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Abstract

Historical linguists have identified regularities
in the process of historic sound change. The
comparative method utilizes those regularities
to reconstruct proto-words based on observed
forms in daughter languages. Can this pro-
cess be efficiently automated? We address the
task of proto-word reconstruction, in which
the model is exposed to cognates in contempo-
rary daughter languages, and has to predict the
proto word in the ancestor language. We pro-
vide a novel dataset for this task, encompass-
ing over 8,000 comparative entries, and show
that neural sequence models outperform con-
ventional methods applied to this task so far.
Error analysis reveals a variability in the abil-
ity of neural model to capture different phono-
logical changes, correlating with the complex-
ity of the changes. Analysis of learned embed-
dings reveals the models learn phonologically
meaningful generalizations, corresponding to
well-attested phonological shifts documented
by historical linguistics.

1 Introduction

Historical linguists seek to identify and explain the
various ways in which languages change through
time. Research in historical linguistics has re-
vealed that groups of languages (language fami-
lies) can often be traced into a common, ancestral
language, a “proto-language”. Large-scale lexical
comparison of words across different languages
enables linguists to identify cognates: words shar-
ing a common proto-word. Comparing cognates
makes it possible to identify rules of phonetic his-
toric change, and by back-tracing those rules one
can identify the form of the proto-word, which
is often not documented. That methodology is
called the comparative method (Anttila, 1989),
and is the main tool used to reconstruct the lex-
icon and phonology of extinct languages. Infer-
ring the form of proto-words from existing cog-

∗Equal contribution

nates in daughter languages is possible since his-
torical sound changes within a language family
are not random. Rather, the phonological change
is characterized by regularities that are the result
of constraints imposed by the human articulatory
and cognitive faculties (Millar, 2013). For exam-
ple, we can find such regular change—commonly
called “systematic correspondence”—by looking
at the evolution of the first phoneme of Latin’s
word for “sky”:1

Figure 1: the evolution of Latin word for “sky” is sev-
eral Romance languages.

The Spanish word’s first sound is [T], while the
Italian word begins with [tS], the French word
with [s], Romansh with [ts] and Sardinian with
[k]. This pattern is systematic, and will be found
throughout the languages. Working this way, his-
torical linguists reconstruct words in the proto-
language from existing cognates in the daughter
languages, and determine how words in the proto-
language may have sounded.

To what extent can a machine-learning model
learn to reconstruct proto-words from examples in
this way? And what generalizations of phonetic
change will it learn? We focus on the task of
proto-word reconstruction: the model is trained on
sets of cognates and their known proto-word, and
is then tasked with predicting the proto-word for
an unseen set of cognates. Our study concentrate
on the romance language family2 and the model is
trained to reconstruct the Latin origin. We show

1The words as transcribed with International Phonetic Al-
phabet (IPA) characters.

2All the languages that derived from Latin.
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that a recurrent neural-network model can learn to
perform this task well (outperforming previous at-
tempts).3

More interesting than the raw performance
numbers are the learned generalizations and error
patterns. The Romance languages are widely stud-
ied (Ernst (2003); Ledgeway and Maiden (2016);
Holtus et al. (1989) among others), and their
phonological evolution from Latin is well mapped.
The existence of this comprehensive knowledge
allows exploring to what extent neural models in-
ternalize and capture the documented rules of lan-
guage change, and where do they deviate from it.
We provide an extensive error analysis, relating
errors patterns to knowledge in historical linguis-
tics. This is often not possible in common NLP
tasks, such as parsing or semantic inference, in
which the rules governing linguistic phenomena—
or even the suitable framework to describe them—
are still in dispute among linguists.

Contributions Inspection of existing datasets of
cognates in Romance languages has revealed in-
herent problems. We thus have collected a new
comprehensive dataset for performing the recon-
struction task (§4). Besides the dataset, our main
contribution is the extensive analysis of what is be-
ing captured by the models, both on orthographic
and phonetic versions of the dataset (§6). We find
that the error patterns are not random, and they
correlate with the relative opacity of the historic
change. These patterns were divided in different
categories, each one motivated by a sound phono-
logical explanation. Moreover, in order to further
evaluate the learning of rules of phonetic change,
we evaluated models on a synthetic dataset (§6.3),
showing that the model is able to correctly cap-
ture several phonological change rules. Finally,
we analyze the learned inner representations of the
model, and show it learns phonologically mean-
ingful properties of phonemes (§6.4) and attributes
different importance to different daughter lan-
guages (§6.5).

2 Related Work

The related task of cognates detection has been
extensively studied. In this task, a set of cog-
nates should be extracted from word lists in dif-
ferent languages. Most effort in Machine learn-

3We note that the role of the ML model is easier than that
of the historical linguist, as it is trained on sets of words that it
took the historical linguistics discipline a considerable effort
to acquire.

ing approaches to this task has been focused on
distance-based methods, which quantify the dis-
tance (according to some metric), or the similarity,
between a given candidate of cognates. The sim-
ilarity can be either static (e.g. Levenshtein dis-
tance) or learned. Once the metric is established,
a classification can be performed either based on
hard-decision (words below a certain threshold
are considered cognates) or by learning a clas-
sifier over the distance measures and other fea-
tures (Kondrak, 2001; Mann and Yarowsky, 2001;
Inkpen et al., 2005; Ciobanu and Dinu, 2014a; List
et al., 2016); Mulloni and Pekar (2006) have eval-
uated an alternative approach, in which explicit
rules of transformation are derived based on edit
operations. See Rama et al. (2018) for a recent
evaluation of the performance of several cognates
detection algorithms.

