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Abstract
Transformer architecture achieves great suc-
cess in abundant natural language processing
tasks. The over-parameterization of the Trans-
former model has motivated plenty of works
to alleviate its overfitting for superior perfor-
mances. With some explorations, we find sim-
ple techniques such as dropout, can greatly
boost model performance with a careful de-
sign. Therefore, in this paper, we integrate dif-
ferent dropout techniques into the training of
Transformer models. Specifically, we propose
an approach named UniDrop to unite three
different dropout techniques from fine-grain
to coarse-grain, i.e., feature dropout, structure
dropout, and data dropout. Theoretically, we
demonstrate that these three dropouts play dif-
ferent roles from regularization perspectives.
Empirically, we conduct experiments on both
neural machine translation and text classifica-
tion benchmark datasets. Extensive results
indicate that Transformer with UniDrop can
achieve around 1.5 BLEU improvement on
IWSLT14 translation tasks, and better accu-
racy for the classification even using strong
pre-trained RoBERTa as backbone.

1 Introduction

In recent years, Transformer (Vaswani et al., 2017)
has been the dominant structure in natural language
processing (NLP), such as neural machine transla-
tion (Vaswani et al., 2017), language modeling (Dai
et al., 2019) and text classification (Devlin et al.,
2019; Liu et al., 2019). To further improve the
model performance, there has been much effort in
designing better architectures or introducing exter-
nal knowledge into Transformer models (Wu et al.,
2019; Lu et al., 2019; Kitaev et al., 2020; Ahmed
et al., 2017; Hashemi et al., 2020), which increases
computational costs or requires extra resources.

Despite the effectiveness of above strategies,
the over-parameterization and overfitting is still

∗ This work was done when Zhen Wu was a research
intern at Microsoft Research Asia.

a crucial problem for Transformer. Regularization
methods such as weight decay (Krogh and Hertz,
1992), data augmentation (Sennrich et al., 2016a),
dropout (Srivastava et al., 2014), parameter shar-
ing (Dehghani et al., 2018; Xia et al., 2019) are
all widely adopted to address overfitting. Among
these regularization approaches, dropout (Srivas-
tava et al., 2014), which randomly drops out some
hidden units during training, is the most popular
one and various dropout techniques have been pro-
posed for Transformer. For example, Fan et al.
(2020a) propose LayerDrop, a random structured
dropout, to drop certain layers of Transformer dur-
ing training. Zhou et al. (2020) alternatively pro-
pose DropHead as a structured dropout method for
regularizing the multi-head attention mechanism.
Both of them achieved promising performances.
One great advantage of dropout is that it is free
of additional computational costs and resource re-
quirements. Hence we ask one question: can we
achieve stronger or even state-of-the-art (SOTA)
results only relying on various dropout techniques
instead of extra model architecture design or knowl-
edge enhancement?

To this end, in this paper, we propose UniDrop
to integrate three different-level dropout techniques
from fine-grain to coarse-grain, feature dropout,
structure dropout, and data dropout, into Trans-
former models. Feature dropout is the conventional
dropout (Srivastava et al., 2014) that we introduced
before, which is widely applied on hidden rep-
resentations of networks. Structure dropout is a
coarse-grained control and aims to randomly drop
some entire substructures or components from the
whole model. In this work, we adopt the afore-
mentioned LayerDrop (Fan et al., 2020a) as our
structure dropout. Different from the previous two
dropout methods, data dropout (Iyyer et al., 2015)
is performed on the input data level, which serves
as a data augmentation method by randomly drop-
ping out some tokens in an input sequence.
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Figure 1: Transformer structure and feature dropout applied in different Transformer components.

We first theoretically analyze different regular-
ization roles played by the three dropout tech-
niques, and we show they can improve the gen-
eralization ability from different aspects. Then,
we provide empirical evaluations of the UniDrop
approach. We conduct experiments on neural ma-
chine translation with 8 translation datasets, and
text classification task with 8 benchmark datasets.
On both sequence generation and classification
tasks, experimental results show that the three
dropouts in UniDrop can jointly improve the per-
formance of Transformer.

The contributions of this paper can be summa-
rized as follows:

• We introduce UniDrop, which unites three
different dropout techniques into a robust one
for Transformer, to jointly improve the per-
formance of Transformer without additional
computational cost and prior knowledge.

• We theoretically demonstrate that the three
dropouts, i.e., feature dropout, structure
dropout, and data dropout play different roles
in preventing Transformer from overfitting
and improving the robustness of the model.

• Extensive results indicate that Transformer
models with UniDrop can achieve strong or
even SOTA performances on sequence gen-
eration and classification tasks. Specifically,
around 1.5 BLEU improvement on IWSLT14
translation tasks, and better accuracy for clas-
sification even using strong pre-trained model
RoBERTa as backbone.

2 Background

Feature dropout (FD) and structure dropout (SD)
are highly coupled with model architecture. There-
fore, we briefly recap Transformer and refer the
readers to Vaswani et al. (2017) for details.

