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Abstract

Recent work has demonstrated the vulnera-
bility of modern text classifiers to universal
adversarial attacks, which are input-agnostic
sequences of words added to text processed
by classifiers. Despite being successful, the
word sequences produced in such attacks are
often ungrammatical and can be easily distin-
guished from natural text. We develop ad-
versarial attacks that appear closer to natural
English phrases and yet confuse classification
systems when added to benign inputs. We
leverage an adversarially regularized autoen-
coder (ARAE) (Zhao et al., 2018a) to generate
triggers and propose a gradient-based search
that aims to maximize the downstream classi-
fier’s prediction loss. Our attacks effectively
reduce model accuracy on classification tasks
while being less identifiable than prior models
as per automatic detection metrics and human-
subject studies. Our aim is to demonstrate that
adversarial attacks can be made harder to de-
tect than previously thought and to enable the
development of appropriate defenses.1

1 Introduction

Adversarial attacks have recently been quite suc-
cessful in foiling neural text classifiers (Jia and
Liang, 2017; Ebrahimi et al., 2018). Universal
adversarial attacks (Wallace et al., 2019; Behjati
et al., 2019) are a sub-class of these methods where
the same attack perturbation can be applied to any
input to the target classifier. These attacks, be-
ing input-agnostic, point to more serious shortcom-
ings in trained models since they do not require
re-generation for each input. However, the attack
sequences generated by these methods are often
meaningless and irregular text (e.g., “zoning tap-
ping fiennes” from Wallace et al. (2019)). While

§Equal contribution
1Our code is available at https://github.com/

Hsuan-Tung/universal_attack_natural_
trigger.

human readers can easily identify them as unnatu-
ral, one can also use simple heuristics to spot such
attacks. For instance, the words in the above attack
trigger have an average frequency of 14 compared
to 6700 for words in benign inputs in the Stanford
Sentiment Treebank (SST) (Socher et al., 2013).

In this paper, we design natural attack triggers
by using an adversarially regularized autoencoder
(ARAE) (Zhao et al., 2018a), which consists of
an auto-encoder and a generative adversarial net-
work (GAN). We develop a gradient-based search
over the noise vector space to identify triggers with
a good attack performance. Our method – Natu-
ral Universal Trigger Search (NUTS) – uses pro-
jected gradient descent with l2 norm regularization
to avoid using out-of-distribution noise vectors and
maintain the naturalness of text generated.2

Our attacks perform quite well on two different
classification tasks – sentiment analysis and nat-
ural language inference (NLI). For instance, the
phrase combined energy efficiency, generated by
our approach, results in a classification accuracy of
19.96% on negative examples on the Stanford Sen-
timent Treebank (Socher et al., 2013). Furthermore,
we show that our attack text does better than prior
approaches on three different measures – average
word frequency, loss under the GPT-2 language
model (Radford et al., 2019), and errors identified
by two online grammar checking tools (scr; che).
A human judgement study shows that up to 77% of
raters find our attacks more natural than the base-
line and almost 44% of humans find our attack
triggers concatenated with benign inputs to be natu-
ral. This demonstrates that using techniques similar
to ours, adversarial attacks could be made much
harder to detect than previously thought and we
require the development of appropriate defenses in
the long term for securing our NLP models.

2We define naturalness in terms of how likely a human
can detect abnormalities in the generated text.

https://github.com/Hsuan-Tung/universal_attack_natural_trigger
https://github.com/Hsuan-Tung/universal_attack_natural_trigger
https://github.com/Hsuan-Tung/universal_attack_natural_trigger
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2 Related Work

Input-dependent attacks These attacks gener-
ate specific triggers for each different input to a
classifier. Jia and Liang (2017) fool reading com-
prehension systems by adding a single distractor
sentence to the input paragraph. Ebrahimi et al.
(2018) replace words of benign texts with similar
tokens using word embeddings. Similarly, Alzantot
et al. (2018) leverage genetic algorithms to design
word-replacing attacks. Zhao et al. (2018b) adver-
sarially perturb latent embeddings and use a text
generation model to perform attacks. Song et al.
(2020) develop natural attacks to cause semantic
collisions, i.e. make texts that are semantically
unrelated judged as similar by NLP models.

