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Abstract

There are common semantics shared across
text and images. Given a sentence in a source
language, whether depicting the visual scene
helps translation into a target language? Ex-
isting multimodal neural machine translation
methods (MNMT) require triplets of bilingual
sentence - image for training and tuples of
source sentence - image for inference. In
this paper, we propose ImagiT, a novel ma-
chine translation method via visual imagina-
tion. ImagiT first learns to generate visual rep-
resentation from the source sentence, and then
utilizes both source sentence and the “imag-
ined representation” to produce a target trans-
lation. Unlike previous methods, it only needs
the source sentence at the inference time. Ex-
periments demonstrate that ImagiT benefits
from visual imagination and significantly out-
performs the text-only neural machine trans-
lation baselines. Further analysis reveals that
the imagination process in ImagiT helps fill
in missing information when performing the
degradation strategy.

1 Introduction

Visual foundation has been introduced in a novel
multimodal Neural Machine Translation (MNMT)
task (Specia et al., 2016; Elliott et al., 2017; Bar-
rault et al., 2018), which uses bilingual (or multi-
lingual) parallel corpora annotated by images de-
scribing sentences’ contents (see Figure 1(a)). The
superiority of MNMT lies in its ability to use visual
information to improve the quality of translation,
but its effectiveness largely depends on the avail-
ability of data sets, especially the quantity and qual-
ity of annotated images. In addition, because the
cost of manual image annotation is relatively high,
at this stage, MNMT is mostly applied on a small
and specific dataset, Multi30K (Elliott et al., 2016),
and is not suitable for large-scale text-only Neu-
ral Machine Translation (NMT) (Bahdanau et al.,
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Figure 1: The problem setup of our proposed ImagiT
is different from existing multimodal NMT. A multi-
modal NMT model takes both text and paired image
as the input, while ImagiT takes only sentence in the
source language as the usual NMT task. ImagiT syn-
thesizes an image and utilize the internal visual repre-
sentation to assist translation.

2015; Vaswani et al., 2017). Such limitations hin-
der the applicability of visual information in NMT.

To address the bottlenecks mentioned above,
Zhang et al. (2020) propose to build a lookup table
from an image dataset and then using the search-
based method to retrieve pictures that match the
source language keywords. However, the lookup
table is built from Multi30K, which leads to a rel-
atively limited coverage of the pictures, and po-
tentially introduces much irrelevant noise. It does
not always find the exact image corresponding to
the text, or the image may not even exist in the
database. Elliott and Kádár (2017) present a multi-
task learning framework to ground visual represen-
tation to a shared space. Their architecture called
“imagination” shares an encoder between a primary
NMT task and an auxiliary task of ranking the vi-
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sual features for image retrieval. However, neither
the image is explicitly generated, nor the visual fea-
ture is directly leveraged by the translation decoder,
the model simply learns the visual grounded shared
encoder. Based on other researchers’ earlier explo-
ration, we hypothesize that the potential of vision
in conventional text-only NMT has not been fully
discovered. Different with Elliott and Kádár (2017)
implicit approach, we understand “imagination” to
be more like “picturing”, since it is similar to hu-
mans who can visually depict figures in the mind
from an utterance. Our approach aims to explicitly
imagine a “vague figure” (see Figure 1(b)) to guide
the translation, since A picture is worth a thousand
words, and imagining the picture of a sentence is
the instinctive reaction of a human being who is
learning bilingualism.

In this paper, we propose a novel end-to-end ma-
chine translation model that is embedded in visual
semantics with generative imagination (ImagiT)
(see Figure 1(b)). Given a source language sen-
tence, ImagiT first encodes it and transforms the
word representations into visual features through
an attentive generator, which can effectively cap-
ture the semantics of both global and local levels,
and the generated visual representations can be con-
sidered as semantic-equivalent reconstructions of
sentences. A simple yet effective integration mod-
ule is designed to aggregate the textual and visual
modalities. In the final stage, the model learns to
generate the target language sentence based on the
joint features. To train the model in an end-to-end
fashion, we apply a visual realism adversarial loss
and a text-image pair-aware adversarial loss, as
well as text-semantic reconstruction loss and target
language translation loss based on cross-entropy.

