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Abstract
Grammatical Error Correction (GEC) aims to
correct writing errors and help language learn-
ers improve their writing skills. However,
existing GEC models tend to produce spuri-
ous corrections or fail to detect lots of er-
rors. The quality estimation model is neces-
sary to ensure learners get accurate GEC re-
sults and avoid misleading from poorly cor-
rected sentences. Well-trained GEC models
can generate several high-quality hypotheses
through decoding, such as beam search, which
provide valuable GEC evidence and can be
used to evaluate GEC quality. However, ex-
isting models neglect the possible GEC ev-
idence from different hypotheses. This pa-
per presents the Neural Verification Network
(VERNet) for GEC quality estimation with
multiple hypotheses. VERNet establishes in-
teractions among hypotheses with a reason-
ing graph and conducts two kinds of atten-
tion mechanisms to propagate GEC evidence
to verify the quality of generated hypotheses.
Our experiments on four GEC datasets show
that VERNet achieves state-of-the-art gram-
matical error detection performance, achieves
the best quality estimation results, and signifi-
cantly improves GEC performance by rerank-
ing hypotheses. All data and source codes
are available at https://github.com/
thunlp/VERNet.

1 Introduction

Grammatical Error Correction (GEC) systems pri-
marily aim to serve second-language learners for
proofreading. These systems are expected to detect
grammatical errors, provide precise corrections,
and guide learners to improve their language abil-
ity. With the rapid increase of second-language
learners, GEC has drawn growing attention from
numerous researchers of the NLP community.
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Figure 1: The Grammaticality of Generated Hypothe-
ses. The hypotheses are generated by Kiyono et al.
(2019) with beam search decoding. The hypothesis is
compared to the source sentence with a BERT based
language model and classified into Win (the hypothe-
sis is better), Tie (the hypothesis and source are same)
and Loss (the source is better). The ratios of different
classes are plotted with different beam search ranks.

Existing GEC systems usually inherit the
seq2seq architecture (Sutskever et al., 2014) to
correct grammatical errors or improve sentence
fluency. These systems employ beam search decod-
ing to generate correction hypotheses and rerank
hypotheses with quality estimation models fromK-
best decoding (Kiyono et al., 2019; Kaneko et al.,
2020) or model ensemble (Chollampatt and Ng,
2018a) to produce more appropriate and accurate
grammatical error corrections. Such models thrive
from edit distance and language models (Chollam-
patt and Ng, 2018a; Chollampatt et al., 2019; Yan-
nakoudakis et al., 2017; Kaneko et al., 2019, 2020).
Chollampatt and Ng (2018b) further consider the
GEC accuracy in quality estimation by directly pre-
dicting the official evaluation metric, F0.5 score.

The K-best hypotheses from beam search usu-
ally derive from model uncertainty (Ott et al., 2018).
These uncertainties of multi-hypotheses come from
model confidence and potential ambiguity of lin-

https://github.com/thunlp/VERNet
https://github.com/thunlp/VERNet
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(a) CoNLL2014 (ann. 1). (b) CoNLL2014 (ann. 2).

Figure 2: The GEC Performance of Generated Hy-
potheses. The hypotheses generated by Kiyono et al.
(2019) are evaluated on the CoNLL2014 dataset. The
average scores of Precision and Recall are calculated
according to the two annotations of CoNLL2014.

guistic variation (Fomicheva et al., 2020), which
can be used to improve machine translation per-
formance (Wang et al., 2019b). Fomicheva et al.
(2020) further leverage multi-hypotheses to make
convinced machine translation evaluation, which
is more correlated with human judgments. Their
work further demonstrates that multi-hypotheses
from well-trained neural models have the ability to
provide more hints to estimate generation quality.

For GEC, the hypotheses from the beam search
decoding of well-trained GEC models can provide
some valuable GEC evidence. We illustrate the
reasons as follows.

• Beam search can provide better GEC results.
The GEC performance of the top-ranked hy-
pothesis and the best one has a large gap in
beam search. For two existing GEC systems,
Zhao et al. (2019) and Kiyono et al. (2019),
the F0.5 scores of these systems are 58.99 and
62.03 on the CoNLL2014 dataset. However,
the F0.5 scores of the best GEC results of these
systems can achieve 73.56 and 76.82.

• Beam search candidates are more grammati-
cal. As shown in Figure 1, the hypotheses
from well-trained GEC models with beam
search usually win the favor of language mod-
els, even for these hypotheses ranked to the
rear. It illustrates these hypotheses are usually
more grammatical than source sentences.

• Beam search candidates can provide valuable
GEC evidence. As shown in Figure 2, the hy-
potheses of different beam ranks have almost
the same Recall score, which demonstrates all
hypotheses in beam search can provide some
valuable GEC evidence.

Existing quality estimation models (Chollampatt
and Ng, 2018b) for GEC regard hypotheses inde-
pendently and neglect the potential GEC evidence
from different hypotheses. To fully use the valuable
GEC evidence from GEC hypotheses, we propose
the Neural Verification Network (VERNet) to es-
timate the GEC quality with modeled interactions
from multi-hypotheses. Given a source sentence
and K hypothesis sentences from the beam search
decoding of the basic GEC model, VERNet estab-
lishes hypothesis interactions by regarding 〈source,
hypothesis〉 pairs as nodes, and constructing a fully-
connected reasoning graph to propagate GEC ev-
idence among multi-hypotheses. Then VERNet
proposes two kinds of attention mechanisms on
the reasoning graph, node interaction attention and
node selection attention, to summarize and aggre-
gate necessary GEC evidence from other hypothe-
ses to estimate the quality of tokens.

Our experiments show that VERNet can pick up
necessary GEC evidence from multi-hypotheses
provided by GEC models and help verify the qual-
ity of GEC hypotheses. VERNet helps GEC mod-
els to generate more accurate GEC results and ben-
efits most grammatical error types.

2 Related Work

The GEC task is designed for automatically proof-
reading. Large-scale annotated corpora (Mizumoto
et al., 2011; Dahlmeier et al., 2013; Bryant et al.,
2019) bring an opportunity for building fully data-
driven GEC systems.