Several studies have gone beyond the stage
of cognates extraction, and used resulted list
of cognates to reconstruct the lexicon of proto-
languages. Most studies in this direction borrowed
techniques from computational phylogeny, draw-
ing a parallel between the hypothesized branch-
ing of (latent) proto words into their (observed)
current forms and the gradual change of genes
during evolution. Bouchard-Côté et al. (2007)
has applied such a model to the development
of the Romance languages, based on a dataset
composed of aligned-translations. Bouchard-Côté
et al. (2009, 2013) used an extensive dataset of
Austronesian languages and their reconstructed
proto-languages, and built a parameterized graph-
ical model which models the probability of a pho-
netic change between a word and its ancestral
form; the probability is branch-dependent, allow-
ing for the learning of different trends of change
across lineages. While achieving impressive per-
formance, even without necessitating a cognates
lists as an input, their model is based on a given
phylogeny tree that accurately represents the de-
velopment of the languages in question.

Wu and Yarowsky (2018) have automatically
constructed cognate datasets for several lan-
guages, including Romance languages, and used
a character-level NMT system to complete miss-
ing entries (not necessarily the proto-form). Sev-
eral works studied the induction of multilingual
dictionaries from partial data in related languages.
Wu et al. (2020) reconstruct cognates in Austrone-
sian languages (where the proto-language is not
attested). Lewis et al. (2020) employ a mixture-
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of-experts approach for lexical translation induc-
tion, combining neural and probabilistic meth-
ods, and Nishimura et al. (2020) translate from
a multi-source input that contains partial trans-
lations to different languages, concatenated. Fi-
nally, Ciobanu and Dinu (2018) have applied a
CRF model with alignment to a dataset of Ro-
mance cognates, created from automatic align-
ment of translations (Ciobanu and Dinu, 2014b).
The researchers also applied RNNs on the same
dataset, but reported negative results.

3 Proto-word Reconstruction

Our proto-word reconstruction is as follows: the
training set is composed of pairs (xi,yi), where
each xi = c`1i , ..., c`ni is a set of cognate words,
each tagged with a language `j , and yi is the proto-
word (Latin word) of that set. We consider an
orthographic task, where the cognates and proto-
words are spelled out as written. As the orthogra-
phy is often arbitrary and more conservative than
spoken language, we consider also a phonetic task,
in which the cognates and proto-words are repre-
sented as their phonetic transcriptions into IPA.

An example of a training instance (x, y) for the
orthographic task is:
x =lapteRM, laitFR, latteIT, lecheSP, leitePT

y =lactem
and for the phonetic task is:
x =lapteRM, lEFR, latteIT, letSeSP, l5jt1PT

y =laktEm
A cognate in one of the languages may be miss-

ing, in which case we represent it by a dash. Here,
we are missing the Italian and Romanian cognates:
x =–RM, tKavajFR, –IT, tRabaxoSP, tR5BaLuPT

y =trIpalEm
At test time, we are given a set of cognates and

are asked to predict their proto-word.

4 Comprehensive Romance Dataset

The different experiments described in the paper
were performed on a large dataset of our creation,
which contained cognates and their proto-words
in both orthographic and phonetic (IPA) forms.
The dataset’s departure point is Ciobanu and Dinu
(2014b), which consists of 3,218 complete cog-
nate sets in six different languages: French, Ital-
ian, Spanish, Portuguese, Romanian and Latin
4. We augmented the dataset’s items with a

4We thank Ciobanu and Dinu for sharing their data with
us.

freely available resource, Wiktionary, whose data
were manually checked against DIEZ and Donkin
(1864) to ensure their etymological relatedness
with the Latin source. The entries were transcribed
into IPA using the transcription module of the eS-
peak library5, which offers transcriptions for all
languages in our dataset, including Latin. The
final dataset contains 8,799 cognate sets (not all
of them complete), which were randomly split-
ted into train, evaluation and test sets: 7,038 cog-
nate sets (80%) were used for training, 703 (8%)
for evaluation and 1,055 (12%) for testing. Over-
all, the dataset contains 41,563 distinct words for
a total of 83,126 words counting both the ortho-
graphic and the phonetic datasets. Vowel lengths
were found to be difficult to recover (see Table 1),
hence we created the following variations of the
dataset: with and without vowel length (for both
the orthographic and phonetic datasets), and with-
out a contrast (for the phonetic dataset); see sec-
tion §6 for further discussion.

A detailed description of the dataset collection
process is available at the appendix §A.1. We
make our additions to the dataset of Ciobanu and
Dinu (2014b) publicly available 6.