In contrast with most prior MNMT work, our
proposed ImagiT model does not require images as
input during the inference time but can leverage vi-
sual information through imagination, making it an
appealing method in low-resource scenario. More-
over, ImagiT is also flexible, accepting external
parallel text data or non-parallel image caption-
ing data. We evaluate our Imagination modal on
the Multi30K dataset. The experiment results show
that our proposed method significantly outperforms
the text-only NMT baseline. The analysis demon-
strates that imagination help the model complete
the missing information in the sentence when we
perform degradation masking, and we also see im-
provements in translation quality by pre-training

the model with an external non-parallel image cap-
tioning dataset.

To summarize, the paper has the following con-
tributions:

1. We propose generative imagination, a new
setup for machine translation assisted by syn-
thesized visual representation, without anno-
tated images as input;

2. We propose the ImagiT method, which shows
advantages over the conventional MNMT
model and gains significant improvements
over the text-only NMT baseline;

3. We conduct experiments to verify and analyze
how imagination helps the translation.

2 Related work

MNMT As a language shared by people world-
wide, visual modality may help machines have a
more comprehensive perception of the real world.
Multimodal neural machine translation (MNMT)
is a novel machine translation task proposed by
the machine translation community, which aims to
design multimodal translation frameworks using
context from the additional visual modality (Specia
et al., 2016). The shared task releases the dataset
Multi30K (Elliott et al., 2016), which is an ex-
tended German version of Flickr30K (Young et al.,
2014), then expanded to French and Czech (Elliott
et al., 2017; Barrault et al., 2018). In the three
versions of tasks, scholars have proposed many
multimodal machine translation models and meth-
ods. Huang et al. (2016) encodes word sequences
with regional visual objects, while Calixto and Liu
(2017) study the effects of incorporating global vi-
sual features to initialize the encoder/decoder hid-
den states of RNN. Caglayan et al. (2017) models
the image-text interaction by leveraging element-
wise multiplication. Elliott and Kádár (2017) pro-
pose a multitask learning framework to ground vi-
sual representation to a shared space and learn with
the auxiliary triplet alignment task. The common
practice is to use convolutional neural networks to
extract visual information and then using attention
mechanisms to extract visual contexts (Caglayan
et al., 2016; Calixto et al., 2016; Libovický and
Helcl, 2017). Ive et al. (2019) propose a translate-
and-refine approach using two-stage decoder. Cal-
ixto et al. (2019) put forward a latent variable
model to capture the multimodal interactions be-
tween visual and textual features. Caglayan et al.
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(2019) show that visual content is more critical
when the textual content is limited or uncertain
in MMT. Recently, Yao and Wan (2020) propose
multimodal self-attention in Transformer to avoid
encoding irrelevant information in images, and Yin
et al. (2020) propose a graph-based multimodal
fusion encoder to capture various relationships.

Text-to-image synthesis Traditional Text-to-
image (T2I) synthesis mainly uses keywords to
search for small image regions, and finally opti-
mizes the entire layout (Zhu et al., 2007). After
generative adversarial networks (GANs) (Goodfel-
low et al., 2014) were proposed, scholars have pre-
sented a variety of GAN-based T2I models. Reed
et al. (2016) propose DC-GAN and design a direct
and straightforward network and a training strategy
for T2I generation. Zhang et al. (2017) propose
stackGAN, which contains multiple cascaded gen-
erators and discriminators, and the higher stage
generates better quality pictures. In previous work,
scholars only considered global semantics. Xu et al.
(2018) proposed AttnGAN to apply the attention
mechanism to capture fine-grained word-level in-
formation. MirrorGAN (Qiao et al., 2019) employs
a mirror structure, which reversely learns from the
inverse task of T2I to further validate whether gen-
erated images are consistent with the input texts.
The inverse task is also known as image caption-
ing.