Existing neural models regard GEC as a natural
language generation (NLG) task and usually use
sequence-to-sequence architecture (Sutskever et al.,
2014) to generate correction hypotheses with beam
search decoding (Yuan and Briscoe, 2016; Chol-
lampatt and Ng, 2018a). Transformer-based archi-
tectures (Vaswani et al., 2017) show their effective-
ness in NLG tasks and are also employed to achieve
convinced correction results (Grundkiewicz et al.,
2019; Kiyono et al., 2019). The copying mech-
anism is also introduced for GEC models (Zhao
et al., 2019) to better align tokens from source sen-
tence to hypothesis sentence. To further accelerate
the generation process, some work also comes up
with non-autoregressive GEC models and leverages
a single encoder to parallelly detect and correct
grammatical errors (Awasthi et al., 2019; Malmi
et al., 2019; Omelianchuk et al., 2020).

Recent research focuses on two directions to im-
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prove GEC systems. The first one treats GEC as
a low-resource language generation problem and
focuses on data augmentation for a grammar sensi-
tive and language proficient GEC system (Junczys-
Dowmunt et al., 2018; Kiyono et al., 2019). Vari-
ous weak-supervision corpora have been leveraged,
such as Wikipedia edit history (Lichtarge et al.,
2019), Github edit history (Hagiwara and Mita,
2020) and confusing word set (Grundkiewicz et al.,
2019). Besides, lots of work generates grammati-
cal errors through generation models or round-trip
translation (Ge et al., 2018; Wang et al., 2019a; Xie
et al., 2018). Kiyono et al. (2019) further consider
different data augmentation strategies to conduct
better GEC pretraining.

Reranking GEC hypotheses from K-best decod-
ing or GEC model ensemble (Hoang et al., 2016;
Chollampatt and Ng, 2018b) with quality estima-
tion models provides another promising direction
to achieve better GEC performance. Some methods
evaluate if hypotheses satisfy linguistic and gram-
matical rules. For this purpose, they employ lan-
guage models (Chollampatt and Ng, 2018a; Chol-
lampatt et al., 2019) or grammatical error detec-
tion (GED) models to estimate hypothesis quality.
GED models (Rei, 2017; Rei and Søgaard, 2019)
estimate the hypothesis quality on both sentence
level (Kaneko et al., 2019) and token level (Yan-
nakoudakis et al., 2017). Chollampatt and Ng
(2018b) further estimate GEC quality by consid-
ering correction accuracy. They establish source-
hypothesis interactions with the encoder-decoder
architecture and learn to directly predict the official
evaluation score F0.5.

The pre-trained language model BERT (Devlin
et al., 2019) has proven its effectiveness in pro-
ducing contextual token representations, achiev-
ing better quality estimation (Kaneko et al., 2019;
Chollampatt et al., 2019) and improving GEC per-
formance by fuse BERT representations (Kaneko
et al., 2020). However, existing quality esti-
mation models regard each hypothesis indepen-
dently and neglect the interactions among multi-
hypotheses, which can also benefit the quality esti-
mation (Fomicheva et al., 2020).

3 Neural Verification Network

This section describes Neural Verification Network
(VERNet) to estimate the GEC quality with multi-
hypotheses, as shown in Figure 3.

Given a source sentence s and K correspond-
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Figure 3: The Architecture of Neural Verification Net-
work (VERNet). The estimated token (ckp) and poten-
tially supporting evidence towards ckp are annotated.

ing hypotheses C = {c1, . . . , ck, . . . , cK} gener-
ated by a GEC model, we first regard each source-
hypothesis pair〈s, ck〉 as a node and fully connect
all nodes to establish multi-hypothesis interactions.
Then VERNet leverages BERT to get the repre-
sentation of each token in 〈s, ck〉 pairs (Sec. 3.1)
and conducts two kinds of attention mechanisms to
propagate and aggregate GEC evidence from other
hypotheses to verify the token quality (Sec. 3.2).
Finally, VERNet estimates hypothesis quality by
aggregating token level quality estimation scores
(Sec. 3.3). Our VERNet is trained end-to-end with
supervisions from golden labels (Sec. 3.4).

3.1 Initial Representations for Sentence Pairs

Pre-trained language models, e.g. BERT (Devlin
et al., 2019), show their advantages of producing
contextual token representations for various NLP
tasks. Hence, given a source sentence s with m
tokens and the k-th hypothesis ck with n tokens,
we use BERT to encode the source-hypothesis pair
〈s, ck〉and get its representation Hk:

Hk = BERT([CLS] s [SEP] ck [SEP]). (1)

The pair representation Hk consists
of token-level representations, that is,



5444

Hk = {Hk
0 , . . . ,H

k
m+n+2}. Hk

0 denotes the
representation of “[CLS]” token.

3.2 Verify Token Quality with
Multi-hypotheses

VERNet conducts two kinds of attention mecha-
nisms, node interaction attention and node selec-
tion attention, to verify the token quality with the
verification representation V k of k-th node, which
learns the supporting evidence towards estimating
token quality from multi-hypotheses.

The node interaction attention first summarizes
useful GEC evidence from the l-th node for the fine-
grained representation V l→k (Sec. 3.2.1). Then
node selection attention further aggregates fine-
grained representation V l→k with score γl accord-
ing to each node’s confidence (Sec. 3.2.2). Finally,
we can calculate the verification representation V k

to verify the token’s quality of each node.

3.2.1 Fine-grained Node Representation with
Node Interaction Attention

The node interaction attention αl→k attentively
reads tokens in the l-th node and picks up sup-
porting evidence towards the k-th node to build
fine-grained node representations V l→k.

For the p-th token in the k-th node, wk
p , we

first calculate the node interaction attention weight
αl→k
q according to the relevance between wk

p and
the q-th token in the l-th node, wl

q:

αl→k
q = softmaxq((H

k
p )

T ·W ·Hl
q), (2)

where W is a parameter. Hk
p and H l

q are the repre-
sentations of wk

p and wl
q. Then all token represen-

tations of l-th node are aggregated:

V l→k
p =

m+n+2∑
q=1

(αl→k
q ·Hl

q). (3)

Based on V l→k
p , we further build the l-th node

fine-grained representation towards the k-th node,
V l→k = {V l→k

1 , . . . , V l→k
p , . . . , V l→k

m+n+2}.