5 Experimental Setup

5.1 NMT-based Neural Model

Our proto-word reconstruction setup follows an
encoder-decoder with attention architecture, sim-
ilar to contemporary neural machine translation
(NMT) systems (Bahdanau et al., 2015; Cho et al.,
2014).

We use a standard character-based encoder-
decoder architecture with attention (Bahdanau
et al., 2015). Both encoder and decoder are GRU
networks with 150 cells. The encoder reads the
forms of the words in the daughter languages,
and output a contextualized representation of each
character. At each decoding step, the decoder at-
tends to the encoder’s representations via a dot-
product attention. The output of the attention is
then fed into a MLP with 200 hidden units, which
outputs the next Latin character to generate.

Input representation Each character (a letter in
the orthographic case, and a phoneme in the pho-
netic case) is represented by an embedding vector

5https://github.com/espeak-ng/espeak-ng
6https://github.com/shauli-ravfogel/

Latin-Reconstruction-NAACL. The entries that
appeared in the original dataset are not publicly available.

https://github.com/shauli-ravfogel/Latin-Reconstruction-NAACL
https://github.com/shauli-ravfogel/Latin-Reconstruction-NAACL
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Edit Distance
0 ≤1 ≤2 ≤3 ≤4 Average Avg, norm

Ortographic 64.1% 84.0% 92.7% 96.8% 98.5% 0.65 0.064
IPA 50.0% 73.9% 85.9% 93.3% 97.0% 1.022 0.100
Ortographic, added vowel lengths 42.5% 72.0% 86.3% 92.5% 96.7% 1.13 0.102
IPA, added vowel lengths 47.9% 62.0% 80.2% 87.1% 93.8% 1.331 0.119
IPA, no contrast 65.1% 80.0% 87.5% 93.6% 96.7% 0.797 0.077

Table 1: Distribution of edit distances between the reconstructed and original Latin form, on the orthographic
and transcribed datsaets. Edit distance of 0 corresponds to perfect reconstruction. “Average” refers to average edit
distance, and “Avg, norm” to normalized average edit distance.

of size 100. While all Romance languages are or-
thographically similar, the same letters represent
different sounds, and thus convey different kinds
of information for the task of Latin reconstruc-
tion. A possible approach would encode each lan-
guage’s characters using a unique embedding ta-
ble. We instead share the character embedding ta-
ble across all languages (including Latin), but con-
catenate to each character vector also a language-
embedding vector. The final representation of a
character c in language ` is then WE[c] + UE[`]
where E is a shared embedding matrix, c is a char-
acter id, ` is a language id, and W and U are a
linear projection layers.

5.2 Evaluation Metric

Our main quantitative metric for evaluation is the
edit distance between the reconstructed word and
the gold Latin word. We use the standard edit dis-
tance with equal weight of 1 for deletion, insertion
and substitution. We report test set average edit
distance and average normalized edit distance (di-
vided by word length), as well as the percentage of
instances with less than k edit operations between
the reconstruction and the gold, for k = 0 to 4.

6 Results and Analysis

Table 1 summarizes our main quantitative results.
“Orthographic, added vowel lengths” and “IPA,
added vowel lengths” refer to variations of the
datasets that include explicit marking of vowel
length in Latin words, marked by <:> after long
vowels. The models performance on the or-
thographic dataset demonstrates a substantial im-
provement over previously reported results. Our
method has achieved average edit distance of 0.65,
average normalized edit distance of 0.064, and
64.1% complete reconstruction rate (edit distance
of 0). These numbers compare favorably with the
edit distance of 1.07, normalized edit distance of
0.13 and 50% complete reconstruction reported

by Ciobanu and Dinu (2018). We note, however,
that as our method is different both in the training
corpus and in the type of model we employ, it is
not clear whether this improvement should be at-
tributed to the quality of the data, to the model, or
to both of them.7

The performances on the phonetic dataset were
lower than those derived from the orthographic
one: in the phonetic dataset the average edit dis-
tance was of 1.022, and the average normalized
edit distance of 0.1, with 50.0% complete recon-
struction rate.

This disparity can be explained at least partially
by a peculiarity of the phonetic dataset: it implic-
itly encodes vowel length, which was neutralized
in the orthographic dataset. The reason for this dif-
ference is that length contrast in Latin co-occurred
with quality differences: short vowels tended to be
more open than their long counterparts, a contrast
also called “tense-lax” (Allen and Allen, 1989).
This contrast is not present in Latin orthography,
but it appears in its phonetic transcription. This re-
sults in a noticeable gap between the results of the
orthographic dataset with vowel lengths and with-
out vowel lenghts (0.064 average normalized edit
distance vs. 0.119), while the differences between
the phonetic IPA dataset with vowel lenghts and
without vowels lengths are much smaller. When
the contrast “tense-lax” is manually neutralized8,
the performances achieved are similar to the ones
on the orthographic dataset (as it is possible to
see from the performances on “IPA, no contrast”,
whose Latin entries do not contain a “tense-lax”

7When we train a smaller version of our model (75-
dimensional GRU) on the original dataset of Ciobanu and
Dinu (2014b) we achieve average edit distance of 0.881, av-
erage normalized edit distance of 0.103, and complete re-
construction rate of 59.1%. Training a similar model on
their dataset after cleaning resulted in average edit distance
of 0.612, average normalized edit distance of 0.062 and com-
plete reconstruction rate of 68.8%.