3 ImagiT model

As shown in Figure2, ImagiT embodies the
encoder-decoder structure for end-to-end machine
translation. Between the encoder and the decoder,
there is an imagination step to generate semantic-
equivalent visual representation. Technically, our
model is composed of following modules: source
text encoder, generative imagination network, im-
age captioning, multimodal aggregation and de-
coder for translation. We will elaborate on each of
them in the rest of this section.

3.1 Source text encoder
Vaswani et al. (2017) propose the state-of-art
Transformer-based machine translation framework,
which can be written as follows:

Hl
= LN(Attl(Ql−1,Kl−1,Vl−1) + Hl−1), (1)

Hl = LN(FFNl(Hl
) + Hl

), (2)

Where Attl, LN, and FFNl are the self-attention
module, layer normalization, and the feed-forward
network for the l-th identical layer respectively.
The core of the Transformer is the multi-head self-
attention, in each attention head, we have:

zi =

n∑
j=1

αij(xjW
V ), (3)

αij = softmax(
(xiW

Q)(xjW
K)>√

d
). (4)

W V ,WQ,WK are layer-specific trainable pa-
rameter matrices. For the output of final stacked
layer, we use w = {w0, w1, ..., wL−1}, w ∈ Rd×L

to represent the source word embedding, L is the
length of the source sentence. Besides, we add a
special token to each source language sentence to
obtain the sentence representation s ∈ Rd.

3.2 Generative imagination network

Generative Adversarial Network (Goodfellow et al.,
2014) has been applied to synthesis images similar
to ground truth (Zhang et al., 2017; Xu et al., 2018;
Qiao et al., 2019). We follow the common prac-
tice of using the conditioning augmentation (Zhang
et al., 2017) to enhance robustness to small pertur-
bations along the conditioning text manifold and
improve the diversity of generated samples.1 F ca

represents the conditioning augmentation function,
and sca represents the enhanced sentence represen-
tation.

sca = F ca(s), (5)

{F0, F1} are two visual feature converters, shar-
ing similar architecture. F0 contains a fully con-
nected layer and four deconvolution layers (Noh
et al., 2015) to obtain image-sized feature vectors.
Furthermore, we define {f0, f1} are the visual fea-
tures after two transformations with different res-
olution. For detailed layer structure and block de-
sign, please refer to (Xu et al., 2018).

f0 = F0(z, s
ca), (6)

f1 = F1(f0, F
attn(f0, s

ca)), (7)

1Zhang et al. (2017) also mentions that the randomness in
the Conditioning Augmentation is beneficial for modeling text
to image semantic translation as the same sentence usually
corresponds to objects with various poses and appearances.
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Figure 2: Overview of the framework of the proposed ImagiT. F0 and F1 are text-to-image converters, sharing
similar structures, comprising of perceptron, residual, and unsampling blocks. L× represents L identical layers.
Noting that we only need to obtain the generated visual feature to guide the translation, for the whole pipeline,
up-sampling this feature to image is redundant.

Where f0 ∈ RM0×N0 , z is the noise vector, sam-
pled from the standard normal distribution, and it
will be concatenated with sca. Each column of fi is
a feature vector of a sub-region of the image, which
can also be treat as a pseudo-token. To generate
fine-grained details at different subregions of the
image by paying attention to the relevant words in
the source language, we use image vector in each
sub-region to query word vectors by leveraging at-
tention strategy. F attn is an attentive function to
obtain word-context feature, then we have:

F attn(f0, s
ca) =

L−1∑
l=0

(U0wl)(softmax(fT
0 (U0wl)))

>,

(8)

Word feature wl is firstly converted into the com-
mon semantic space of the visual feature, U0 is a
perceptron layer. Then it will be multiplied with f0
to acquire the attention score. f1 is the output of
the imagination network, capturing multiple levels
(word level and sentence level) of semantic mean-
ing. f1 is denoted as the blue block “generated vi-
sual feature” in Figure2. It will be utilized directly
for target language generation, and it will also be
passed to the discriminator for adversarial training.
Note that for the whole pipeline, upsampling f1 to

an image is redundant.
Comparing to T2I synthesis works which

use cascaded generators and disjoint discrimina-
tors(Zhang et al., 2017; Xu et al., 2018; Qiao et al.,
2019), we only use one stage to reduce the model
size and make our generated visual feature f1 focus
more on text-mage consistency, but not the realism
and authenticity.