As shown in Figure 1a, Transformer is stacked
by several identical blocks, and each block con-
tains two sub-layers, which are multi-head self-
attention layer and position-wise fully connected
feed-forward layer. Each sub-layer is followed by
an AddNorm operation that is a residual connection
Add (He et al., 2016) and a layer normalization
LN (Ba et al., 2016).
Multi-head Attention sub-layer consists of multi-
ple parallel attention heads, and each head maps
the query Q and a set of key-value pairs K,V to
an output through a scale dot-product attention:

Attn(Q,K,V) = softmax(
QK>√
dk

)V, (1)

where dk is the dimension of query and key, and
1√
dk

is a scaling factor. The outputs of these heads
are then concatenated and projected again to result
in the final values.
Position-wise Feed-Forward sub-layer ap-
plies two linear transformations with an inner
ReLU (Nair and Hinton, 2010) activation:

FFN(x) = max(0,xW1 + b1)W2 + b2, (2)

where W and b are parameters.
The output of each sub-layer is then followed

with AddNorm: AddNorm(x) = LN(Add(x)).
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3 UniDrop

In this section, we first introduce the details of
the three different levels of dropout techniques we
study, feature dropout, structure dropout and data
dropout. Then we provide the theoretical analy-
sis of these dropout methods on the regularization
perspectives. Finally, we present our proposed
UniDrop approach for training Transformer.

3.1 Feature Dropout
The feature dropout (FD), as a well-known regu-
larization method, is proposed by Srivastava et al.
(2014), which is to randomly suppress neurons of
neural networks during training by setting them to
0 with a pre-defined probability p.

In practice, dropout is applied to the output of
each sub-layer by default. Besides, Transformer
also contains two specific feature dropouts for
multi-head attention and activation layer of feed-
forward network. In this work, we also explore
their effects on the performance of Transformer.

• FD-1 (attention dropout): according to Equa-
tion (1), we can obtain attention weight matrix
A = QK> towards value sequence V. Our
FD-1 is applied to the attention weight A.

• FD-2 (activation dropout): FD-2 is employed
after the activation function between the two
linear transformations of FFN sub-layer.

In addition to the above FDs for Transformer, we
still find the risk of overfitting in pre-experiments.
Therefore, we further introduce another two feature
dropouts into the model architecture:

• FD-3 (query, key, value dropout): FD-1 is
used to improve generalization of multi-head
attention. However, it is directly applied to the
attention weights A, where drop value A(i, j)
means ignore the relation between token i and
token j, thus a larger FD-1 means a larger
risk of losing some critical information from
sequence positions. To alleviate this potential
risk, we add dropout to query, key, and value
before the calculation of attention.

• FD-4 (output dropout): we also apply dropout
to the output features before linear transforma-
tion for softmax classification. Specifically,
when dealing with sequence-to-sequence
tasks such as machine translation, we add FD-
4 to the output features of the last layer in the

Transformer decoder, otherwise the last layer
of the Transformer encoder.

The positions of each feature dropout applied in
Transformer1 are shown in Figure 1b.

3.2 Structure Dropout
There are three structure dropouts, respectively
LayerDrop (Fan et al., 2020a), DropHead (Zhou
et al., 2020) and HeadMask (Sun et al., 2020),
which are specifically designed for Transformer.

Some recent studies (Voita et al., 2019; Michel
et al., 2019) show multi-head attention mecha-
nism is dominated by a small portion of attention
heads. To prevent domination and excessive co-
adaptation between different attention heads, Zhou
et al. (2020) and Sun et al. (2020) respectively pro-
pose structured DropHead and HeadMask that drop
certain entire heads during training. In contrast,
LayerDrop (Fan et al., 2020a) is a higher-level and
coarser-grained structure dropout. It drops some
entire layers at training time and directly reduces
the Transformer model size.

In this work, we adopt LayerDrop as the struc-
ture dropout to incorporate it into our UniDrop.

3.3 Data Dropout
Data dropout aims to randomly remove some words
in the sentence with a pre-defined probability. It is
often used as a data augmentation technique (Wei
and Zou, 2019; Xie et al., 2020). However, di-
rectly applying vanilla data dropout is hard to keep
the original sequence for training, which leads
to the risk of losing high-quality training sam-
ples. To address this issue, we propose a two-
stage data dropout strategy. Specifically, given
a sequence, with probability pk (a hyperparame-
ter lies in (0, 1)), we keep the original sequence
and do not apply data dropout. If data dropout is
applied, for each token, with another probability
p (another hyperparameter lies in (0, 1)), we will
drop the token.

3.4 Theoretical Analysis
In this section, we provide theoretical analysis for
feature dropout, structure dropout and data dropout,
to show their different regularization effects. We
first re-formulate the three dropout methods. For
some probability p and layer representation h ∈ Rd
(i.e., h is the vector of outputs of some layer), we

1We also explored other positions for feature dropout, but
their performances are not so good (see Appendix A.3).
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randomly sample a scaling vector ξ ∈ Rd with
each independent coordinate as follows:

ξi =

{
−1 with probability p
p

1− p with probability 1-p. (3)

Here, i indexes a coordinate of ξ, i ∈ [1, ..., d].
Then feature dropout can be applied by computing

hfd = (1+ ξ)� h,

where � denotes element-wised product and 1 =
(1, 1, · · · , 1)′.