3.2.2 Evidence Aggregation with Node
Selection Attention

The node selection attention measures node impor-
tance and is used to aggregate supporting evidence
from the fine-grained node representation V l→k of
the l-th node. We leverage attention-over-attention
mechanism (Cui et al., 2017) to conduct source hls

and hypotheses hlh representations to calculate the
l-th node selection attention score γl. Then we get

the node verification representation V k
p with the

node selection attention γl.
To calculate the node selection attention γl, we

establish an interaction matrix M l between the
source and hypothesis sentences of the l-th node.
Each element M l

ij in M l is calculated with the
relevance between i-th source token and j-th hy-
pothesis token (include “[SEP]” tokens):

M l
ij = (Hl

i)
T ·W ·Hl

m+1+j , (4)

where W is a parameter. Then we calculate atten-
tion scores βlsi and βlhj along the source dimension
and hypothesis dimension, respectively:

βls
i =

1

n+ 1

n+1∑
j=1

softmaxi(M
l
ij), (5)

βlh
j =

1

m+ 1

m+1∑
i=1

softmaxj(M
l
ij). (6)

Then the representations of source sentence and
hypothesis sentence are calculated:

hls =

m+1∑
i=1

βls
i ·Hl

i , hlh =

n+1∑
j=1

βlh
j ·Hl

m+1+j . (7)

Finally, the node selection attention γl of l-th
node is calculated for the evidence aggregation:

γl = softmaxl(Linear((hls ◦ hlh);hls;hlh)), (8)

where ◦ is the element-wise multiplication operator
and ; is the concatenate operator.

The node selection attention γl aggregates evi-
dence for the verification representation V k

p of wk
p :

V k
p =

K∑
l=1

(γl · V l→k
p ), (9)

where V k = {V k
1 , . . . , V

k
p , . . . , V

k
m+n+2} is the

k-th node verification representation.

3.3 Hypothesis Quality Estimation
For the p-th token wk

p in the k-th node, the proba-
bility P (y|wk

p) of quality label y is calculated with
the verification representation V k

p :

P (y|wk
p) = softmaxy(Linear((Hk

p ◦ V k
p );Hk

p ;V
k
p )), (10)

where ◦ is the element-wise multiplication and ; is
the concatenate operator. We average all probabil-
ity P (y = 1|wk

p) of token level quality estimation
as hypothesis quality estimation score f(s, ck) for
the pair 〈s, ck〉:

f(s, ck) =
1

n+ 1

m+n+2∑
p=m+2

P (y = 1|wk
p). (11)
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3.4 End-to-end Training
We conduct joint training with token-level super-
vision. The source labels and hypothesis labels
are used, which denote the grammatical quality of
source sentences and GEC accuracy of hypotheses.

The cross entropy loss for the p-th token wk
p in

the k-th node is calculated:

L(wk
p) = CrossEntropy(y∗, P (y|wk

p)), (12)

using the ground truth token labels y∗.
Then the training loss of VERNet is calculated:

L =
1

K

1

m+ n+ 2

K∑
k=1

m+n+2∑
p=1

L(wk
p). (13)

4 Experimental Methodology

This section describes the datasets, evaluation met-
rics, baselines, and implementation details.

Datasets. We use FCE (Yannakoudakis et al.,
2011), BEA19 (Bryant et al., 2019) and NU-
CLE (Dahlmeier et al., 2013) to construct training
and development sets. Four testing scenarios, FCE,
BEA19 (Restrict), CoNLL-2014 (Ng et al., 2014)
and JFLEG (Napoles et al., 2017), are leveraged to
evaluate model performance. Detailed data statis-
tics are presented in Table 1. We do not incorporate
additional training corpora for fair comparison.

Basic GEC Model. To generate correction hy-
potheses, we take one of the state-of-the-art autore-
gressive GEC systems (Kiyono et al., 2019) as our
basic GEC model and keep the same setting. The
beam size of our baseline model is set to 5 (Kiyono
et al., 2019), and all these beam search hypotheses
are reserved in our experiments.

We generate quality estimation labels for tokens
in both source sentences and hypothesis sentences
with ERRANT (Bryant et al., 2017; Felice et al.,
2016), which indicate grammatical correctness and
GEC accuracy, respectively. As shown in Table 2,
ERRANT annotates edit operations (delete, insert,
and replace) towards the ground truth corrections.
In terms of such annotations, each token is labeled
with correct (1) or incorrect (0).

Evaluation Metrics. We introduce the evalua-
tion metrics in three tasks: token quality estimation,
sentence quality estimation, and GEC.

To evaluate the model performance of token-
level quality estimation, we employ the same eval-
uation metrics from previous GED models (Rei,
2017; Rei and Søgaard, 2019; Yannakoudakis et al.,
2017), including Precision, Recall, and F0.5. F0.5

is our primary evaluation metric.

Dataset Training Development Test
FCE 28,350 2,191 2,695
BEA19 34,308 4,384 4,477
NUCLE 57,151 - -
CoNLL-2014 - - 1,312
JFLEG - - 747
Total 119,809 6,575 9,231

Table 1: Data Statistics.

Sentence The 1 a 2 Mobile phone is a marvelous
invention to 9 charge 10 the world 12 [SEP]

Correction

Operation Span Edit
Delete 1,2 -

Replace 9,10 change
Insert 12,12 .

Table 2: An Example of Token Label Annotation. All
sentences are annotated with ERRANT according to
the golden correction. The words in red color are la-
beled as incorrect (0) and others are labeled as correct
(1). The “[SEP]” token denotes the end of the sentence.

For the evaluation of sentence-level quality es-
timation, we employ the same evaluation metrics
from the previous quality estimation model (Chol-
lampatt and Ng, 2018b), including two evaluation
scenarios: (1) GEC evaluation metrics for the hy-
pothesis that reranked top-1 and (2) Pearson Corre-
lation Coefficient (PCC) between reranking scores
and golden scores (F0.5) for all hypotheses.