3.3 Image captioning

Image captioning (I2T) can be regarded as the in-
verse problem of text-to-image generation, generat-
ing the given image’s description. If an imagined
image is semantic equivalent to the source sentence,
then its description should be almost identical to
the given text. Thus we leverage the image caption-
ing to translate the imagined visual representation
back to the source language(Qiao et al., 2019), and
this symmetric structure can make the imagined
visual feature act like a mirror, effectively enhanc-
ing the semantic consistency of the imagined vi-
sual feature and precisely reflect the underlying
semantics. Following Qiao et al. (2019), we utilize
the widely used encoder-decoder image captioning
framework(Vinyals et al., 2015), and fix the param-
eters of the pre-trained image captioning frame-
work when end-to-end training other modules in
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ImagiT.

pt = Decoder(ht−1), t = 0, 1, ..., L− 1, (9)

LI2T = −
L−1∑
t=0

log pt(Tt). (10)

pt is the predicted probability distribution over
the words at t-th decoding step, and Tt is the Tt-th
entry of the probability vector.

3.4 Multimodal aggregation
After obtaining the imagined visual representation,
we aggregate two modalities for the translation de-
coder. Although the vision carries richer informa-
tion, it also contains irrelevant noise. Comparing to
encoding and integrating visual feature directly, a
more elegant method is to induce the hidden repre-
sentation under the guide of image-aware attention
and graph perspective of Transformer (Yao and
Wan, 2020), since each local spatial regions of the
image can also be considered as pseudo-tokens,
which can be added to the source fully-connected
graph. In the multimodal self-attention layer, we
add the spatial feature of the generated feature map
in the source sentence, that is, the attention query
vector is the combination of text and visual em-
beddings, getting x̃ ∈ R(L+M)×d. Then perform
image-aware attention, the key and value vectors
are just text embeddings, we have:

ci =

L−1∑
j=0

α̃ij(wjW
V ), (11)

α̃ij = softmax(
(x̃iW

Q)(wjW
K)>√

d
). (12)

3.5 Objective function
During the translation phase, similar to equation
10, we have:

Ltrans = −
∑
t

log pt(Tt), (13)

To train the whole network end-to-end, we lever-
age adversarial training to alternatively train the
generator and the discriminator. Especially, as
shown in Figure 3, the discriminator take the imag-
ined visual representation, source language sen-
tence, and the real image as input, and we employ
two adversarial losses: a visual realism adversarial

source language 
sentence

Generated 
Image

Target language 
sentence Real Image

Discriminator

Figure 3: Training objective. The discriminator takes
source language sentences, generated images, and real
images as input, then computes two adversarial loss: re-
alism loss and text-image paired loss. LI2T is designed
to guarantee the semantic consistency, andLtrans is the
core loss function to translate integrated embedding to
the target language.

loss, and a text-image pair-aware adversarial loss
computed by the discriminator (Zhang et al., 2017;
Xu et al., 2018; Qiao et al., 2019).

LG0 =− 1

2
Ef1∼pG [log(D(f1)]

− 1

2
Ef1∼pG [log(D(f1, s)],

(14)

f1 is the generated visual feature computed by
equation 7 from the model distribution pG, s is
the global sentence vector. The first term is to dis-
tinguish real and fake, ensuring that the generator
generates visually realistic images. The second
term is to guarantee the semantic consistency be-
tween the input text and the generated image. LG0

jointly approximates the unconditional and condi-
tional distributions. The final objective function of
the generator is defined as:

LG = LG0 + λ1LI2T + λ2Ltrans. (15)

Accordingly, the discriminator D is trained by
minimizing the following loss:

LD =− 1

2
EI∼pdata [log(D(I)]

− 1

2
Ef1∼pG [log(1−D(f1)]

− 1

2
EI∼pdata [log(D(I, s)]

− 1

2
Ef1∼pG [log(1−D(f1, s)].

(16)

