ranking and
type constraint ranking modules are built upon a
semantic matching model between the question q
and a symbolic candidate z. Note, z is always in
src while q can be in either src or BLI-translated
tgt. Following the common practice, we first con-
catenate q and z with special tokens (Devlin et al.,
2019), which is passed into a pre-trained multilin-
gual Transformer encoder, i.e.,

v = Pool(Transformer(text)), (8)

where, text = ([CLS], q,[SEP], z,[SEP]).

Pool(·) denotes using the contextualized embed-
ding of [CLS] to represent the entire input. In this
paper, the encoder is alternative between mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020). Lastly, a 1-way multi-layer perceptron
(MLP) built upon v is presented to calculate the
matching score in Eq.(1) or Eq.(3).

Multilingual Classification Model. As detailed
in §3.1, a text classification model is required to
identify aggregator. To fit into our zero-resource
multilingual scenario, the model, consisting of
a pre-trained multilingual encoder and an MLP-
based predicting layer, can be directly fine-tuned
on the augmented questions, i.e., qsrc and qtgt.

3.2.3 Syntax-agnostic Adversarial Strategy
Although training the KGQA model on BLI-
augmented multilingual data circumvents language
inconsistency, it inevitably introduces syntax dis-
order and grammatical problem, which could hurt
the performance. We thus present an adversarial
strategy in pair with BLI-augmented data to push
the Transformer encoder deriving language- and
syntax-independent representations. Formally, a
discriminator is built upon the single vector repre-
sentation v produced by the Transformer encoder:

p(src) = Sigmoid(MLP(v; θ(dis))), (9)

where p(src) is the probability of the question in
source. The discriminator is trained to minimize

L(adv)
θ(dis)

=−I(src)log p(src)−I(tgt)log(1−p(src)). (10)

On the contrary, the Transformer encoder is learned
to fool by minimizing an adversarial loss, i.e.,

L(adv)
θ(enc) = −I(tgt) log p(src). (11)

I(tgt) denotes if the question in BLI-translated tgt,
and θ(enc) is encoder’s parameters in each module.

3.3 Training
Before constructing the objectives, we conduct uni-
form negative sampling for the two ranking models
with the maximum negative number limited to 100.

First, gold labels of a q for the three modules
stem from the formal query ssrc. A margin-based
hinge loss is defined for inferential chain ranking:

L̂(IC) =
1

|D|
∑
D

1

|N |
∑|N |

i=1
(λ−ãe+âei ), (12)

where, D is the augmented dataset, N is a set of
negative chains, ãe is derived from the gold chain
and âei is derived from a negative chain. Similarly,
the loss defined for type constraint ranking is

L̂(TC) =
1

|D|
∑
D

1

2|N |
∑
∗∈{y,x}

|N |∑
j=1

(λ− b̃e∗ + b̂e∗j).

Lastly, the loss of aggregator classification is

L̂(AC) = − 1

|D|
∑
D

log p
(AC)
[i=g̃] , (13)

where p
(AC)
[i=g̃] denotes probability corresponding to

gold aggregator class.
During training, the adversarial loss is added to

the loss function of each module to compose the
final training objective, i.e.,

L(∗) = L̂(∗)+αL(adv)
θ(enc) , ∗∈{IC, TC,AC}. (14)

3.4 Inference Algorithm
As in Algorithm 1, we provide a detailed procedure
for model inference in target language.

We also provide an explanation of query graph in
Figure 1. As the example query graph shown in the
right of the figure: a topic entity is first grounded
as e =“<dbr:Ven.-Ram>” in rounded rectangle, an
existential variable in circle denotes intermediate
entity set ?y = {h|(h, leaderName, e)}, a lambda
variable in shaded circle denotes the answer en-
tity set ?x = {h|(h, prizes, e) ∧ ∀e ∈?y}, and an
aggregator COUNT is finally applied to ?x that is
constrained by entity type “<dbo:Scientist>”. Note
that, the existential variable can not exist if only
1-hop relation is expressed in a question, and if
multiple topic entities are grounded, multiple “?x”
will be merged by intersection.
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Algorithm 1 Inference in Target Language.