Universal attacks Universal attacks are
input-agnostic and hence, word-replacing and
embedding-perturbing approaches are not applica-
ble. Wallace et al. (2019) and Behjati et al. (2019)
concurrently proposed to perform gradient-guided
searches over the space of word embeddings to
choose attack triggers. In both cases, the attack
triggers are meaningless and can be easily detected
by a semantic checking process. In contrast,
we generate attack triggers that appear more
natural and retain semantic meaning. In computer
vision, GANs have been used to create universal
attacks (Xiao et al., 2018; Poursaeed et al., 2018).
Concurrent to our work, Atanasova et al. (2020)
design label-consistent natural triggers to attack
fact checking models. They first predict unigram
triggers and then use a language model conditioned
on the unigram to generate natural text as the final
attack, while we generate the trigger directly.

3 Universal Adversarial Attacks with
Natural Triggers

We build upon the universal adversarial attacks pro-
posed by Wallace et al. (2019). To enable natural
attack triggers, we use a generative model which
produces text using a continuous vector input, and
perform a gradient-guided search over this input
space. The resulting trigger, which is added to be-
nign text inputs, is optimized so as to maximally in-
crease the loss under the target classification model.

Problem formulation Consider a pre-trained
text classifier F to be attacked. Given a set of
benign input sequences {x} with the same ground
truth label y, the classifier has been trained to pre-
dict F (x) = y. Our goal is to find a single input-

Figure 1: Overview of our attack. Based on the gra-
dient of the target model’s loss function, we iteratively
update the noise vector n with small perturbation to ob-
tain successful and natural attack triggers.

agnostic trigger, t, that when concatenated3 with
any benign input, causes F to perform an incorrect
classification, i.e., F ([t;x]) 6= y, where ; repre-
sents concatenation. In addition, we also need to
ensure the trigger t is natural fluent text.

Attack trigger generation To ensure the trigger
is natural, fluent and carries semantic meaning, we
use a pre-trained adversarially regularized autoen-
coder (ARAE) (Zhao et al., 2018a) (details in Sec-
tion 4). The ARAE consists of an encoder-decoder
structure and a GAN (Goodfellow et al., 2014). The
input is a standard Gaussian noise vector n, which
is first mapped to a latent vector z by the generator.
Then the decoder uses this z to generate a sequence
of words – in our case, the trigger t. This trigger is
then concatenated with a set of benign texts {x} to
get full attack texts {x′}. The overall process can
be formulated as follows:

z = GENERATOR(n); t = DECODER(z);

x′ = [t;x]

We then pass each x′ into the target classifier and
compute the gradient of the classifier’s loss with
respect to the noise vector, ∇nL(F (x′), y). Back-
propagating through the decoder is not straightfor-
ward since it produces discrete symbols. Hence, we
use a reparameterization trick similar to the trick
in Gumbel softmax (Jang et al., 2017) to sample
words from the output vocabulary of ARAE model
as a one-hot encoding of triggers, while allowing
gradient backpropagation. Figure 1 provides an
overview of our attack algorithm, which we call
Natural Universal Trigger Search (NUTS).

Ensuring natural triggers In the ARAE model,
the original noise vector n0 is sampled from a stan-

3We follow Wallace et al. (2019) in adding the triggers in
front of the benign text.
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dard multi-variant Gaussian distribution. While we
can change this noise vector to produce different
outputs, simple gradient search may veer signifi-
cantly off-course and lead to bad generations. To
prevent this, following Carlini and Wagner (2017),
we use projected gradient descent with an l2 norm
constraint to ensure the noise n is always within a
limited ball around n0. We iteratively update n as:

nt+1 = ΠBε(n0)[nt + η∇ntL(F (x′), y)], (1)

where ΠBε(n0) represents the projection operator
with the l2 norm constraint Bε(n0) = {n | ‖n −
n0‖2 ≤ ε}. We try different settings of attack steps,
ε and η, selecting the value based on the quality of
output triggers. In our experiments, we use 1000
attack steps with ε = 10 and η = 1000.