Where I is from the true image distribution pdata.
The first two items are unconditional loss, the latter
two are conditional loss.
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Model
En⇒De En⇒Fr

Test2016 Test2017 Test2016 Test2017
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Multimodal Neural Machine Translation Systems
IMGD (Calixto and Liu, 2017) 37.3 55.1 N/A N/A N/A N/A N/A N/A
NMTSRC+IMG (Calixto et al., 2017) 36.5 55.0 N/A N/A N/A N/A N/A N/A
fusion-conv (Caglayan et al., 2017) 37.0 57.0 29.8 51.2 53.5 70.4 51.6 68.6
trg-mul (Caglayan et al., 2017) 37.8 57.7 30.7 52.2 54.7 71.3 52.7 69.5
VAG-NMT (Zhou et al., 2018) N/A N/A 31.6 52.2 N/A N/A 53.8 70.3
Transformer+Att (Ive et al., 2019) 38.0 55.6 N/A N/A 59.8 74.4 N/A N/A
Multimodal (Yao and Wan, 2020) 38.7 55.7 N/A N/A N/A N/A N/A N/A
ImagiT + ground truth 38.6 55.7 32.4 52.5 59.9 74.3 52.8 68.6

Text-only Neural Machine Translation Systems
Transformer (Vaswani et al., 2017) 37.6 55.3 31.7 52.1 59.0 73.6 51.9 68.3
Multitask (Elliott and Kádár, 2017) 36.8 55.8 N/A N/A N/A N/A N/A N/A
VMMTF (Calixto et al., 2019) 37.6 56.0 N/A N/A N/A N/A N/A N/A
Lookup table (Zhang et al., 2020) 36.9 N/A 28.6 N/A 57.5 N/A 48.5 N/A
ImagiT 38.5 55.7 32.1 52.4 59.7 74.0 52.4 68.3

Table 1: Main result from the Test2016, Test2017 for the En⇒De and En⇒Fr MNMT task. The first category
(Multimodal Neural Machine Translation Systems) collects the existing MNMT systems, which take both source
sentences and paired images as input. The second category illustrates the systems that do not require images as
input. Since our method falls into the second group, the baselines are the text-only Transformer (Vaswani et al.,
2017) and the aforementioned works (Zhang et al., 2020; Elliott and Kádár, 2017).

4 Experiments

4.1 Datasets
We evaluate our proposed ImagiT model on two
datasets, Multi30K (Elliott et al., 2016) and Am-
biguous COCO (Elliott et al., 2017). To show its
ability to train with external out-of-domain datasets,
we adopt MS COCO (Lin et al., 2014) in the next
analyzing section.

Multi30K is the largest existing human-labeled
collection for MNMT, containing 31K images and
consisting of two multilingual expansions of the
original Flickr30K(Young et al., 2014) dataset. The
first expansion has five English descriptions and
five German descriptions, and they are independent
of each other. The second expansion has one of
its English description manually translated to Ger-
man by a professional translator, then expanded to
French and Czech in the following shared task (El-
liott et al., 2017; Barrault et al., 2018). We only
apply the second expansion in our experiments,
which has 29, 000 instances for training, 1, 014 for
development, and 1, 000 for evaluation. We present
our results on English-German (En-De) English-
French (En-Fr) Test2016 and Test2017.

Ambiguous COCO is a small evaluation dataset
collected in the WMT2017 multimodal machine
translation challenge (Elliott et al., 2017), which
collected and translated a set of image descriptions
that potentially contain ambiguous verbs. It con-
tains 461 images from the MS COCO(Lin et al.,

2014) for 56 ambiguous vers in total.
MS COCO is the widely used non-parallel text-

image paired dataset in T2I and I2T generation. It
contains 82, 783 training images and 40, 504 vali-
dation images with 91 different object types, and
each image has 5 English descriptions.