To evaluate GEC performance, we adopt
GLEU (Napoles et al., 2015) to evaluate model
performance on the JFLEG dataset. The official
tool ERRANT of the BEA19 shared task (Bryant
et al., 2019) is used to calculate Precision, Recall,
and F0.5 scores for other datasets. For the CoNLL-
2014 dataset, the M2 evaluation (Dahlmeier and
Ng, 2012) is also adopted as our main evaluation.

Baselines. BERT-fuse (GED) (Kaneko et al.,
2020) is compared in our experiments, which trains
BERT with the GED task and fuses BERT represen-
tations into the Transformer. For quality estimation,
we consider two groups of baseline models in our
experiments, and more details of these models can
be found in Appendices A.1.

(1) BERT based language models. We em-
ploy three BERT based language models to esti-
mate the quality of hypotheses. BERT-LM (Chol-
lampatt et al., 2019) measures hypothesis quality
with the perplexity of the language model. BERT-
GQE (Kaneko et al., 2019) is trained with anno-
tated GEC data and estimates if the hypothesis has
grammatical errors. We also conduct BERT-GED
(SRC) that predicts token level grammar indicator
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labels, which is inspired by GED models (Yan-
nakoudakis et al., 2017). BERT shows significant
improvement compared to LSTM based models for
the GED task (Appendices A.2). Hence the LSTM
based models are neglected in our experiments.

(2) GEC accuracy estimation models. These
models further consider the source-hypothesis inter-
actions to evaluate GEC accuracy. We take a strong
baseline NQE (Chollampatt and Ng, 2018b) in ex-
periments. NQE employs the encoder-decoder (pre-
dictor) architecture to encode source-hypothesis
pairs and predicts F0.5 score with the estimator ar-
chitecture. All their proposed architectures, NQE
(CC), NQE (RC), NQE (CR), and NQE (RR) are
compared. For NQE (XY), X indicates the pre-
dictor architecture, and Y indicates the estimator
architecture. X and Y can be recurrent (R) or con-
volutional (C) neural networks. In addition, we also
employ BERT to encode source-hypothesis pairs
and then predict the F0.5 score to implement the
BERT-QE model. We also come up with two base-
lines, BERT-GED (HYP) and BERT-GED (JOINT).
They leverage BERT to encode source-hypothesis
pairs and are supervised with the token-level qual-
ity estimation label. BERT-GED (HYP) is trained
with the supervision of hypotheses, and BERT-
GED (JOINT) is supervised with labels from both
source and hypothesis sentences.

Implementation Details. In all experiments,
we use the base version of BERT (Devlin et al.,
2019) and ELECTRA (Clark et al., 2020). BERT
is a widely used pretrained language model and
trained with the mask language model task. ELEC-
TRA is trained with the replaced token detection
task and aims to predict if the token is original or
replaced by a BERT based generator during pre-
training. ELECTRA is a discriminator based pre-
trained language model and is more like the GED
task. We regard BERT as our main model for text
encoding and leverage ELECTRA to evaluate the
generalization ability of our model.

Both BERT and ELECTRA inherit hugging-
face’s PyTorch implementation (Wolf et al., 2020).
Adam (Kingma and Ba, 2015) is utilized for param-
eter optimization. We set the max sentence length
to 120 for source and hypothesis sentences, learn-
ing rate to 5e-5, batch size to 8, and accumulate
step to 4 during training.

For hypothesis reranking, we leverage the
learning-to-rank method, Coordinate Ascent
(CA) (Metzler and Croft, 2007), to aggregate the

ranking features and basic GEC score to conduct
the ranking score. We assign the hypotheses with
the highest F0.5 score as positive instances and the
others as negative ones. The Coordinate Ascent
method is implemented by RankLib1.

5 Evaluation Results

We conduct experiments to study the performance
of VERNet from three aspects: token-level qual-
ity estimation, sentence-level quality estimation,
and the VERNet’s effectiveness in GEC models.
Then we present the case study to qualitatively an-
alyze the effectiveness of the proposed two types
of attention in VERNet.

5.1 Performance of Token Level Quality
Estimation

We first evaluate VERNet’s effectiveness on token-
level quality estimation. BERT-GED (SRC) is the
previous state-of-the-art GED model (Kaneko and
Komachi, 2019). Additional two variants, HYP and
JOINT, of BERT-GED are conducted as baselines
by considering the first-ranked GEC hypothesis in
beam search decoding.

As shown in Table 3, there are two scenarios,
source and hypothesis, are conducted to evaluate
model performance. The source scenario evaluates
the ability of grammaticality quality estimation,
which is the same as GED models (Rei and Sø-
gaard, 2019). The hypothesis scenario tests the
quality estimation ability on GEC accuracy.

For the source scenario, BERT-GED (JOINT)
outperforms BERT-GED (SRC) and illustrates that
the GEC result can help estimate the grammatical-
ity quality of source sentences. For the hypothesis
scenario, BERT-GED (JOINT) shows better perfor-
mance than BERT-GED (HYP), which thrives from
the supervisions from source sentences. For both
scenarios, BERT-VERNet shows further improve-
ment compared with BERT-GED (JOINT). Such
improvements demonstrate that various GEC evi-
dence from multiple hypotheses benefits the token-
level quality estimation.

Moreover, the detection style pre-trained model
ELECTRA (Clark et al., 2020) is also used as our
sentence encoder. VERNet is boosted a lot on all
scenarios and datasets, which illustrates the strong
ability of ELECTRA in token-level quality estima-
tion and the generalization ability of VERNet.