8We achieved that by respectively changing the characters
<U>, <O>, <I>, <E> to <u>, <o>, <i>, <e> in the
Latin words



4464

Error type Orthographic Phonetic
High-mid 18% 8%
Deletion 14% 6%
Consonant 13% 15%
Cluster 12% 3%
Morphology 11% 10%
Vowel 7% 8%
Length — 26%
Orthography 5% —
Other 20% 24%

Table 2: Error type distribution based on 650 ortho-
graphic and 650 phonological errors.

contrast).

6.1 Error Patterns

The following subsections focus on the model
performances on the orthographic and phonetic
datasets without explicit vowel length marking. A
thorough analysis of both datasets reveals that the
model’s errors are not arbitrary, but rather tend
to correspond to one of a few well-defined lin-
guistic phenomena characterizing the evolution of
Latin to its daughter languages. From an analy-
sis of about 1300 errors, equally divided between
the orthographic and the phonetic datasets, we find
that 80% of the errors of the model on the ortho-
graphic dataset, and 75% on the phonetic one can
be grouped into one of the following groups: high-
mid vowel alternations, segment deletion, segment
changes, cluster changes, morphological changes
and other vowel changes. Additionally, one error
category is unique to the phonetic dataset, tense-
lax errors, and one is unique to the orthographic
dataset, orthography errors. Table 2 summarizes
the results, and Figure 2 visualizes the vowels er-
ror patterns on the phonetic dataset.

We briefly discuss each of these groups. 9

High-mid alternation. The largest number of
errors on the orthographic dataset, 18%, can be
attributed to confusion between high and mid-
high vowels (correspondingly <i>, <u> and
<e>, <o>), as shown by the reconstruction
<pescarium> instead of the Latin <piscarium>
(alternation between <e> and <i>). That error
is much rarer in the phonetic dataset, accounting
only for 8% of all the errors. The reason of this
error can be attributed to the origin of the mid-
vowels in the daughter languages: while Latin

9The orthographic characters will be displayed between
two angle brackets, while phonetic characters between two
square brackets.

long vowels [i:], [e:], [o:] and [u:], always evolved
into [i], [e], [o] and [u] in the daughter languages
(with minor changes related to syllable structure),
Latin short vowels—[I], [E], [O] and [U]—are not
deterministically mapped into corresponding vow-
els in the daughter languages: Latin [I] and [E]
both usually became Romance [e] (with alterna-
tions related to syllable structure, as diphthongiza-
tion to [je]), while Latin [O] and [U] have differ-
ent reflexes in the daughter languages as [u], [o],
[O], [ø] or as diphthongs. Because of this complex
evolution, which merges different Latin phonemes
into the same one in the daughter languages, the
model is unable of unequivocally predicting the
Latin vowel. Nonetheless, it seems that the tense-
lax contrast present in the phonetic dataset eases
the task of distinguishing the different phonemes,
and enables the network to reconstruct their origin
more often.
Segment deletion. examples of these errors
are the reconstruction of <aspargum> instead of
Latin <asparagum>, and the reconstruction of
[abIlItatEm] instead of Latin [habIlItatEm]. During
the evolution from Latin to Romance languages,
unstressed syllables tended to be dropped. This
phenomenon was not systematic, and occurred in
different ways among and within the languages.
Such process could affect either whole syllables
(consonant + vowel) or only the vowel, creat-
ing new consonant clusters. Because of the er-
ratic nature of this process, it seems that the net-
work struggles with the exact reconstruction of
segments eliminated in the daughter languages. A
special kind of deletion is that of the consonant
[h]. This consonant did not survive in any Ro-
mance languages (although it may be represented
orthographically), and hence many times the net-
work does not reconstruct it.
Segment changes. this category encompasses er-
rors in the reconstruction of consonants— such as
voicing changes (reconstructing <faculdadem>
vs. Latin <facultatem>), assimilation ([wessarE]
vs. [weksarE]) and gemination ([agrEgatIonEm]
vs. [aggrEgatIonEm]). All these errors reflect
processes that took place in all of the daughter
languages, that obscures the original form of the
proto-word.
Cluster changes. These are changes that occur
with two contiguous consonants. Consider, for ex-
ample, the reconstruction of [rEatIonEm] instead
of Latin [rEaktIonEm], and of <sennorem> in-
stead of Latin <seniorem>. The former is an
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instance of cluster simplification, while the latter
is an instance of cluster palatalization. In many
of the daughter languages clusters of two differ-
ent sounds underwent simplification, either by the
dropping of one of the sound or the assimilation of
one of them. Palatalization is the process by which
certain sounds tend to be pronounced more closely
to the palate, usually because of an adjacent front
vowel. This change occurred in all Romance lan-
guages, even though its orthographic representa-
tion may vary among them.
Morphological changes. Latin had a very devel-
oped morphology, with several classes of special
conjugations and irregular forms. The network
struggles to reconstruct correctly irregular forms,
as these forms were mostly lost in the daughter
languages. An instance of such irregular verbs
is <praeferre>, reconstructed as <praeferire> by
the network. Moreover, other special morpholog-
ical classes, such as Latin neuters, tend to be re-
constructed as more usual forms. Another inter-
esting class of errors is change of morphological
category: some nouns have suffixes reminiscent
of those of verbs, and hence are wrongly recon-
structed as such. A separated case is that of Greek
words: Latin contained several Greek loanwords
that conserved their original morphology, different
from the Latin one. Since these peculiarities were,
for most part, not retained in the daughter lan-
guages, the network reconstructs them with nor-
mal Latin suffixes. For example, the greek [syn-
taksIs] was reconstructed as [syntaksEm], with the
normal Latin suffix.
Other vowel changes. Latin contained several
diphthongs, among them the diphthongs [aI] and
[OI]. These sounds did not survive in any of the
daughter languages (although in some rare cases
they may be represented in the orthography),
and both changed into [e] in the different Ro-
mance languages. This lef to reconstruction errors
such as reconstructing <egrum> instead of Latin
<aegrum>. Some changes also occurred with the
vowel [a], which was reconstructed as a different
vowel.
Greek orthography. some Latin words from
Greek origin retained some orthographic conven-
tions alien to Latin, such as the use of <y>,
<ph>, <th>, <rh> etc. These conventions were
only partially retained in the daughter languages,
which creates some inconsistencies in their recon-
struction by the network.
Tense-Lax alternation. this is the largest cate-