4.2 Settings

Our baseline is the conventional text-only Trans-
former (Vaswani et al., 2017). Specifically, each
encoder-decoder has a 6-layer stacked Transformer
network, eight heads, 512 hidden units, and the in-
ner feed-forward layer filter size is set to 2048. The
dropout is set to p = 0.1, and we use Adam opti-
mizer (Kingma and Ba, 2015) to tune the parameter.
The learning rate increases linearly for the warmup
strategy with 8, 000 steps and decreases with the
step number’s inverse square root. We train the
model up to 10, 000 steps, the early-stop strategy
is adopted. We use the same setting as Vaswani
et al. (2017). We use the metrics BLEU (Papineni
et al., 2002) and METEOR (Denkowski and Lavie,
2014)to evaluate the translation quality.

For the imagination network, the noise vector’s
dimension is 100, and the generated visual feature
is 128× 128. The upsampling and residual block
in visual feature transformers consist of 3×3 stride
1 convolution, batch normalization, and ReLU acti-
vation. The training is early-stopped if the dev set
BLEU score do not improve for 10 epochs, since
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Model
En⇒De En⇒Fr

Ambiguous COCO Ambiguous COCO
BLEU METEOR BLEU METEOR

Multimodal Neural Machine Translation Systems
fusion-conv (Caglayan et al., 2017) 25.1 46.0 43.2 63.1
trg-mul (Caglayan et al., 2017) 26.4 47.4 43.5 63.2
VAG-NMT (Zhou et al., 2018) 28.3 48.0 45.0 64.7
ImagiT + ground truth 28.8 48.9 45.3 65.1

Text-only Neural Machine Translation Systems
Transformer baseline (Vaswani et al., 2017) 27.9 47.8 44.9 64.2
ImagiT 28.7 48.8 45.3 65.0

Table 2: Experimental results on the Ambiguous COCO En⇒De and En⇒Fr translation task.

the translation is the core task. The batch size is
64, and the learning rate is initialized to be 2e−4

and decayed to half of its previous value every 100
epochs. A similar learning schedule is adopted in
Zhang et al. (2017). The margin size γ is set to 0.1,
the balance weight λ1 = 20, λ2 = 40.

4.3 Results

Table 1 illustrates the results for the En-De
Test2016, En-De Test2017, En-Fr Test2016 and En-
Fr Test2017 tasks. Our text-only Transformer base-
line (Vaswani et al., 2017) has similar results com-
pared to most prior MNMT works, which is con-
sistent with the previous findings (Caglayan et al.,
2019), that is, textual modality is good enough to
translate for Multi30K dataset. This finding helps
to explain that it is already tricky for a MNMT
model to ground visual modality even with the pres-
ence of annotated images. However, Our ImagiT
gains improvements over the text-only Transformer
baseline on four evaluation datasets, demonstrating
that our model can effectively embed the visual
semantics during the training time and guide the
translation through imagination with the absence
of annotated images during the inference time. We
assume much of the performance improvement is
due to ImagiT’s strong ability to capture the inter-
action between text and image, generate semantic-
consistent visual representations, and incorporate
information from visual modality properly.

We also observe that our approach surpasses the
results of most MNMT systems by a noticeable
margin in terms of BLEU score and METEOR
score on four evaluation datasets. Our ImagiT is
also competitive with ImagiT + ground truth, which
is our translation decoder taking ground truth visual
representations instead of imagined ones, and can
be regarded as the upper boundary of imagiT. This
proves imaginative ability of ImagiT.

Table 2 shows results for the En-De En-Fr Am-

biguous COCO. For Ambiguous COCO, which
was purposely curated such that verbs have am-
biguous meaning, demands more visual contribu-
tion for guiding the translation and selecting correct
words. Our ImagiT benefits from visual imagina-
tion and substantially outperforms previous works
on ambiguous COCO. and even gets the same per-
formance as ImagiT + ground truth (45.3 BLEU).