Require: : A q in tgt and its grounded topic enti-
ties Eq; KG G; Models θ(IC), θ(TC), θ(AC)

1: Search the chain candidates Ce on G, ∀e ∈ Eq
2: Rank each Ce by Eq.(1), and keep top-3 in Ce
3: Ce ← {ce|ce ∈ Ce ∧ Size(?x ∈ ce)>0}
4: c̄e ← Null
5: if Size(Ce) > 0 then

c̄e ← the top1 inferential chain in Ce
6: end if
7: Merge chains {c̄e|∀e ∈ Eq ∧ c̄e is not Null}
8: Rank type constraint candidates by Eq.(3) and

apply the top-1 constraint w/ score > γ(thresh)

9: Generate SPARQL and execute on G for an-
swer entity set A

10: Identify the aggregator for q by Eq.(5)
11: A ← Aggregate(A) by following Figure 1
12: return A;

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate the proposed approach on two datasets,
LC-QuAD (Trivedi et al., 2017) and QALD-
multilingual (Usbeck et al., 2018), both of which
contain questions with corresponding SPARQL
queries over DBpedia1. DBpedia is a large-
scale knowledge graph extracted from Wikipedia
pages with 6 million/60 thousands/13 billion enti-
ties/predicates/triples in the English edition.

LC-QuAD. LC-QuAD is a large-scale complex
question answering dataset, which contains 5000
English question-SPARQL pairs2. We follow the
official split with 1000 questions in the test set,
and further split the original training set into train-
ing/valid with 3500/500 questions. To evaluate the
effectiveness of multilingual KGQA, questions in
the test set are translated into 10 languages (fa, de,
ro, it, ru, fr, nl, es, hi, pt)3 using Google Transla-
tor4.

QALD-multilingual. QALD is a series of eval-
uation campaigns on question answering over
linked data5. We collect all multilingual questions
along with their SPARQL queries from QALD4

1We use the 2016-10 version, which can be downloaded at
https://wiki.dbpedia.org/downloads-2016-10.

2https://github.com/AskNowQA/LC-QuAD.
3https://github.com/yczhou001/Multilingual-KBQA-

Dataset/tree/main/LC-QuAD.
4https://translate.google.com/.
5https://github.com/ag-sc/QALD.

to QALD9 and filter out some out-of-scope ones6.
There are overall 429 distinct question-SPARQL
pairs and most are expressed in 12 languages (en,
fa, de, ro, it, ru, fr, nl, es, hi_IN, pt, pt_BR). Con-
sidering the small size of this dataset, we take all
QALD-multilingual questions as test set, and use
the training data of LC-QuAD for model training.

Evaluation Metrics. We adopt two widely-used
metrics as following (Maheshwari et al., 2019),
i.e., inferential chain accuracy (ICA) and macro
F1 score. The former is used to measure the accu-
racy (i.e., Precision@1) of inferential chain model,
and defined as the percent of correctly-predicted
inferential chains. The macro F1 score is used to
measure the performance of final answers. Please
refer to (Maheshwari et al., 2019) for the details.

4.2 Experimental Setting

We evaluate our approach with 2 multilingual en-
coding models, i.e. mBERTbase and XLM-Rbase.
The embedding and hidden size in both models
are set to 768. We use Adam optimizer (Kingma
and Ba, 2015) to optimize the KGQA loss with
the learning rate of 5 × 10−5 and a linear warm-
up (Vaswani et al., 2017). The maximum training
epoch, warm-up epoch, and batch size are set to 35,
3, and 32. The discriminator is trained along with
each module’s objective, with α set to 5×10−4 for
learning to fool. The discriminator is optimized via
the Adam optimizer with a learning rate of 5×10−5.
γ(thresh) for the type constraint model is set to 0.7.
We follow (Maheshwari et al., 2019) and use the
same values for other parameters in model training.

4.3 Main Results

We compare our approach with a natural, widely-
used baseline, which fine-tunes a pre-trained mul-
tilingual model (e.g., mBERT, XLM-R) on source
language, and then directly apply it to target lan-
guages. The comparison on QALD-multilingual
and LC-QuAD with mBERT are reported in Ta-
ble 1 and 2 respectively. It is showed that our
approach outperforms the baseline significantly on
both datasets for all languages. ICA is improved by
1%-4%, and 2.9% on average on the QALD dataset.
The improvement on LC-QuAD is even larger, i.e.,
averaged ICA and F1 score of all languages are
increased by around 7% and 4% respectively. No-
tably, with the BLI-augmented data and syntax-