1https://sourceforge.net/p/lemur/wiki/
RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib/
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Model FCE test set CoNLL-2014 ann. 1 CoNLL-2014 ann. 2
P R F0.5 P R F0.5 P R F0.5

Source

BERT-GED (SRC) 74.22 43.34 64.97 59.84 27.11 48.20 77.94 25.02 54.77
BERT-GED (JOINT) 75.62 44.44 66.32 60.79 27.33 48.83 77.42 25.23 54.77
BERT-VERNet 81.53 45.71 70.48 62.64 30.62 51.80 82.25 28.49 59.71
ELECTRA-VERNet 80.94 50.51 72.24 62.50 35.61 54.30 81.69 32.97 63.06

Hypothesis

BERT-GED (HYP) 80.27 40.58 67.14 74.28 34.20 60.17 66.49 27.68 51.93
BERT-GED (JOINT) 76.71 46.94 68.07 71.15 38.30 60.73 64.79 31.52 53.50
BERT-VERNet 81.85 44.27 69.97 76.03 34.02 60.97 71.79 29.04 55.46
ELECTRA-VERNet 80.62 49.16 71.48 74.80 39.26 63.33 72.55 34.42 59.39

Table 3: Performance of Token Level Quality Estimation. Both source and hypothesis scenarios are conducted
to evaluate grammatical quality estimation ability on source sentences and GEC quality estimation ability on hy-
potheses, respectively. BERT-GED (SRC) only encodes source sentences while others encode〈source, hypothesis
〉pairs. BERT-GED (JOINT) is supervised with golden labels from source and hypothesis sentences.

Model
CoNLL-2014 (M2) FCE BEA19 JFLEG

P R F0.5
PCC PCC P R F0.5 PCC P R F0.5 GLEU PCC(ann.1) (ann.2)

NQE (RR) 61.38 33.03 52.39 23.43 6.62 51.43 30.36 45.16 28.74 57.22 46.33 54.65 55.90 1.29
NQE (RC) 60.09 33.11 51.67 24.12 5.52 53.97 31.35 47.17 31.20 57.87 47.24 55.37 56.91 1.66
NQE (CR) 62.52 35.24 54.14 24.80 9.12 51.77 31.46 45.85 30.69 57.92 47.43 55.47 56.92 6.48
NQE (CC) 60.62 35.77 53.23 22.94 8.39 50.21 32.09 45.11 29.23 56.83 49.47 55.19 57.22 7.68
BERT-LM 52.82 49.59 52.14 3.47 17.62 36.97 43.42 38.10 8.59 46.32 64.05 49.03 59.72 26.85
BERT-GQE 52.67 50.39 52.19 2.56 14.54 36.05 43.53 37.33 10.18 46.15 64.01 48.88 60.17 29.05
BERT-GED (SRC) 52.98 52.07 52.79 3.78 20.56 37.58 45.81 38.98 12.71 47.15 65.09 49.90 60.32 27.28
BERT-QE 62.24 38.27 55.31 22.85 12.17 52.01 36.89 48.07 33.84 58.63 54.19 57.69 59.73 26.16
BERT-GED (HYP) 68.90 34.35 57.36 30.06 16.79 57.21 36.03 51.19 43.48 68.18 53.85 64.73 60.00 29.90
BERT-GED (JOINT) 69.33 36.02 58.51 28.62 16.28 58.53 37.24 52.53 45.08 66.80 55.09 64.07 60.49 33.03
BERT-VERNet 68.75 40.26 60.22 31.02 22.75 58.32 39.99 53.42 47.19 66.86 58.60 65.02 61.36 36.98
ELECTRA-VERNet 69.97 42.12 61.80 37.18 28.77 58.77 41.86 54.37 48.12 69.09 60.91 67.28 61.61 38.63

Table 4: Performance of Sentence Level Quality Estimation. The ranked top-1 hypothesis is used to calculate
GEC metrics. NQE (Chollampatt and Ng, 2018b) uses RNN or CNN models for GEC quality estimation. BERT-
LM (Chollampatt et al., 2019) measures perplexity without fine-tuning. BERT-GQE (Kaneko et al., 2019) and
BERT-GED (SRC) are supervised with sentence-level and token-level labels from source sentences to estimate
grammatical quality, respectively. NQE and BERT-QE encode〈source, hypothesis〉pairs and directly predict F0.5

score. BERT-GED (HYP) and BERT-GED (JOINT) encode the 〈 source, hypothesis 〉pairs to estimate the quality
of generated tokens.

5.2 Performance of Sentence Level Quality
Estimation

In this part, we evaluate VERNet’s performance
on sentence-level quality estimation by reranking
hypotheses from beam search decoding.

Baselines can be divided into two groups: lan-
guage model based and GEC accuracy based qual-
ity estimation models. The former focuses on
grammaticality and fluency, including BERT-LM,
BERT-GQE and BERT-GED (SRC). The others
focus on estimating the GEC accuracy, including
NQE, BERT-QE, BERT-GED (HYP)/(JOINT).

As shown in Table 4, we find that language
model based quality estimation prefers higher re-
call but lower precision, which leads to more redun-
dant corrections. Only considering grammaticality
is insufficient since such unnecessary correction
suggestions may mislead users. By contrast, GEC
accuracy based quality estimation models get much
better Precision and F0.5, and provide more pre-
cise feedback for users. Furthermore, BERT-GED

(HYP) outperforms BERT-QE, manifesting that
token-level supervisions provide finer-granularity
signals to help the model better distinguish subtle
differences among hypotheses. VERNet outper-
forms all baselines, which supports our claim that
multi-hypotheses from beam search provide valu-
able GEC evidence and help conduct more effective
quality estimation for generated GEC hypotheses.

5.3 VERNet’s Effectiveness in GEC Models

This part explores the effectiveness of VERNet on
improving GEC models. We conduct VERNet† by
aggregating scores from the basic GEC model and
VERNet for hypothesis reranking.