4.4 Ablation studies

The hyper-parameter λ1 in equation 15 is impor-
tant. When λ1 = 0, there is no image captioning
component, the BLEU score drops from 38.5 to
37.9, while this variant still outperforms the Trans-
former baseline. This indicates the effectiveness of
image captioning module, since it will potentially
prevent visual-textual mismatching, thus helps gen-
erator achieve better performance. When λ1 in-
creases from 5 to 20, the BLEU and METEOR
increase accordingly. Whereas λ1 is set to equal to
λ2, the BLEU score falls to 38.3. That’s reasonable
because λ2Ltrans is the main task of the whole
model.

Evaluation metric BLEU METEOR
ImagiT, λ1 = 0 37.9 55.3
ImagiT, λ1 = 5 38.2 55.5
ImagiT, λ1 = 10 38.4 55.7
ImagiT, λ1 = 20 38.5 55.7
ImagiT, λ1 = 40 38.3 55.6

Table 3: Ablation studies of ImagiT with different
weight settings

5 Analysis

5.1 Can ImagiT generate visual grounded
representations?

Since the proposed model does not require images
as input, one may ask how it uses visual informa-
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tion and where the information comes? We claim
that ImagiT has already been embedded with visual
semantics during the training phase, and in this sec-
tion, we validate that ImagiT is able to generate
visual grounded representation by performing the
image retrieval task.

For each source sentence, we generate the in-
termediate visual representation. Furthermore, we
query the ground truth image features for each gen-
erated representation to find the closest image vec-
tors around it based on the cosine similarity. Then
we can measure the R@K score, which computes
the recall rate of the matched image in the top K
nearest neighborhoods.

R@1 R@5 R@10

ImagiT on Multi30K 64.7 88.7 94.2
ImagiT on MS COCO 64.3 89.5 94.7

Table 4: Image retrieval task. We evaluate on Multi30K
and MS COCO.

Some previous studies on VSE perform sentence-
to-image retrieval and image-to-sentence retrieval,
but their results can not be directly compared with
ours, since we are performing image-to-image re-
trieval in practical. However, from Table 4, espe-
cially for R@10, the results demonstrate that our
generated representation has excellent quality of
shared semantics and have been grounded with vi-
sual semantic-consistency.

5.2 How does the imagination help the
translation?

Although we have validated the effectiveness of
ImagiT on three widely used MNMT evaluation
datasets. A natural question to ask is that how
does the imagination guide the translation, and to
which extent? When human beings confronting
with complicate sentences and obscure words, we
often resort to mind-picturing and mental visualiza-
tion to assist us to auto-complete and fill the whole
imagination. Thus we hypothesis that imagination
could help recover and retrieve the missing and
implicate textual information.

Inspired by Ive et al. (2019); Caglayan et al.
(2019), we apply degradation strategy to the in-
put source language, and feed to the trained Trans-
former baseline, MNMT baseline, and ImagiT re-
spectively, to validate if our proposed approach
could recover the missing information and obtain
better performance. And we conduct the analysing

experiments on En-De Test2016 evaluation set.

Color deprivation is to mask the source tokens
that refers to colors, and replace them with a spe-
cial token [M]. Under this circumstance, text-only
NMT model have to rely on source-side contex-
tual information and biases, while for MNMT
model, it can directly utilize the paired color-
related information-rich images. But for ImagiT,
the model will turn to imagination and visualiza-
tion.

Model S S

text-only Transformer 37.6 36.3
MNMT 38.2 37.7
ImagiT 38.4 37.9

Table 5: Color deprivation. s represents the original
source sentence, while s is the degraded sentence.

Table 5 demonstrates the results of color depri-
vation. We implement a simple transformer-based
MNMT baseline model using the multimodal self-
attention approach (Yao and Wan, 2020). Thus
the illustrated three models in Table 5 can be com-
pared directly. We can observe that the BLEU score
of text-only NMT decreases 1.3, whereas MNMT
and ImagiT system only decreases 0.5. This result
corroborates that our ImagiT has a similar abil-
ity to recover color compared to MNMT, but our
ImagiT achieves the same effect through its own
efforts, i.e., imagination. One possible explanation
is that ImagiT could learn the correlation and co-
occurrence of the color and specific entities during
the training phase, thus imagiT could infer the color
from the context and recover it by visualization.