Figure 2: Phonological mistakes resulting from alter-
nations between vowels, on the phonetic dataset. The
numbers signify the number of errors, excluding sin-
gleton errors.

gory found in the networks errors on the phonetic
dataset – up to 26% of all errors. As said previ-
ously, the tense-lax contrast reflects vowel length
in Latin, which is not entirely predictable based
on the daughter languages. The network tends to
confuse between the lax and the tense vowels.

Figure 2 shows clearly that the network’s er-
rors are internally consistent and not random: all
the vowel errors fit neatly in one of the aforemen-
tioned categories, while other possible errors do
not occur.

Orthographic vs. Phonetic Importantly, the
phonetic and orthographic tasks differ in their er-
ror distributions: while the performance of the
network on the orthographic task displays many
syllable changes – changes that alter the struc-
ture of the syllable (mostly changes in conso-
nant clusters and deletion of segments) – on the
phonetic tasks the model tends to retain syllable
structure, but perform more segment-related er-
rors (i.e., changing a specific vowel or consonant
for another one). The IPA performance contained
more idiosyncratic errors that could not be catego-
rized in one of the main categories. Such errors
tended to occur when the network had only one or
two cognates from the daughter languages. Even
though the orthographic performance also exhib-
ited poorer reconstructions in these cases, it seems
that the IPA performance was even more affected
by the singular words, leading to more erratic re-
constructions.

6.2 Learnt generalizations

This section will focus on the phonetic dataset. A
closer inspection of the errors made by the model,
and of those that do not occur in the data, can
shed light on the processes of phonological change
learnt by the model. We will first focus on the
vowels. The Latin vowel [a] is quite resilient to
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changes, and most of the daughter languages re-
tain it without change (only in French and Ro-
manian some phonological changes occur, in cer-
tain phonological environments). Indeed, the net-
work has almost no mistakes in recovering it, apart
from some isolated cases that derives from insuffi-
cient cognates in the daughter languages. The net-
work also makes virtually no errors regarding the
reconstruction of vowel backness – here also the
only few cases are caused by the paucity of cog-
nates and by assimilation processes in the daugh-
ter languages that make the Latin source opaque
(metaphony processes). All in all, the network
learns correctly the phonological changes that oc-
curred in Latin vowels, and the main errors are a
result of changes that cannot be fully reverted from
the daughter languages.

The model learnt well the mapping of conso-
nants between Latin and its daughter languages,
and vowel reconstruction errors are considerably
more prevalent. Focusing on one type of errors,
palatalization, shows that the network failed to re-
construct the original consonant in opaque con-
texts, that is, when phonological cues crucial for
the right reconstruction were lacking. Specifi-
cally, the network confused between the conso-
nants [t] and [k] in the Latin reconstruction, since
they palatalize to the same segments in Spanish
and French. Without the other daughter languages,
it is impossible to reconstruct correctly the origi-
nal sound in Latin.

Finally, the network correctly generalized the
occurrence of nasals in Latin clusters. Latin nasal
tended to assimilate to the place of articulation
of the adjacent consonant, deriving clusters such
[Nk], [mp] and [nt]. When the network deleted
a consonant in a cluster containing a nasal, or
changed a consonant adjacent to a nasal, the nasal
consonant always changed to match the place of
articulation of the following consonant. Hence, by
deleting [k] in the cluster [Nkt], the network re-
constructs [nt]. Similarly, by changing [p] to [t] in
the cluster [mp], the nasal consonant accordingly:
[nt].