We use F (hfd(x)) to denote the output of a
model after dropping feature from a hidden layer
and L to denote the loss function. Similar to Wei
et al. (2020), we apply Taylor expansion to L and
take expectation to ξ:

EξL(F (hfd(x))) = EξL(F ((1+ ξ)� h(x)))

≈ L(F (h(x)) +
1

2
Eξ(ξ � h(x))TD2

hL(x)(ξ � h(x))

= L(F (h(x)) +
p

2(1− p)

d∑
j=1

D2
hj ,hj

L(x) · hj(x)2, (4)

where D2
hL is the Hessian matrix of loss with re-

spect to hidden output h and D2
hj ,hj
L(x) is the

j-th diagonal element of D2
hL. Expect the orig-

inal loss L(F (h(x))), the above formula shows
that feature dropout implicitly regularize the term∑d

j=1D
2
hj ,hj
L(x) · hj(x)2, which relates to the

trace of the Hessian.
For structure dropout, we use a 1-dim random

scalar η ∈ R whose distribution is: η = −1 with
probability p, and η = 0 with probability 1−p. The
structure dropout is similarly applied by computing
hsd = (1 + η) · h.

For input data x ∈ Rm, here x is a sequence of
tokens and m is the sequence length, we sample a
random scaling vector β ∈ Rm with independent
random coordinates where each coordinate is iden-
tically distributed as η. The input data after drop
data becomes xdd = (1+ β)� x.

Similar to feature dropout, we can obtain that
data dropout implicitly optimizes the regularized
loss as follows: L(F (h(x))) − p · xT∇xL(x) + p ·∑m
j=1D

2
xj ,xjL(x) · x

2
j , and structure dropout implic-

itly optimizes the regularized loss: L(F (h(x))) −
p · h(x)T∇hL(x) + p ·

∑m
i,j=1D

2
hi,hj
L(x) · hi(x)hj(x),

where D2
hi,hj
L(x) is the (i, j)-th element in Hes-

sian matrix D2
hL.

Interpretation From the above analysis, we can
conclude that feature dropout, structure dropout
and data dropout regularize different terms of the

Data
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Layer

Dropout
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Dropout

𝑡𝑖−1 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2

Figure 2: Different dropout components in UniDrop.
The gray positions denote applying the corresponding
dropout.

model, and they can not be replaced by each other.
(1) Because the hidden output will be normalized
by layer normalization, the term h(x)T∇hL(x)
equals to zero according to Lemma 2.4 in Arora
et al. (2019). Therefore, structure dropout im-
plicitly regularizes the term

∑m
i,j=1D

2
hi,hj
L(x).

Hence, structure dropout can regularize the whole
elements of Hessian of the model with respect to
hidden output, while feature dropout only regular-
izes the diagonal elements of the Hessian. Thus,
integrating structure dropout and feature dropout
can regularize every component of Hessian with
emphasizing the diagonal elements of the Hessian.
(2) Since x is also normalized, the term xT∇xL(x)
equals to zero according to Lemma 2.4 in Arora
et al. (2019). Different from feature dropout and
structure dropout, data dropout regularizes Hessian
of loss with respect to input data.

Regularizing Hessian matrix with respect to both
input and hidden output can improve model robust-
ness and hence the generalization ability. We put
more details in Appendix A.1.

3.5 UniDrop Integration

From the above theoretical analysis, the three
dropout techniques are performed in different ways
to regularize the training of Transformer, each with
unique property to improve the model generaliza-
tion. Therefore, we introduce UniDrop to take
the most of each dropout into Transformer. The
overview of UniDrop is presented in Figure 2.

To better view each dropout in a model forward
pass, we only show a three layers of architecture in
Figure 2, and each layer with one specific dropout
technique. The data dropout is applied in the input
layer by dropping out some word embeddings (e.g.,
embedding of word ti is dropped). In the middle
layer, the feature dropout randomly drops several
neurons in each word representations (e.g., the third
neurons of word ti−1 is dropped). The last layer is
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directly dropped out through layer dropout2.

4 Experiments

We conduct experiments on both sequence gener-
ation and classification tasks, specifically, neural
machine translation and text classification, to vali-
date the effectiveness of UniDrop for Transformer.

4.1 Neural Machine Translation

In this section, we introduce the detailed settings
for the neural machine translation tasks and report
the experimental results.

4.1.1 Datasets

We adopt the widely acknowledged IWSLT14
datasets3 with multiple language pairs, including
English↔German (En↔De), English↔Romanian
(En↔Ro), English↔Dutch (En↔Nl), and
English↔Portuguese-Brazil (En↔Pt-br), a total
number of 8 translation tasks. Each dataset
contains about 170k∼190k translation data pairs.
The datasets are processed by Moses toolkit4 and
byte-pair-encoding (BPE) (Sennrich et al., 2016b)
is applied to obtain subword units. The detailed
statistics of datasets are shown in Appendix A.2.