6https://github.com/yczhou001/Multilingual-KBQA-
Dataset/tree/main/QALD.
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ICA en fa de ro it ru fr nl es hi_IN pt pt_BR Avg Avg w/o en
Baseline 80.7 76.0 77.8 76.8 76.5 80.4 76.9 78.5 77.6 79.3 80.9 86.3 79.0 78.8
Ours 83.7 77.6 80.5 79.2 80.5 83.1 80.3 80.5 81.7 82.5 85.3 87.4 81.9 81.7
Lift +3.1 +1.6 +2.8 +2.5 +4.0 +2.7 +3.4 +2.0 +4.0 +3.2 +4.4 +1.1 +2.9 +2.9

F1 en fa de ro it ru fr nl es hi_IN pt pt_BR Avg Avg w/o en
Baseline 65.0 58.0 60.8 60.2 53.7 60.5 59.8 64.3 55.2 59.3 60.5 70.0 60.6 60.2
Ours 66.7 60.0 62.2 62.1 57.7 63.5 63.6 65.9 58.8 62.6 63.5 70.0 63.0 62.7
Lift +1.7 +2.0 +1.4 +2.0 +4.0 +3.0 +3.8 +1.7 +3.7 +3.2 +3.1 +0.0 +2.5 +2.5

Table 1: Comparison on QALD-multilingual using mBERT.

ICA en fa de ro it ru fr nl es hi_IN pt Avg Avg w/o en
Baseline 87.0 83.8 88.3 86.1 86.0 86.0 86.9 87.2 88.2 83.7 86.6 86.3 86.3
Ours 94.7 91.7 93.3 93.1 93.2 92.7 93.1 94.2 94.1 92.6 93.4 93.3 93.2
Lift +7.7 +7.9 +5.0 +7.0 +7.3 +6.7 +6.2 +7.0 +5.9 +9.0 +6.8 +6.9 +6.9

F1 en fa de ro it ru fr nl es hi_IN pt Avg Avg w/o en
Baseline 80.1 66.6 78.3 68.9 69.1 71.1 69.5 75.8 72.9 66.5 69.3 71.6 70.8
Ours 85.5 71.7 82.4 72.6 72.3 74.5 73.2 80.9 76.1 71.9 74.0 75.9 74.9
Lift +5.4 +5.1 +4.1 +3.6 +3.2 +3.4 +3.6 +5.1 +3.2 +5.5 +4.7 +4.3 +4.2

Table 2: Comparison on LC-QuAD-multilingual using mBERT.

agnostic adversarial learning, the performance of
source-language (i.e., English) questions are also
increased by a large margin, i.e., F1 score increases
from 65% to 66.7% on QALD, and from 80% to
85% on LC-QuAD. We also evaluate the propose
approach using XLM-R as the multilingual encoder.
The comparison on QALD-multilingual is shown
in Table 3. We can observe similar improvements
as in mBERT, where both averaged ICA and F1
score are increased by around 1%, verifying the
effectiveness of our proposed approach.

4.4 Ablation Study

Our approach consists of two important compo-
nents, BLI-based data augmentation and a syntax-
agnostic learning strategy. We conduct an abla-
tion study to investigate the effect of each compo-
nent. Table 4 reports the averaged results of all
target-languages on QALD-multilingual and LC-
QuAD-multilingual. From the table we can see
that, with BLI-based data augmentation, our ap-
proach increases the ICA score on QALD by 1.7%,
and the syntax-agnostic adversarial learning fur-
ther improves it by 1.2%. Similar improvements
are observed on LC-QuAD, which verifies the ef-
fectiveness of both components in our approach.

4.5 Analysis

Impact of BLI Accuracy. We assess the impact
of BLI accuracy on five Romance languages (i.e.
it, fr, es, pt, and ro) by injecting noise into BLI re-
sults. Specifically, when mapping source-language

0.1 0.2 0.3 0.4 0.5
noise of BLI

0.785
0.795
0.805
0.815
0.825

IC
A

BLI-only
Baseline

0.1 0.2 0.3 0.4 0.5
noise of BLI

0.59

0.60

0.61

0.62

0.63

F1

BLI-only
Baseline

Figure 3: Impact of BLI Accuracy in our approach. The
x-axis represents the percentage of noise we inject into BLI
results, while y-axis represents the performance in terms of
ICA in Figure (left) and F1 score in Figure (right).

words into a target language via BLI, we randomly
replace translated words with wrong ones with a
probability of p (10%, 20%, 30%, 40%, and 50%).
The averaged performance of our approach on the
five languages is reported in Figure 3. It is ob-
served, with more noise added, the performance of
our approach drops, which is in accordance with
intuition. But even when 50% of the translated
words are noisy, our method still outperforms the
baseline model. For example, it is superior than the
baseline by 1% in terms of ICA with 50% noise,
showing the robustness of our approach.