As shown in Table 5, two baseline models are
compared in our experiments, Basic GEC (Kiyono
et al., 2019) and BERT-fuse (GED) (Kaneko et al.,
2020). Compared to BERT-fuse (GED), BERT-
VERNet† achieves comparable performance on
CoNLL-2014 and more improvement on BEA19. It
demonstrates that reranking hypotheses with VER-
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Model CoNLL-2014 (M2) CoNLL-2014 FCE BEA19 JFLEG
P R F0.5 P R F0.5 P R F0.5 P R F0.5 GLEU

Basic GEC 68.59 44.87 62.03 64.26 43.59 58.69 55.11 41.61 51.75 66.20 61.48 65.20 61.00
Basic GEC w. R2L∗ 72.4 46.1 65.0 - - - - - - 74.7 56.7 70.2 61.4
BERT-fuse (GED) 69.2 45.6 62.6 - - - - - - 67.1 60.1 65.6 61.3
BERT-fuse (GED) w. R2L∗ 72.6 46.4 65.2 - - - - - - 72.3 61.4 69.8 62.0
BERT-VERNet† (Top2) 69.98 43.69 62.47 65.62 41.98 58.98 58.57 41.53 54.13 68.42 60.32 66.63 61.17
BERT-VERNet† (Top3) 70.49 43.16 62.57 65.92 41.22 58.86 59.20 41.53 54.55 69.03 60.20 67.06 61.24
BERT-VERNet† (Top4) 70.79 42.72 62.56 66.65 40.94 59.21 59.55 41.55 54.80 69.43 60.17 67.36 61.16
BERT-VERNet† (Top5) 70.60 42.50 62.36 66.41 40.74 58.98 59.68 41.48 54.86 69.39 60.12 67.32 61.10
ELECTRA-VERNet† (Top2) 71.21 44.24 63.47 66.95 42.97 60.22 58.31 41.97 54.09 69.27 61.22 67.50 61.60
ELECTRA-VERNet† (Top3) 71.87 44.13 63.84 67.51 42.38 60.35 59.02 41.99 54.59 70.64 61.78 68.67 61.80
ELECTRA-VERNet† (Top4) 71.85 43.81 63.69 67.48 42.19 60.25 59.65 42.12 55.07 70.96 62.03 68.98 62.05
ELECTRA-VERNet† (Top5) 71.58 43.57 63.43 67.15 42.10 60.01 59.95 42.19 55.29 70.79 61.74 68.77 62.07

Table 5: Performance of Hypothesis Reranking. BERT/ELECTRA-VERNet† aggregates the scores of Basic
GEC Model (Kiyono et al., 2019) and VERNet for hypothesis reranking with Coordinate Ascent. BERT-fuse
(GED) (Kaneko et al., 2020) is the Transformer model that fuses BERT representations. ∗Note that R2L models
incorporate four right-to-left Transformer models that are trained with unpublished data and these models are not
supplied in their open source codes, thus these results are hard to reimplement.

Figure 4: Model Performance of Different Grammatical Error Types on BEA19. VERNet† reranks hypotheses
with the aggregated score of basic GEC model and VERNet. All types are from ERRANT (Bryant et al., 2017).

Net provides an effective way to improve basic
GEC model performance without changing the
Transformer architecture. R2L models incorporate
four right-to-left Transformer models to improve
GEC performance. However, these R2L models are
not available. ELECTRA-VERNet† incorporates
only one model and achieves comparable perfor-
mance on BEA19 and JFLEG.

Figure 4 presents VERNet†’s performance on
different grammatical error types. We plot the F0.5

scores of both basic GEC model and VERNet† on
BEA19. VERNet† achieves improvement on most
types and performs significantly better for word
morphology and word usage errors, such as Noun
Inflection (NOUN:INFL) and Pronoun (PRON).
Such results illustrate that VERNet† is able to lever-
age clues learned from multi-hypotheses to ver-
ify the GEC quality. However, we also find that
VERNet† discounts GEC performance on a few

error types, e.g., Contraction (CONTR). The anno-
tation biases may cause such a decrease in CONTR
errors. For example, for both “n’t” and “not”, they
are both right according to grammaticality, but an-
notators usually come up with different corrections
with different GEC standards.

5.4 Case Study

We select one case from CoNLL-2014 and visual-
ize node interaction and node selection attention
weights to study what VERNet learns from multi-
hypotheses of beam search, as shown in Figure 5.

Given a source sentence, “Do one who suffered
from this disease keep it a secret of infrom their
relatives ?”, and its five hypotheses from the Basic
GEC Model, we plot the node interaction attention
weights towards the word “suffers” in the hypothe-
sis of node 2, which is assigned more higher score
by BERT-VERNet. The word usage “suffers” is
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Figure 5: Visualization of Attention Weight. Each node is the concatenation of the source sentence (with [SEP])
and a corresponding hypothesis sentence (with [SEP]). The selected node by BERT-VERNet is annotated (Node2).
The node selection attention assigned to each hypothesis is annotated with dark orange. The node interaction
attention towards the edited token “suffers” in the second node is also plotted. Darker red indicates higher attention
weights.

more appropriate than “suffered” according to the
context.

The node interaction attention accurately picks
up the associated tokens “Does” from nodes 1, 3,
and 4, and “suffers” from node 5. “Does” and
“suffers” indicate the present tense and provide suf-
ficient evidence to verify the quality of “suffers”
in node 2. For node selection attention, the hy-
pothesis (node 2) shares more attention than other
nodes, which is more appropriate than other hy-
potheses. It demonstrates that the node attention is
effective to select high-quality corrections with the
source-hypothesis interactions.

The attention patterns are intuitive and effective,
which further demonstrates VERNet’s ability to
well model the interactions of multi-hypotheses for
better quality estimation.

6 Conclusion and Future Work

This paper presents VERNet for GEC quality es-
timation with multi-hypotheses. VERNet models
the interactions of multiple hypotheses by building
a reasoning graph, and then extracts clues with two
kinds of attention: node selection attention and
node interaction attention. They summarize and
aggregate GEC evidence from multi-hypotheses to
verify the quality of tokens. Experiments on four
datasets show that VERNet achieves the state-of-
the-art GED and quality estimation performance,
and improves one published state-of-the-art GEC
system. In the future, we will explore the impact
of different kinds of hypotheses used in VERNet.

Acknowledgments

We thank the reviewers and Shuo Wang for their
valuable comments and advice. This research is
mainly supported by Science & Tech Innovation
2030 Major Project “New Generation AI” (Grant
no. 2020AAA0106500) as well as supported in part
by a project from Shanghai-Tsinghua International
Innovation Center and the funds of Beijing Ad-
vanced Innovation Center for Language Resources
under Grant TYZ19005.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of EMNLP, pages 4260–4270.

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52–75.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of ACL, pages 793–805.