6.3 Evaluating Rules of Phonetic Change

To what extent did the model learn known rules of
phonetic change?

The evolution of the Romance languages is
well studied and linguists documented the set
of phonological transformations that underwent
between Latin and its daughter languages. We

collected 33 of these phonological change rules,
and used them to create a “synthetic” test set,
containing syllable examples each focusing on a
different phonological change. An example of a
row in this dataset, corresponding to the rule of
change of Latin [j] at word initial, is:

x =ZaRM, ZaFR, dZaIT, xaSP, ZaPT

y =ja

Since the model was trained on complete words,
isolated syllables tended to be unnatural for the
network, and the output often contained addi-
tional consonants (usually morphological end-
ings). When evaluating the model output we focus
on the specific phonemes involved in the phono-
logical change, and we ignore additional phono-
logical material.

Results The complete list of synthetic examples
and predictions is available at Table 3. The net-
work correctly predicted 22 out of the 33 phono-
logical rules (66.67% of the changes). The re-
sults are compatible with the results of the main
reconstruction experiment: In both experiments,
the network correctly reconstructed phonemes re-
tained with little or no changes in all languages
(e.g. [a] in different -phonological environments).
Another class of phonemes correctly reconstructed
in both cases are those which changed in a pre-
dictable way in each one of the daughter lan-
guages. Thus, [w] was correctly reconstructed
since it predictably changed to [v] in all the daugh-
ter languages (apart from Spanish, which merged
it with [b]). Phonemes that tended to change dif-
ferently, but consistently, were also faithfully re-
covered: even though Latin [k] tended to change
differently depending on the daughter language
([s] in French and Portuguese, [T] in Spanish
and [tS] in Italian and Romanian), it was recon-
structed correctly because of the consistence of the
change in each daughter language. The phonemes
wrongly reconstructed tended to be those whose
phonological change was “opaque”. The “opaque-
ness” of their change can be ascribed to the fact
that they were neutralized in the daughter lan-
guages, making it impossible to recover them
without additional information. Relevant to this
case are mostly vowels and diphthongs, as Latin
[e] and [I], which both became [e] in all the differ-
ent daughter languages (with variants influenced
by the phonological environment).
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Latin phoneme Romanian French Italian Spanish Portuguese Latin Latin - reconstruction Correct
/e/ blocked syllable pep pep pep pep pep pep pIp no
/o/ blocked syllable pop pup pop pop pop pop pUp no
/E/ blocked syllable pjep pEp pEp pjep pEp pEp pep no
/kt/ medially, before nasals - anta anta anta anta ankta antam no
/aI/ pe pe pe pe pe paI pEm no
/OI/ pe pe pe pe pe pOI pEm no
/b/ intervocalic aa ava ava aBa ava aba awam no
/e/ free syllable pe pwa pe pe pe pe pEm no
/o/ free syllable po pø po po po po pUm no
/I/ free syllable pe pwa pe pe pe pI pEm no
/n/ before front vowels ji ñi ñi ñi ñi ni NidEm no
/a/ before nasal p1n pan pan pan pan pan pan yes
/a/ blocked syllable pap pap pap pap pap pap pap yes
/i/ pi pi pi pi pi pi pi yes
/u/ pu py pu pu pu pu pu yes
/I/ blocked syllable pep pep pep pep pep pIp pIp yes
/U/ blocked syllable pup pup pop pop pop pUp pUp yes
/O/ blocked syllable pop pOp pOp pwep pOp pOp pOp yes
/k/ before front vowels tSi si tSi Ti si ki ki yes
/sk/ before front vowels Sti si Si Ti Si ski ski yes
/kt/ medially, elsewhere apta ata atta atSa ata akta aktam yes
/aU/ pau pO pO po po paU paUm yes
/pl/ word initial pla pla pja La Sa pla plam yes
/a/ free syllable pa pa pa pa pa pa pam yes
/E/ free syllable pje pje pje pje pE pE pEm yes
/w/ va va va ba va wa wam yes
/b/ word initial ba ba ba ba ba ba bam yes
/j/ word initial Za Za dZa xa Za ja jam yes
/f/ word initial fa fa fa a fa fa fam yes
/f/ elsewhere afa afa afa afa afa afa affam yes
/U/ free syllable pu pø po po po pU pUpUm yes
/O/ free syllable po pø pwO pwe pO pO pOdEm yes
/l/ before front vowels ji ji Li xi Li li gIlUm yes

Table 3: the set of test phonemes used to evaluate the model’s generalizations. Each row represents a distinct rule
of phonetic change, which focuses on a single phoneme. The phoneme in question is bolded, and other consonants
/ vowels are added to simulate the phonological environment of the rule. The added consonants / vowels were
chosen because they did not affect the evolution of the examined phonemes from Latin to the Romance languages.
“correct” signifies whether the network’s prediction were correct.