4.1.2 Model

We use the transformer_iwslt_de_en con-
figuration5 for all Transformer models. Specifi-
cally, the encoder and decoder both consist of 6
blocks. The source and target word embeddings are
shared for each language pair. The dimensions of
embedding and feed-forward sub-layer are respec-
tively set to 512 and 1024, the number of attention
heads is 4. The default dropout (not our four fea-
ture dropout) rate is 0.3 and weight decay is 0.0001.
All models are optimized with Adam (Kingma and
Ba, 2015) and the learning rate schedule is same
as in Vaswani et al. (2017). The weight of label
smoothing (Pereyra et al., 2017) is set to 0.1.

For the Transformer models with our UniDrop,
we set all feature dropout rates to 0.1. The structure
dropout LayerDrop is only applied to the decoder
with rate 0.1. For the data dropout, the sequence

2Except the data dropout is only applied in the input layer,
feature/structure dropout can be applied in each layer.

3https://wit3.fbk.eu/mt.php?release=
2014-01

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

5https://github.com/pytorch/fairseq

keep rate pk and token dropout rate p are respec-
tively 0.5 and 0.2. The other settings are the same
as the configuration of the baseline Transformer.

To evaluate the model performance, we use beam
search (Sutskever et al., 2014) algorithm to gener-
ate the translation results. The beam width is 5
and the length penalty is 1.0. The evaluation met-
ric is the tokenized BLEU (Papineni et al., 2002)
score with multi-bleu.perl script6. We re-
peat each experiment three times with different
seeds and report the average BLEU.

4.1.3 Results
Table 1 shows the BLEU results of the Transformer
baselines and models with different dropouts. Com-
pared with baselines, we can see that the dropouts
FD, SD, or DD all bring some improvements7.
This observation verifies the existence of overfit-
ting in the Transformer. In contrast, our model
Transformer+UniDrop achieves the most improve-
ments across all translation tasks, which demon-
strates the effectiveness of UniDrop for the Trans-
former architecture. To further explore the ef-
fects of the three different grained dropouts in
UniDrop, we conduct ablation studies and re-
spectively remove the FD, SD, and DD from
Transformer+UniDrop. The results in Table 1
show that three ablated models obtain lower BLEU
scores compared to the full model. This observa-
tion validates the necessity of them for UniDrop.
Among all ablation versions, the Transformer-
UniDrop w/o FD obtains the least improvements.
It is reasonable because FD actually contains four
feature dropouts on different positions, which can
effectively prevent Transformer from overfitting.

To show the superiority of UniDrop, we also
compare the Transformer+UniDrop with several
existing works on the widely acknowledged bench-
mark IWSLT14 De→En translation. These works
improve machine translation from different as-
pects, such as the training algorithm design (Wang
et al., 2019b), model architecture design (Lu et al.,
2019; Wu et al., 2019) and data augmentation (Gao
et al., 2019). The detailed results are shown in Ta-
ble 2. We can see that the Transformer model with
our UniDrop outperforms all previous works and
achieve state-of-the-art performance, with 36.88

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

7The dropout rates of model Transformer+FD, Trans-
former+SD, Transformer+DD are tuned with IWSLT14
De→En dev set and respectively set to 0.2, 0.2, 0.3.

https://wit3.fbk.eu/mt.php?release=2014-01
https://wit3.fbk.eu/mt.php?release=2014-01
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/pytorch/fairseq
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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En→De De→En En→Ro Ro→En En→Nl Nl→En Nn→Pt-br Pt-br→En Avg. 4
Transformer 28.67 34.84 24.74 32.14 29.64 33.28 39.08 43.63 33.25 -
+FD 29.61 36.08 25.45 33.12 30.37 34.50 40.10 44.74 34.24 +0.99
+SD 29.03 35.09 25.03 32.69 29.97 33.94 39.78 44.02 33.69 +0.44
+DD 28.83 35.26 24.98 32.76 29.72 34.00 39.50 43.71 33.59 +0.34
+UniDrop 29.99 36.88 25.77 33.49 31.01 34.80 40.62 45.62 34.77 +1.52
w/o FD 29.24 35.68 25.18 33.17 30.16 33.90 39.97 44.81 34.01 +0.76
w/o SD 29.92 36.70 25.59 33.26 30.55 34.75 40.45 45.60 34.60 +1.35
w/o DD 29.76 36.38 25.44 33.26 30.86 34.55 40.37 45.27 34.49 +1.24

Table 1: Machine translation results of the standard Transformer and our models on various IWSLT14 translation
datasets. The “+FD”, “+SD”, “+DD”, and “+UniDrop” denotes applying the feature dropout, structure dropout,
data dropout, or UniDrop to the standard Transformer. The “w/o FD”, “w/o SD” and “w/o DD” respectively indi-
cate the removal of the feature dropout, structure dropout, or data dropout from the model Transformer+UniDrop.
Avg. and 4 denote the average results of the 8 translation tasks and improvements compared with the standard
Transformer. Best results are in bold.