Shamil Chollampatt and Hwee Tou Ng. 2018a. A mul-
tilayer convolutional encoder-decoder neural net-
work for grammatical error correction. In Proceed-
ings of AAAI, pages 5755–5762.

Shamil Chollampatt and Hwee Tou Ng. 2018b. Neural
quality estimation of grammatical error correction.
In Proceedings of EMNLP, pages 2528–2539.

Shamil Chollampatt, Weiqi Wang, and Hwee Tou Ng.
2019. Cross-sentence grammatical error correction.
In Proceedings of ACL, pages 435–445.

https://www.aclweb.org/anthology/D19-1435
https://www.aclweb.org/anthology/D19-1435
https://www.aclweb.org/anthology/W19-4406
https://www.aclweb.org/anthology/W19-4406
https://www.aclweb.org/anthology/P17-1074
https://www.aclweb.org/anthology/P17-1074
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aclweb.org/anthology/D18-1274
https://www.aclweb.org/anthology/D18-1274
https://www.aclweb.org/anthology/P19-1042


5450

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In Proceedings of ICLR.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proceedings of ACL, pages 593–602.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better eval-
uation for grammatical error correction. In Proceed-
ings of NAACL-HLT, pages 568–572.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 22–31.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in ESL
sentences using linguistically enhanced alignments.
In Proceedings of COLING, pages 825–835.

Marina Fomicheva, Lucia Specia, and Francisco
Guzmán. 2020. Multi-hypothesis machine transla-
tion evaluation. In Proceedings of ACL, pages 1218–
1232.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency
boost learning and inference for neural grammati-
cal error correction. In Proceedings of ACL, pages
1055–1065.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 252–263.

Masato Hagiwara and Masato Mita. 2020. GitHub typo
corpus: A large-scale multilingual dataset of mis-
spellings and grammatical errors. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 6761–6768.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou
Ng. 2016. Exploiting n-best hypotheses to improve
an SMT approach to grammatical error correction.
In Proceedings of IJCAI, pages 2803–2809.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of NAACL-HLT, pages 595–606.

Masahiro Kaneko, Kengo Hotate, Satoru Katsumata,
and Mamoru Komachi. 2019. TMU transformer sys-
tem using BERT for re-ranking at BEA 2019 gram-
matical error correction on restricted track. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 207–212.

Masahiro Kaneko and Mamoru Komachi. 2019. Multi-
head multi-layer attention to deep language repre-
sentations for grammatical error detection. Com-
putación y Sistemas, (3).

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked lan-
guage models in grammatical error correction. In
Proceedings of ACL, pages 4248–4254.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. In Proceedings of EMNLP, pages 1236–
1242.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction. In
Proceedings of NAACL-HLT, pages 3291–3301.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of EMNLP, pages 5054–5065.

Donald Metzler and W Bruce Croft. 2007. Linear
feature-based models for information retrieval. In-
formation Retrieval.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of IJCNLP, pages 147–155.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of ACL,
pages 588–593.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of EACL, pages 229–234.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14.

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://www.aclweb.org/anthology/P17-1055
https://www.aclweb.org/anthology/P17-1055
https://www.aclweb.org/anthology/P17-1055
https://www.aclweb.org/anthology/N12-1067
https://www.aclweb.org/anthology/N12-1067
https://www.aclweb.org/anthology/W13-1703
https://www.aclweb.org/anthology/W13-1703
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/2020.acl-main.113
https://www.aclweb.org/anthology/2020.acl-main.113
https://www.aclweb.org/anthology/P18-1097
https://www.aclweb.org/anthology/P18-1097
https://www.aclweb.org/anthology/P18-1097
https://www.aclweb.org/anthology/W19-4427
https://www.aclweb.org/anthology/W19-4427
https://www.aclweb.org/anthology/W19-4427
https://www.aclweb.org/anthology/2020.lrec-1.835
https://www.aclweb.org/anthology/2020.lrec-1.835
https://www.aclweb.org/anthology/2020.lrec-1.835
http://www.ijcai.org/Abstract/16/398
http://www.ijcai.org/Abstract/16/398
https://www.aclweb.org/anthology/N18-1055
https://www.aclweb.org/anthology/N18-1055
https://www.aclweb.org/anthology/N18-1055
https://www.aclweb.org/anthology/W19-4422
https://www.aclweb.org/anthology/W19-4422
https://www.aclweb.org/anthology/W19-4422
https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3271
https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3271
https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3271
https://www.aclweb.org/anthology/2020.acl-main.391
https://www.aclweb.org/anthology/2020.acl-main.391
https://www.aclweb.org/anthology/2020.acl-main.391
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://www.aclweb.org/anthology/D19-1119
https://www.aclweb.org/anthology/D19-1119
https://www.aclweb.org/anthology/D19-1119
https://www.aclweb.org/anthology/N19-1333
https://www.aclweb.org/anthology/N19-1333
https://www.aclweb.org/anthology/D19-1510
https://www.aclweb.org/anthology/D19-1510
https://link.springer.com/content/pdf/10.1007/s10791-006-9019-z.pdf
https://link.springer.com/content/pdf/10.1007/s10791-006-9019-z.pdf
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/P15-2097
https://www.aclweb.org/anthology/P15-2097
https://www.aclweb.org/anthology/E17-2037
https://www.aclweb.org/anthology/E17-2037
https://www.aclweb.org/anthology/W14-1701
https://www.aclweb.org/anthology/W14-1701


5451

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Proceedings
of ICML, pages 3953–3962.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In Proceedings of ACL, pages
2121–2130.

Marek Rei and Anders Søgaard. 2019. Jointly learn-
ing to label sentences and tokens. In Proceedings of
AAAI, pages 6916–6923.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NIPS, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NIPS, pages 5998–
6008.

Liang Wang, Wei Zhao, Ruoyu Jia, Sujian Li, and
Jingming Liu. 2019a. Denoising based sequence-
to-sequence pre-training for text generation. In Pro-
ceedings of EMNLP, pages 4003–4015.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019b. Improving back-translation
with uncertainty-based confidence estimation. In
Proceedings of EMNLP, pages 791–802.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of EMNLP, pages 38–45.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew
Ng, and Dan Jurafsky. 2018. Noising and denoising
natural language: Diverse backtranslation for gram-
mar correction. In Proceedings of NAACL-HLT,
pages 619–628.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of ACL, pages
180–189.