Figure 3: Hierarchical clustering of French phoneme
embeddings

6.4 Learnt phoneme representations

Does training on proto-word reconstructions
implicitly encourage the model to acquire
phonologically-meaningful representations? We
visualize the representation learned by network
on the phonetic task by performing hierarchical
clustering on the characters embedding vectors
using the sklearn (Pedregosa et al., 2011) im-
plementation of Ward variance minimization

algorithm (Ward Jr, 1963).

Here we will briefly discuss the learned French
phoneme representations (Figure 3). For all other
languages, see appendix §5. As can be seen,
the primary division that the network performs
is between vowels and consonants, displayed on
two different branches of the tree. On a lower
level other phonologically motivated groupings
are found: the network tends to place under the
same node pairs of voiced and unvoiced conso-
nants (as [S] and [Z], [d] and [t]), allophones ([œ]
and [ø]) or phonemes of the same category (as
the glides [j] and [w]). To conclude, the re-
sults demonstrate the learning of a phonologically
meaningful taxonomy of phonemes, without ex-
plicit supervision.
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Figure 4: position in output vs. most attended lan-
guage (left) and output letter vs. most attended lan-
gauge (right) for the orthographic (upper) and phonetic
(lower) tasks.

6.5 Attention analysis

Since different languages can diverge to a varying
extent from their proto-language, we hypothesize
that the 5 daughter languages we use in this work
would be of different importance for the model. To
test this hypothesis, we inspect the learned atten-
tion weights. We focus on the most attended input
character at each time step (the character having
the largest attention weight) and count the number
of times each of the 5 input languages is the most
attended language, as a function of the location in
the output and of the identity of the Latin charac-
ter produced in that time step. We normalize the
count with respect to time step, letter frequency
and language frequency in the corpus.

Results The results for the phonetic and ortho-
graphic tasks are presented in Figure 4. In both
cases, Italian is the most attended language. There
are some differences between the settings, how-
ever. For the orthographic task, the network fo-
cuses noticeably more on French than in the pho-
netic task. This tendency can be attributed to
the very conservative orthography of French, that
masks the phonological innovations that occurred
in the language. Indeed, the network focuses ex-
clusively on French for the reconstruction of the
characters <h> and <y>, which are consistently
represented only in French orthography, disap-
pearing from the written form of the other Ro-
mance languages. The comparison to the atten-

tion of the phonetic dataset shows that the network
tends to actually ignore French, favoring other
sources instead. Similarly, in the orthographic
dataset, French is favored in the initial positions,
a tendency that disappears in the phonetic dataset.
Finally, an interesting trend in the phonetic dataset
is a tendency to attend to Romanian at the initial
positions and to Portuguese at later ones.

7 Conclusions

In this work, we introduce a new dataset for the
task of proto-word reconstruction in the Romance
language family, and used it to evaluate the abil-
ity of neural networks to capture the regulari-
ties of historic language change. We have shown
that neural methods outperform previously sug-
gested models for this task. Analysis of the lin-
guistic generalizations the model acquires during
training demonstrated that the mistakes are re-
lated to the complexity of the phonetic change. A
controlled experiment on a set of rules for pho-
netic alternations between Latin and its daugh-
ter languages demonstrated the model internalizes
some of the systematic processes that Latin had
undergone during the evolution of the Romance
languages. Visualizing the learned phoneme-
embedding vectors has revealed a hierarchical di-
vision of phonemes that reflects phonological re-
alities, and inspection of attention patterns demon-
strated the model attributes different importance to
different languages, in a position-dependent man-
ner.

While the task examined in this paper is
commonly called ”proto-word reconstruction”, in
practice the task the model faces is considerably
less challenging than the work of historical lin-
guists, as the model is trained in a supervised set-
ting. A future line of work we suggest is applying
neural models for the end task of proto word re-
construction, without relying on cognates lists, in
a way that would more naturally model the histor-
ical linguistic methodology.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Taraka Rama, Johann-Mattis List, Johannes Wahle, and
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A Appendix

A.1 Dataset Creation

In order to perform the reconstruction task, we re-
quired a large dataset of cognates and their proto-
words, in both orthographic and phonetic (IPA)
forms.

Despite growing interest in recent years, high-
quality digital resources for the tasks of proto-
word reconstruction and cognates detection are
scarce. Our departure point is the dataset pro-
vided by Ciobanu and Dinu (2014b), which, to
the best of our knowledge, is the most exten-
sive dataset for proto-word reconstruction of a
well-attested proto-language. The dataset contains
3,218 complete cognate sets in five Romance lan-
guages (Spanish, Italian, Portuguese, French, Ro-
manian) together with their Latin etymological an-
cestor. Although being a valuable resource, this
dataset was constructed via automatic method of
cognate extraction, and a comparison with refer-
ences on the development of Romance languages
(Boyd-Bowman, 1980; Alkire and Rosen, 2010)
reveals some problems, such as false cognates,
truncated forms, non-existent words and mismatch
between the part of speech of the cognates and the
ancestor. Another salient problem of the dataset
regarded the grammatical case of Latin nouns: Ro-
mance languages derived their words from the ac-
cusative Latin case (Harris and Vincent, 2003),
while in the dataset Latin words were displayed
in the nominative case, an inconsistency making
the reconstruction inherently more challenging.