Approaches BLEU
Adversarial MLE (Wang et al., 2019b) 35.18
DynamicConv (Wu et al., 2019) 35.20
Macaron (Lu et al., 2019) 35.40
IOT (Zhu et al., 2021) 35.62
Soft Contextual Data Aug (Gao et al., 2019) 35.78
BERT-fused NMT (Zhu et al., 2020) 36.11
MAT (Fan et al., 2020b) 36.22
MixReps+co-teaching (Wu et al., 2020) 36.41
Transformer 34.84
+UniDrop 36.88

Table 2: Comparison with existing works on IWSLT-
2014 De→En translation task.

Approaches En→De Ro→En Nl→En
MAT (Fan et al., 2020b) 29.90 - -
MixReps+co-teaching (Wu et al., 2020) 29.93 33.12 34.45
Transformer 28.67 32.14 33.38
+UniDrop 29.99 33.49 34.80

Table 3: Comparison with existing works on IWSLT-
2014 En→De, Ro→En, and Nl→En translation tasks.

BLEU score. Especially, it surpasses the BERT-
fused NMT model (Zhu et al., 2020), which incor-
porates the pre-trained language model BERT, by
a non-trivial margin. We also show some compar-
isons on IWSLT14 En→De, Ro→En, and Nl→En
translations, the results are shown in Table 3.

According to the above results, UniDrop suc-
cessfully unites the FD, SD, and DD, and finally im-
proves the performance of Transformer on neural
machine translation tasks, without any additional
computation costs and resource requirements.

4.2 Text Classification

We also conduct experiments on text classification
tasks to further demonstrate the effectiveness of
UniDrop for the Transformer models.

4.2.1 Datasets

We evaluate different methods on the text classifica-
tion task based on 8 widely-studied datasets, which
can be divided into two groups. The first group is
from GLUE tasks (Wang et al., 2019a), and they
are usually used to evaluate the performance of
the large-scale pre-trained language models after
fine-tuning. The second group is some typical text
classification datasets that are widely used in previ-
ous works (Voorhees and Tice, 1999; Maas et al.,
2011; Zhang et al., 2015). The statistics of all
datasets are shown in Appendix A.2.

4.2.2 Model

We employ RoBERTaBASE (Liu et al., 2019) as the
strong baseline and fine-tune it on the text classifi-
cation datasets. Different from BERTBASE (Devlin
et al., 2019), RoBERTaBASE is pre-trained with dy-
namic masking, full-sentences without NSP loss
and a larger mini-batches. It has 12 blocks, and
the dimensions of embedding and FFN are 768 and
3072, the number of attention heads is 12. When
fine-tuning, we set the batch size to 32 and the max
epoch to 30. Adam is applied to optimize the mod-
els with a learning rate of 1e-5 and a warm-up step
ratio of 0.1. We employ the polynomial decay strat-
egy to adjust the learning rate. The default dropout
and weight decay are both set to 0.1.

When adding UniDrop to RoBERTaBASE,
we empirically set feature dropout rate and
LayerDrop rate to 0.1. For data dropout, the se-
quence keep rate pk and token dropout rate p are
respectively 0.5 and 0.1. The other settings are the
same as in the baseline RoBERTaBASE. We use the
standard accuracy to evaluate different methods on
text classification tasks.
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MNLI QNLI SST-2 MRPC
BiLSTM+Attn, CoVe 67.9 72.5 89.2 72.8
BiLSTM+Attn, ELMo 72.4 75.2 91.5 71.1
BERTBASE 84.4 88.4 92.9 86.7
BERTLARGE 86.6 92.3 93.2 88.0
RoBERTaBASE 87.1 92.7 94.7 89.0
+UniDrop 87.8 93.2 95.5 90.4

Table 4: Accuracy on GLUE tasks (dev set). The mod-
els BiLSTM+Attn, CoVe and BiLSTM+Attn, ELMo
are from Wang et al. (2019a). Best results are in bold.

IMDB Yelp AG TREC
Char-level CNN - 62.05 90.49 -
VDCNN - 64.72 91.33 -
DPCNN - 69.42 93.13 -
ULMFiT 95.40 - 94.99 96.40
BERTBASE 94.60 69.94 94.75 97.20
RoBERTaBASE 95.7 70.9 95.1 97.6
+UniDrop 96.0 71.4 95.5 98.0

Table 5: Accuracy on the typical text classification
datasets. Char-level CNN and VDCNN are from Zhang
et al. (2015) and Conneau et al. (2017), DPCNN
and ULMFiT are from Johnson and Zhang (2017)
and Howard and Ruder (2018). Best results are in bold.

4.2.3 Results
Table 4 and Table 5 respectively show the accuracy
of different models on GLUE tasks and typical text
classification datasets.

Compared with the conventional BiLSTM
and CNN based models, we can observe the
pre-trained models, including ULMFiT, BERT,
RoBERTa, achieve obvious improvements on most
datasets. Benefiting from better training strategy,
RoBERTaBASE outperforms BERTBASE and even
BERTLARGE on GLUE tasks.