Helen Yannakoudakis, Marek Rei, Øistein E. Andersen,
and Zheng Yuan. 2017. Neural sequence-labelling
models for grammatical error correction. In Pro-
ceedings of EMNLP, pages 2795–2806.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
Proceedings of NAACL-HLT, pages 380–386.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical er-
ror correction via pre-training a copy-augmented ar-
chitecture with unlabeled data. In Proceedings of
NAACL-HLT, pages 156–165.

https://www.aclweb.org/anthology/2020.bea-1.16
https://www.aclweb.org/anthology/2020.bea-1.16
http://proceedings.mlr.press/v80/ott18a.html
http://proceedings.mlr.press/v80/ott18a.html
https://www.aclweb.org/anthology/P17-1194
https://www.aclweb.org/anthology/P17-1194
https://doi.org/10.1609/aaai.v33i01.33016916
https://doi.org/10.1609/aaai.v33i01.33016916
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aclweb.org/anthology/D19-1412
https://www.aclweb.org/anthology/D19-1412
https://www.aclweb.org/anthology/D19-1073
https://www.aclweb.org/anthology/D19-1073
https://www.aclweb.org/anthology/2020.emnlp-demos.6/
https://www.aclweb.org/anthology/2020.emnlp-demos.6/
https://www.aclweb.org/anthology/2020.emnlp-demos.6/
https://www.aclweb.org/anthology/N18-1057
https://www.aclweb.org/anthology/N18-1057
https://www.aclweb.org/anthology/N18-1057
https://www.aclweb.org/anthology/P11-1019
https://www.aclweb.org/anthology/P11-1019
https://www.aclweb.org/anthology/D17-1297
https://www.aclweb.org/anthology/D17-1297
https://www.aclweb.org/anthology/N16-1042
https://www.aclweb.org/anthology/N16-1042
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014


5452

A Appendices

A.1 Model Details of Sentence Quality
Estimation Score Calculation

This part describes the details of sentence score cal-
culation of BERT based quality estimation models.

Given a source sentence s with m tokens and
k-th hypothesis ck with n tokens, we can get the
representation Hk of the k-th 〈source, hypothesis〉
sentence pair through BERT:

Hk = BERT([CLS] s [SEP] ck [SEP]), (14)

or only the representationHk of the k-th hypothesis
through BERT:

Hk = BERT([CLS] ck [SEP]). (15)

The “[CLS]” representations are Hk
0 andHk

0 .
BERT-LM. We mask tokens in the k-th hypoth-

esis sentence ck and calculate the Perplexity of the
k-th hypothesis sentence:

fLM(ck) = −PPL(Hk
1:n). (16)

BERT-GQE. BERT-GQE uses the “[CLS]” rep-
resentation Hk

0 of k-th hypothesis to estimate the
sentence quality with the probability P (ys|ck):

P (ys|ck) = softmaxys(W · H
k
0), (17)

where W is the parameter and the label ys is cat-
egorized into two groups: correct (ys = 1) and
incorrect (ys = 0).

Then the sentence-level quality estimation score
of hypothesis ck is calculated:

fGQE(c
k) = P (ys = 1|ck). (18)

BERT-QE. BERT-QE uses the “[CLS]” repre-
sentation Hk

0 of k-th 〈source, hypothesis〉 sentence
pair to estimate the quality of GEC hypothesis:

fQE(s, c
k) = sigmoid(W ·Hk

0 ), (19)

where W is the parameter. The quality estimation
score fQE(s, c

k) of BERT-QE is trained to approxi-
mate the F0.5 score of the k-th hypothesis ck.

BERT-GED. Take BERT-GED (HYP) as an
example, it uses the hypothesis representation
Hk

m+2:m+n+2 of the k-th 〈source, hypothesis〉 sen-
tence pair to estimate the quality of GEC hypoth-
esis. Note that the “[SEP]” token is also used in
BERT-GED to denote the end of the sentence.

Model P R F0.5

LSTM 58.88 28.92 48.48
BiLSTM-ATTN 60.73 22.33 45.07
BiLSTM-JOINT 65.53 28.61 52.07
BERT 73.69 45.39 65.52

Table 6: Grammatical Error Detection Performance
on the First Certificate in English (FCE) dataset (Yan-
nakoudakis et al., 2011).

We calculate the probability of token quality es-
timation label y for the i-th token wk

i in the k-th
〈source, hypothesis〉 sentence pair:

P (y|wk
i ) = softmax(W ·Hk

i ), (20)

where W is the parameter. The label y is catego-
rized into two groups: correct (y = 1) and incorrect
(y = 0).

To estimate the quality of hypotheses, we aver-
age all token quality estimation probability P (y =
1|wk

i ) as the sentence quality estimation score
f(s, ck) for the k-th hypothesis ck:

fGED(s, ck) =
1

n+ 1

m+n+2∑
i=m+2

P (y = 1|wk
i ). (21)

A.2 Grammatical Error Detection
Performance with LSTM

In this experiment, we evaluate the effectiveness
of BERT and LSTM on the grammatical error de-
tection (GED) task. We keep the same setting as
previous work (Rei and Søgaard, 2019). The FCE
dataset is used for evaluation. Precision, Recall,
and F0.5 are used as our evaluation metrics.

As shown in Table 6, three models, LSTM,
LSTM-ATTN, and LSTM-JOINT from Rei and Sø-
gaard (2019) are compared with the BERT model.
The LSTM model leverages the LSTM encoder and
adds language modeling objectives in the training
process (Rei, 2017). LSTM-ATTN and LSTM-
JOINT further add attention constraints and sen-
tence level supervision to achieve better perfor-
mance (Rei and Søgaard, 2019). The BERT model
is the same as our BERT-GED (SRC).

The BERT based model shows significant im-
provement than LSTM based models. Thus we
do not consider LSTM based GED models in the
experiments of GEC quality estimation.