Lastly, as neural models often requires large
amounts of training data, we aimed to expand
the dataset. We thus created a cleaned and ex-
tended dataset by Wiktionary scrapping, followed
by manual validation and cleansing.

Wikitionary scraping We augment the exist-
ing dataset with a freely available resource: Wik-
tionary. Wiktionary entries for Latin words usu-
ally contain inflection tables, and often list the de-
scendants in Romance languages; these descen-
dents are, by definition, cognates. We scraped all
Latin entries from Wiktionary, and extracted the
forms of the daughter languages (available in the
“Descendants” section). This resulted in 5,598 ad-
ditional comparative entries, for a total of 22,361
new individual words. Contrary to the previous
dataset, the Wiktionary-derived cognates are not
based on automatic alignment between transla-
tions, but rather on direct human annotation. On

the other hand, the Wiktionary-based entries are
often incomplete, and include cognates in only a
subset of the daughter languages.

Form normalization Using the Wiktionary-
provided inflection tables, we decline the Latin
nouns to the accusative case, and conjugate verbs
to the infinitive form. We do this both to the
Wiktionary-based entries and to the ones in the
original dataset. We selected a sample of around
100 Latin words to check the accuracy of the au-
tomatic conjugation, against Gaffiot and Flobert
(1934), finding them all correct. Finally, Latin
words in the Ciobanu and Dinu (2014b) dataset
for which we did not find a Wiktionary entry were
conjugated “manually” by consulting (Lewis and
Short, 1879; Gaffiot and Flobert, 1934).

Manual verification and cleaning After the
collection of the Wikitionary dataset, we went
manually through all the Latin words contained in
Ciobanu and Dinu (2014b), checking them against
Lewis and Short (1879); Gaffiot and Flobert
(1934). Additionally, we went over the some
suspicious-looking words from the daughter lan-
guage and verified them against DIEZ and Donkin
(1864) to ensure their etymological relatedness
with the Latin source, fixing if necessary.This sort
of fix was not performed systematically, but we
did fix or remove around 170 words.

Finally, we sample 300 entries from the orig-
inal (Ciobanu and Dinu, 2014b) dataset prior to
cleaning and 300 words from our cleaned and uni-
fied version of the dataset, and manually verified
them. We find 43 mistakes in the original dataset
and only 4 in our version, indicating that, while
still not perfect, it is of substantial higher quality.

IPA transcription To obtain the phonetic tran-
scriptions into IPA, we utilized the transcription
module of the eSpeak library, which offers tran-
scriptions for all languages in our dataset, includ-
ing Latin. While a human transcription would
be preferable, a manual evaluation of 200 of
the resulting transcriptions by comparing them
against several sources (Allen and Allen, 1989;
Hall, 1944; Debove and Rey, 2000; Clegg and
Fails, 2017; Mateus and d’Andrade, 2000; Sar-
lin, 2014) show high accuracy: all the 200 words
were correct, except for minor systematic changes
which we fixed globally to better suit the transcrip-
tion to phonological conventions. Specifically, we
deleted the vowel symbols <U> and <I> in Ital-
ian and Romanian, which resulted to be alien to
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those languages, changed the sequence <RR> to
<r> in Spanish, and regularized the Portuguese
transcriptions, which showed some phonological
traits of Brazilian Portuguese.

Final dataset The resulting dataset, used for all
experiments in this work, contains 8,799 entries.
The dataset was randomly splitted into train, eval-
uation and test sets, with 7,038 examples (80%)
used for training, 703 (8%) for evaluation and
1,055 (12%) for testing.

Overall, the dataset contains 41,563 distinct
words across the different languages (for a total of
83,126 words counting both the orthographic and
the phonetic datasets), with 7,384 Italian words,
7,183 Spanish words, 6,806 Portuguese words,
6,505 French words and 4,886 Romanian words.
As vowel lengths were found to be difficult to re-
cover, we created the following variations of the
dataset: with and without vowel length (for both
the orthographic and phonetic datasets), and with-
out a contrast (for the phonetic dataset).
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A.2 Phoneme representations

Figure 5

In this appendix, we show the hierarchical cluster-
ing created for all the languages in our dataset. As
it can be noted from figure 5, the results for the
different languages exhibit representations similar
to those found in the French clustering: the pri-
mary division in each language is between vow-
els and consonants. In Portuguese, Latin, Span-
ish and Romanian some consonants are grouped
together with vowels. These consonants are re-
stricted to nasals, liquids or glides. The inclusion
of these consonants can be explained by the pe-
culiarity of their nature: all of them have a special
phonological status, displaying similarities in their
behavior to vowels. In all languages phonologi-
cally related phonemes tend to be group under the
same nodes. Among the others, glides are either
found together with each other (as in French, Ital-
ian and Romanian) or with their vocalic counter-
parts (Latin, Spanish and Portuguese), consonants
differentiated only in voicing are usually paired
([S] and [Z]), front and back vowels forms clus-
ters and allophones usually shares the same node
(Italian, French, Romanian, Spanish, Portuguese).