We can see our proposed UniDrop further im-
prove the performance RoBERTaBASE on both
small-scale and large-scale datasets. Specifically,
UniDrop brings about 0.4 improvements of accu-
racy on the typical text classification datasets from
Table 5. In contrast, RoBERTaBASE+UniDrop
achieves more improvements on GLUE tasks. The
experimental results on the 8 text classification
benchmark datasets consistently demonstrate the
facilitation of UniDrop for Transformer. We show
more results and ablation study on text classifica-
tion task in Appendix A.5.

5 Analysis

In this section, we use IWSLT14 De→En transla-
tion as the analysis task to investigate the capability
of UniDrop to avoid overfitting, as well as the ef-
fects of different dropout components and dropout

Figure 3: The dev loss of different models on IWSLT14
De→En translation task.

rates on UniDrop.

5.1 Overfitting

To show the superiority of UniDrop to pre-
vent Transformer from overfitting, we com-
pare the dev loss during training of Trans-
former, Transformer with each dropout technique,
Transformer+UniDrop, and ablated models of
Transformer+UniDrop. Figure 3 shows loss curves
of different models.

We can observe that the standard Transformer
is quickly overfitted during training, though it
is equipped with a default dropout. In contrast,
the feature dropout, structure dropout, and data
dropout, as well as the combinations of any two
dropouts (i.e., ablated models), greatly reduce the
risk of overfitting to some extent. Among all com-
pared models, our Transformer+UniDrop achieves
the lowest dev loss and shows great advantage to
prevent Transformer from overfitting. Besides, we
also find that the dev loss of Transformer+UniDrop
continuously falls until the end of the training. We
stop it to keep training epochs of all models same
for a fair comparison.

In Appendix A.4, we also plot the curves of train-
ing loss for the above models, together with the dev
loss, to make a better understanding of the regular-
ization effects from these dropout techniques.

5.2 Ablation Study

In Table 1, we have presented some important ab-
lation studies by removing FD, SD, or DD from
UniDrop. The consistent decline of BLEU scores
demonstrates their effectiveness. Besides, we fur-
ther investigate the effects of the two existing
feature dropouts FD-1, FD-2, two new feature
dropouts FD-3, FD-4, and our proposed two-stage
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表格 1
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35.68 36.88 36.33 34.71
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(a). Varying FD rate. (b). Varying SD rate. (c). Varying DD rate.

1

Figure 4: The BLEU scores of Transformer+UniDrop on IWSLT14 De→En translation dev set and test test, with
varying the rates of FD, SD and DD respectively.

De→En En→De Ro→En
Transformer 34.84 28.67 32.14
+UniDrop 36.88 29.99 33.49
w/o FD-1 36.72 29.84 33.33
w/o FD-2 36.57 29.76 33.28
w/o FD-3 36.59 29.83 33.31
w/o FD-4 36.65 29.59 33.24
w/o 2-stage DD 36.61 29.78 33.12

Table 6: Ablation study of data dropout and different
feature dropouts on IWSLT14 De→En, En→De, and
Ro→En translation tasks.

data dropout strategy on Transformer models. The
experimental results are shown in Table 6.

From Table 6, we can see the four ablation mod-
els removing FDs underperform the full model
Transformer+UniDrop, which means they can
work together to prevent Transformer from over-
fitting. In multi-head attention module, FD-3
brings more BLUE improvement than FD-1. This
comparison shows the insufficiency of only apply-
ing FD-1 for the Transformer architecture. The
Transformer+UniDrop w/o 2-stage DD means we
directly apply conventional data dropout to the se-
quence instead of our proposed 2-stage strategy.
Compared with the full model, its performance also
decreases. This shows the necessity of keeping the
original sequence for data dropout.

5.3 Effects of Different Dropout Rates

To investigate the effects of FD, SD, and DD
dropout rates on the UniDrop, we respectively
vary them based on the setting (FD=0.1, SD=0.1,
DD=0.2). When varying one dropout component,
we keep other dropout rates unchanged. Figure 4
shows the corresponding results.

We can observe that the performance of each
dropout for Transformer+UniDrop first increases
then decreases when varying the dropout rates from
small to large. Especially, varying the rate for FD

dropout makes a more significant impact on the
model performance since FD contains four feature
dropout positions. In contrast, the DD is least sen-
sitive to the dropout rate change, but it still plays a
role in the model regularization.

6 Related Work

6.1 Dropout
Dropout is a popular regularization method for
neural networks by randomly dropping some neu-
rons during training (Srivastava et al., 2014). Fol-
lowing the idea, there are abundant subsequent
works designing specific dropout for specific ar-
chitecture, such as StochasticDepth (Huang et al.,
2016), DropPath (Larsson et al., 2017), Drop-
Block (Ghiasi et al., 2018) for convolutional neural
networks, Variational Dropout (Gal and Ghahra-
mani, 2016), ZoneOut (Krueger et al., 2017), and
Word Embedding Dropout (Gal and Ghahramani,
2016) for recurrent neural networks. Recently,
the Transformer architecture achieves great suc-
cess in a variety of tasks. To improve generaliza-
tion of Transformer, some recent works propose
LayerDrop (Fan et al., 2020a), DropHead (Zhou
et al., 2020) and HeadMask (Sun et al., 2020) as
structured regularizations, and obtain better perfor-
mance than standard Transformer. Instead of de-
signing a specific dropout for Transformer, in this
work, we focus on integrating the existing dropouts
into one UniDrop to further improve generalization
of Transformer without any additional cost.