Deep Dive into Adversarial Learning. We take
the inferential chain ranking model as an exam-
ple, and take a deep dive into the impact of syntax-
agnostic adversarial learning. The adversarial learn-
ing involves a discriminator to distinguish whether
a question is grammatical or syntax-disorder, and
an inferential chain ranking model to identify the
gold chain. Their loss values, i.e., L(dis)

θ(dis)
and
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ICA en fa de ro it ru fr nl es hi_IN pt pt_BR Avg Avg w/o en
Baseline (XLM-R base) 81.5 76.9 75.6 77.7 76.7 80.9 76.5 78.8 77.4 80.2 80.4 84.2 78.9 78.7
Ours (XLM-R base) 84.0 78.1 77.5 79.0 77.1 80.9 77.8 79.4 78.1 81.3 80.9 85.3 79.9 79.6
Lift +2.5 +1.2 +1.9 +1.4 +0.4 +0.0 +1.3 +0.7 +0.7 +1.2 +0.5 +1.1 +1.1 +0.9

F1 en fa de ro it ru fr nl es hi_IN pt pt_BR Avg Avg w/o en
Baseline (XLM-R base) 63.4 57.1 54.7 58.8 50.1 59.4 56.3 61.3 51.2 59.2 57.5 66.1 57.9 57.4
Ours (XLM-R base) 64.6 57.6 56.1 61.4 50.9 59.4 58.2 62.1 52.2 60.6 57.4 66.1 58.9 58.4
Lift +1.2 +0.5 +1.4 +2.6 +0.8 +0.0 +1.9 +0.8 +1.0 +1.3 -0.1 +0.0 +1.0 +0.9

Table 3: Comparison on QALD-multilingual using XLM-R.

QALD LC-QuAD
Avg w/o en ICA F1 ICA F1

BLI-only 80.5 60.9 91.7 74.2
BLI-only vs. Baseline +1.7 +0.7 +5.5 +3.4

BLI+Adv. 81.7 62.7 93.2 74.9
BLI+Adv. vs. BLI-only +1.2 +1.8 +1.4 +0.7

Table 4: Ablation study. “BLI-only vs. Baseline” represents
the effect of BLI. “BLI+Adv. vs. BLI-only” represents effect
of syntax-agnostic adversarial learning.

Figure 4: Adversarial losses on validation set w.r.t different
epochs in training phase.

L̂(IC), are plot in Figure 4. We can see that the clas-
sification loss of the discriminator quickly drops
and then slowly goes up, indicating that the discrim-
inator gets good performance and then it is fooled
later by the language-/syntax-agnostic embeddings
generated by mBERT. Meanwhile, the inferential
ranking loss drops quickly and stays very small
in following epochs, showing that when mBERT
is generating syntax-agnostic embeddings, it also
supports the inferential chain ranking very well.

4.6 Case Study

We take several examples of inferential chain rank-
ing to show how our approach works. We use
t-SNE (Maaten and Hinton, 2008) to map the
embedding of a question-chain pair into a two-
dimensional data point. A question in a specific
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Figure 5: Case study via t-SNE visualization. Different
points in a graph represents different languages for the same
question. (Upper left) and (upper right) show embeddings
of baseline and our approach for the question “what is the
population of Cairo?”. (Lower left) and (lower right) show
embeddings of baseline and our approach for the question
“which species does an elephant belong?”.

language is paired with its golden inferential chain
and top-1 ranked negative candidate. Figure 5 com-
pares the baseline with our approach for two ques-
tions. Positive and negative examples of the same
question in different languages are plot in the same
figure. We can see that the baseline model can
not distinguish positive inferential chains from neg-
ative ones well, while our approach can learn a
language-agnostic representation that focuses more
on ranking inferential chain candidates.