Visually depictable entity masking. Plum-
mer et al. (2015) extend Flickr30K with cerefer-
ence chains to tag mentions of visually depictable
entities. Similar to color deprivation, we ran-
domly replace 0%, 15%, 30%, 45%, 60% visually
depictable entities with a special token [M].

Figure 4 is the result of visually depictable entity
masking. We observe a large BLEU score drop of
text-only Transformer baseline with the increasing
of masking proportion, while MNMT and ImagiT
are relatively smaller. This result demonstrates that
our ImagiT model can much more effectively infer
and imagine missing entities compared to text-only
Transformer, and have comparable capability over
the MNMT model.



5746

Figure 4: Visually depictable entity masking. From top
to bottom is MNMT, ImagiT, text-only transformer.

5.3 Will better imagination with external
data render better translation?

Our ImagiT model also accepts external parallel
text data or non-parallel image captioning data,
and we can easily modify the objective function to
train with out-of-domain non-triple data. To train
with text-image paired image captioning data, we
can pre-train our imagination model by ignoring
Ltrans term (Yang et al., 2020). In other words, the
T2I synthesis module can be solely trained with
MS COCO dataset. We randomly split MS COCO
in half, and use COCOhalf and COCOfull to pre-
train ImagiT. The MS COCO is processed using
the same pipeline as in Zhang et al. (2017). Fur-
thermore, the training setting of COCOhalf and
COCOfull are the same with batch size 64 and
maximum epoch 600. The results are:

BLEU METEOR
ImagiT 38.4 55.7
ImagiT + COCOhalf 38.6 56.3
ImagiT + COCOfull 38.7 56.7

Table 6: Translation results when using out-of-domain
non-parallel image captioning data.

As is shown in Table 6, our ImagiT model pre-
trained with half MS COCO gain 0.6 METEOR
increase, and the improvement becomes more ap-
parent when training with the whole MS COCO.
We can contemplate that large-scale external data
may further improve the performance of ImagiT,
and we have not utilized parallel text data (e.g.,
WMT), even image-only and monolingual text data
can also be adopted to enhance the model capabil-
ity, and we leave this for future work.

6 Conclusion

This work presents generative imagination-based
machine translation model (ImagiT), which can

effectively capture the source semantics and gener-
ate semantic-consistent visual representations for
imagination-guided translation. Without annotated
images as input, out model gains significant im-
provements over text-only NMT baselines and is
comparable with the SOTA MNMT model. We
analyze how imagination elevates machine transla-
tion and show improvement using external image
captioning data. Further work may center around
introducing more parallel and non-parallel, text,
and image data for different training schemes.

7 Broader Impact

This work brings together text-to-image synthesis,
image captioning, and neural machine translation
(NMT) for an adversarial learning setup, advanc-
ing the traditional NMT to utilize visual informa-
tion. For multimodal neural machine translation
(MNMT), which possesses annotated images and
can gain better performance, manual image annota-
tion is costly, so MNMT is only applied on a small
and specific dataset. This work tries to extend the
applicability of MNMT techniques and visual in-
formation in NMT by imagining a semantic equiv-
alent picture and making it appropriately utilized
by visual-guided decoder. Compared to the pre-
vious multimodal machine translation approaches,
this technique takes only sentences in the source
languages as the usual machine translation task,
making it an appealing method in low-resource sce-
narios. However, the goal is still far from being
achieved, and more efforts from the community
are needed for us to get there. One pitfall of our
proposed model is that trained ImagiT is not ap-
plicable to larger-scale text-only NMT tasks, such
as WMT’14, which is mainly related to economies
and politics, since those texts are not easy to be
visualized, containing fewer objects and visually
depictable entities. We advise practitioners who
apply visual information in large-scale text-to-text
translation to be aware of this issue. In addition,
the effectiveness of MNMT model largely depends
on the quantity and quality of annotated images,
likewise, our model performance also depends on
the quality of generated visual representations. We
will need to carefully study how the model balance
the contribution of different modality and response
to ambiguity and bias to avoid undesired behaviors
of the learned models.
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