6.2 Data Augmentation
Data augmentation aims at creating realistic-
looking training data by applying a transforma-
tion to a sample, without changing its label (Xie
et al., 2020). In NLP tasks, data augmentation often
refers to back-translation (Sennrich et al., 2016a),
word replacing/inserting/swapping/dropout (Wei
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and Zou, 2019; Xie et al., 2020), etc. In this work,
we adopt simple but effective word dropout as data
level dropout in our UniDrop. We, additionally,
design a two-stage data dropout strategy.

7 Conclusion

In this paper, we present an integrated dropout
approach, UniDrop, to specifically regularize the
Transformer architecture. The proposed UniDrop

unites three different level dropout techniques from
fine-grain to coarse-grain, feature dropout, struc-
ture dropout, and data dropout respectively. We
provide a theoretical justification that the three
dropouts play different roles in regularizing Trans-
former. Extensive results on neural machine trans-
lation and text classification datasets show that our
Transformer+UniDrop outperforms the standard
Transformer and various ablation versions. Further
analysis also validates the effectiveness of differ-
ent dropout components and our two-stage data
dropout strategy. In conclusion, the UniDrop im-
proves the performance and generalization of the
Transformer without additional computational cost
and resource requirement.
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A Appendix

A.1 Supplementary materials for theoretical
analysis

In this section, we explain why regularizing Hes-
sian matrix with respect to input or hidden output
can improve model robustness and generalization.

We use Dα
fL to denote the α-order derivatives

of loss L with respect to f . If the hidden output is
perturbed by ε, i.e., h̃ = h+ ε, the k-th output Fk
shifts to

Fk(h+ ε) =Fk(h) + εTJFk,h

+
1

2
εT (D2

hFk(h))ε+ o(ε2), (5)

where JFk,h(x) is the Jacobian between hidden
output h and final output Fk.

Structure dropout regularizes all elements in
Hessian matrix D2

hL. For Hessian matrix of loss
function, we have D2

hL = JTF,h(D
2
FL)JF,h +∑

k(DFkL)(D2
hFk(h)). Thus, regularizing all el-

ements in D2
hL means regularizing both JF,h and

D2
hFk(h). As shown in Eq.5, regularizing this two

terms can make |Fk(h+ε)−Fk(h)| smaller. There-
fore, the robustness of the model is improved and
the generalization ability of the model can also be
improved (Hoffman et al., 2019; Jakubovitz and
Giryes, 2018).

Feature dropout regularizes diagonal element
of D2

hL. Using the approximation D2
hL ≈

JTF,h(D
2
FL)JF,h(Wei et al., 2020), regularizing di-

agonal elements D2
hL equals to regularizing norm

of Jacobian, i.e., ||JF,h||2 if D2
FL is roughly a di-

agonal matrix. For cross-entropy loss, D2
FL =

diag(z) − zzT , where z is the probability vector
predicted by the model encoding the distribution
over output class labels, the matrix D2

FL can be
approximated by a diagonal matrix. Thus, feature
dropout mainly regularizes the first-order coeffi-
cient JFk,h in Taylor expansion in Eq.5, which is
different from structure dropout. Since Jacobian
is an essential quantity for the generalization (Wei
et al., 2020; Hoffman et al., 2019), emphasising
this term is necessary for generalization although
structure dropout can also regularize it.

Similar analysis can be applied to data dropout
and we only need to replace hidden output h to the
input x.

A.2 Statistics of Datasets
Table 7 and Table 8 respectively show the statistics
of machine translation and text classification bench-

Datasets Train Dev Test
En↔De 160k 7k 7k
En↔Ro 180k 4.7k 1.1k
En↔Nl 170k 4.5k 1.1k

En↔Pt-br 175k 4.5k 1.2k

Table 7: Statistics for machine translation datasets.

Datasets Classes Train Dev
MNLI 3 393k 20k
QNLI 2 105k 5.5k
SST-2 2 67k 0.9k
MRPC 2 3.7k 0.4k
Datasets Classes Train Test
IMDB 2 25k 25k
Yelp 5 650k 50k
AG’s News 4 120k 76k
TREC 6 5.4k 0.5k

Table 8: Statistics for text classification datasets.

mark datasets we used to evaluate the UniDrop for
Transformer.

For machine translation tasks, the four language
pairs all contain around 170k∼190k training pairs.

Text classification experiments are conducted in
GLUE tasks (Wang et al., 2019a) and typical text
classification benchmarks datasets (Voorhees and
Tice, 1999; Maas et al., 2011; Zhang et al., 2015).
For GLUE tasks, we adopt the four datasets MNLI,
QNLI, SST-2 and MRPC. They are used to evaluate
the ability of models on language inference, sen-
timent classification and paraphrase detection. In
typical text classification datasets, IMDB is binary
film review classification task (Maas et al., 2011).
Yelp and AG’s News datasets are built by (Zhang
et al., 2015), respectively for sentiment classifi-
cation and topic classification. TREC is a ques-
tion classification dataset consisting of 6 question
types (Voorhees and Tice, 1999).