5 Related Work

There are mainly two categories of approaches
to handle monolingual question answering over
knowledge graph (KGQA) task. (1) Information
retrieval-based approaches align a question with
its answer candidates in the same semantic space,
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where the candidates usually stem from KG neigh-
bors of the topic entity detected in the questions
(Bordes et al., 2014b,a; Dong et al., 2015; Jain,
2016; Xu et al., 2016; Hao et al., 2017; Chen et al.,
2019). (2) Semantic parsing-based approaches first
translate a question into the corresponding logical
form, e.g., program (Guo et al., 2018; Shen et al.,
2019) or query graph (Yih et al., 2015; Jia and
Liang, 2016; Xiao et al., 2016; Dong and Lapata,
2016; Liang et al., 2017; Dong and Lapata, 2018;
Maheshwari et al., 2019), and then execute the log-
ical form over KG to derive the final answer. Note
a logical form is usually composed of a series of
grammars or operators pre-defined by experts. This
paper is in line with the second category to gener-
ate query graph for KG execution. To the best of
our knowledge, there are only few works targeting
multilingual KGQA (Hakimov et al., 2017; Vey-
seh, 2016), which rely on extensive multilingual
training data with hand-crafted features while are
inapplicable to the zero-shot transfer scenario. So
we adopt the pipeline by Maheshwari et al. (2019)
for monolingual scenario as our base model but up-
date the encoders with the Transformer (Vaswani
et al., 2017) to strengthen their expressive power
and facilitate recent pre-trained multilingual initial-
izations.

Given task-specific data in a source language,
cross-lingual models are trained to perform infer-
ence in target languages in a low- or zero-resource
scenario. Typically, cross-lingual models are pro-
posed in two paradigms. 1) Universal encoding-
based paradigm represents multilingual natural lan-
guage text into language-agnostic embeddings the
same semantic space. Early works focus on align-
ing multilingual word embedding (Mikolov et al.,
2013; Faruqui and Dyer, 2014; Xu et al., 2018),
while recent efforts are mainly made on large-scale
pre-trained multilingual encoder, such as mBERT
(Devlin et al., 2019), XLM (Conneau and Lam-
ple, 2019), Unicoder (Huang et al., 2019a), XLM-
R (Conneau et al., 2020), InfoXLM (Chi et al.,
2020), and ALM (Yang et al., 2020). They can
perform zero-shot cross-lingual transfer by train-
ing in the source language while directly inference
in target language. 2) translation-based paradigm
employs well-trained machine translators to map
the training or test examples in source language to
those in target translation. Recent common prac-
tice tends to leverage the second paradigm to gen-
erate multilingual data to narrows the zero-shot

cross-lingual performance gap in the first paradigm,
which leads to state-of-the-art results on several
cross-lingual benchmarks. In contrast, we consider
a zero-resource scenario where translators are un-
available and we thus resort to unsupervised BLI
in light of KGQA’s characteristics.

As a branch of universal encoding at word
level, bilingual lexicon induction (BLI) (a.k.a cross-
lingual word embedding – CLWE) is learned to
align bilingual word embeddings in the same space,
where the embeddings are pre-trained on mono-
lingual corpora and the alignment is trained in ei-
ther a (semi-)supervised or unsupervised manner
(Smith et al., 2017; Lample et al., 2018b; Artetxe
et al., 2018, 2019; Huang et al., 2019b; Patra et al.,
2019; Karan et al., 2020; Zhao et al., 2020; Ren
et al., 2020). To alleviate “hubness” problem (Dinu
and Baroni, 2015) in BLI, alternatives of the dis-
tance measurement are proposed to substitute near-
est neighbor (NN) during the alignment, such as
inverted-softmax (Smith et al., 2017) and CSLS
(Lample et al., 2018b). In addition to building
bilingual dictionary via word-level translation, a
well-trained BLI model can serve as a weak base-
line of sentence-level translation (Lample et al.,
2018a), a seed model for unsupervised translation
(Lample et al., 2018a) or a bilingual variant of copy
mechanism in summarization (Zhu et al., 2020).

Moreover, adversarial training is usually in-
tegrated into cross-lingual models for language-
agnostic representation learning, such as unsuper-
vised BLI (Lample et al., 2018b; Zhang et al.,
2017), unsupervised translation (Lample et al.,
2018a), cross-Lingual sequence labeling (Kim
et al., 2017; Huang et al., 2019c) and cross-Lingual
classification (Dong et al., 2020). In contrast, our
adversarial strategy not only considers language-
agnostic representations but also aims at making
the model insensitive to syntax-disorder and thus
competent in zero-resource scenario.

6 Conclusion

We propose a novel approach for zero-shot cross-
lingual transfer in multilingual KGQA, which aug-
ments training data by bilingual lexicon induction,
and leverages a syntax-agnostic adversarial learn-
ing strategy to alleviate the syntax-disorder prob-
lem caused by BLI. Experimental results on two
multilingual KGQA datasets in 11 zero-resource
languages verify its effectiveness.
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