A.3 Dropout Attempts
Besides the different dropout methods introduced
in Section 3, we also tried some other dropouts.
We first introduce their settings. The ‘QKV_proj’
applies dropout to query, key, and value after lin-
ear projection. In contrast, FD-3 is to add dropout
to query, key, and value before projection. Sim-
ilarly, ‘LogitsDrop’ means that we use dropout
after obtaining output logits from output projec-
tion layer. Compared to LogitsDrop, FD-4 directly
applies dropout before the output projection layer.
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BLEU
Transformer 34.84
+FD-1, FD-2 35.46
+FD-1, FD-2, FD-3 36.10
+FD-1, FD-2, QKV_proj 35.75
+FD-1, FD-2, FD-4 36.15
+FD-1, FD-2, LogitsDrop 36.00
+FD-1, FD-2, FD-3, LogitsDrop 36.06
+FD-1, FD-2, FD-3, FD-4 36.48
+FD-1, FD-2, Encoder LayerDrop 35.24
+FD-1, FD-2, Decoder LayerDrop 35.99
+FD-1, FD-2, Encoder&Decoder LayerDrop 35.74
+FD-1, FD-2, EncoderDrop 35.64
+FD-1, FD-2, DD 36.09
+FD-1, FD-2, FD-3, FD-4, Decoder LayerDrop 36.61
+UniDrop 36.88

Table 9: The results of different dropouts on IWSLT14 De→En translation task.

‘EncoderDrop’ means that we randomly drop the
whole information of Transformer encoder with a
probability and only use previous outputs to gener-
ate the next token during training. Obviously, it is a
language modeling task when dropping the encoder.
‘Encoder LayerDrop’ is that we apply LayerDrop

only on the Transformer encoder. Table 9 shows
the BLEU scores of different models on IWSLT-
2014 De→En translation task. All dropout rates
are tuned within [0.1, 0.2, 0.3, 0.4] according to the
performance of the dev set.

FD-1 and FD-2 are two existing feature dropouts
for Transformer. We first use them and achieve
better BLUE scores than the standard Transformer,
which demonstrates the existence of serious over-
fitting in Transformer model. On this basis, we
try to add further feature dropout to prevent Trans-
former from overfitting. However, we can see that
QKK_proj achieves fewer improvements compared
with FD-3. Similarly, LogitsDrop also underper-
forms FD-4. Therefore, we finally use FD-3 and
FD-4 as our feature dropout components together
with FD-1 and FD-2.

Among all structure dropout models, decoder
LayerDrop outperforms all compared methods. In
contrast, EncoderDrop only brings small improve-
ments. Surprisingly, we can see that here the en-
coder LayerDrop actually has a negative effect on
Transformer. Thus we integrate the promising de-
coder LayerDrop as structured dropout component
into UniDrop.

MNLI QNLI SST-2 MRPC
RoBERTaBASE 87.1 92.7 94.7 89.0
+UniDrop 87.8 93.2 95.5 90.4
w/o FD 87.3 92.9 94.8 90.1
w/o SD 87.5 93.1 95.1 89.5
w/o DD 87.7 93.1 95.0 89.5
RoBERTaLAEGE 89.8 94.3 96.3 90.4
+UniDrop 90.2 94.8 96.6 91.4
w/o FD 89.9 94.6 96.2 90.4
w/o SD 90.0 94.6 96.3 90.7
w/o DD 90.2 94.7 95.2 90.7

Table 10: Ablation Study on GLUE tasks (dev set).
The “w/o FD”, “w/o SD”, “w/o DD” indicate re-
spectively removing feature dropout, structure dropout,
and data dropout from RoBERTaBASE+UniDrop or
RoBERTaLARGE+UniDrop.

A.4 Loss Curves

Figure 5 shows the loss curves of different mod-
els during training. Overall, we can see that our
Transfomer+UniDrop obtains the minimal gap of
training loss and dev loss compared with other
dropout models and the standard Transformer. This
observation shows the better capability of UniDrop
to prevent Transformer from overfitting. Bene-
fitting from the advantage, Transfomer+UniDrop
achieves the best generalization and dev loss on
IWSLT14 De→En translation task.

A.5 Ablation Study on Text Classification

Table 10 show the accuracy of standard
RoBERTaBASE and RoBERTaLARGE, the
models with UniDrop and corresponding ablated
models on GLUE tasks. Compared the base
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Figure 5: The training and dev loss of different models on IWSLT14 De→En translation task.

models RoBERTaBASE and RoBERTaLARGE, we
can observe that UniDrop further improves their
performance on text classification tasks. After
removing FD, SD, or DD from UniDrop, the
corresponding accuracy has decreased more or
less. The consistent declines again demonstrate the
necessity of the feature dropout, structure dropout
and data dropout for UniDrop.