Final trigger selection Since our process is not
deterministic, we initialize multiple independent
noise vectors (256 in our experiments) and perform
our updates (1) to obtain many candidate triggers.
Then, we re-rank the triggers to balance both target
classifier accuracy m1 (lower is better) and natural-
ness in terms of the average per-token cross-entropy
under GPT-2, m2 (lower is better) using the score
m1 + λm2. We select λ = 0.05 to balance the
difference in scales of m1 and m2.

4 Experiments

We demonstrate our attack on two tasks – senti-
ment analysis and natural language inference. We
use the method of Wallace et al. (2019) as a base-
line4 and use the same datasets and target classifiers
for comparison. For the text generator, we use an
ARAE model pre-trained on the 1 Billion Word
dataset (Chelba et al., 2014). For both our attack
(NUTS) and the baseline, we limit the vocabulary
of attack trigger words to the overlap of the classi-
fier and ARAE vocabularies. We generate triggers
using the development set of the tasks and report
results on test set (results on both sets in Appendix).

Defense metrics We employ three simple de-
fense metrics to measure the naturalness of attacks:
1. Word frequency: The average frequency of
words in the trigger, computed using empirical es-
timates from the training set of the target classifier.

4The baseline attack uses beam search to enlarge the
search space in each step. We also tried the baseline attack
with 256 random initializations followed by selecting the final
trigger using the same criterion as our attack, but its attack
success/naturalness remained unchanged.

Figure 2: Difference in (a) average word frequency
(normalized) and (b) average GPT-2 loss between be-
nign text (x) and different attack triggers (t) (length 8)
for SST and SNLI (computed as stat(x)−stat(t)). For
SNLI, our attacks have lower GPT-2 loss values than
even the original text, leading to a positive delta.

Task Scribens Chegg Writing
Ours Baseline Ours Baseline

SST 12.50% 15.63% 21.88% 28.13%
SNLI 2.08% 4.17% 8.33% 20.83%

Table 1: % of grammatical errors in triggers as per
grammar checkers – Scribens (scr) and Chegg (che).

2. Language model loss: The average per-token
cross-entropy loss under a pre-trained language
model – GPT-2 (Radford et al., 2019).
3. Automatic grammar checkers: We calcu-
late the average number of errors in the attack
sequences using two online grammar checkers –
Scribens (scr) and Chegg Writing (che).

4.1 Sentiment Analysis
Setup We use a 2-layer LSTM (Hochreiter and
Schmidhuber, 1997) followed by a linear layer for
sentiment predictions. The model is trained on the
binary Stanford Sentiment Treebank (SST) (Socher
et al., 2013), using AllenNLP (Gardner et al., 2018).
To avoid generating sentiment words in the trigger
and directly changing the instance’s sentiment, we
exclude a list of sentiment words (sen) from the
trigger vocabulary, following Wallace et al. (2019).

Results Table 2 (top half) captures the results of
both our attack and the baseline (Wallace et al.,
2019). Our method is able to reduce the classifier’s
test accuracy significantly, down to 8.55% in the
best attack case. Although less successful, our trig-
gers are much more natural, fluent and readable
than the baseline. Figure 2 shows the difference
in statistics between benign text and each attack
according to the metrics of word frequency and
GPT-2 loss. Our generated triggers are much closer
in these statistics to the original text inputs than the
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NUTS (our attack) Baseline (Wallace et al., 2019)

Task Trigger Test Trigger text Classifier Trigger text Classifier
length data accuracy accuracy

SST

No trigger
+ - 89.00% - 89.00%
- - 82.57% - 82.57%

8
+ the accident forced the empty

windows shut down
26.95%

collapses soggy timeout energy energy
freshness intellect genitals

15.51%

- will deliver a deeply affected
children from parents

8.55%
sunny vitality blessed lifetime lifetime
counterparts without pitfalls

2.85%

SNLI

No trigger
+ - 89.76% - 89.76%
0 - 86.52% - 86.52%
- - 79.83% - 79.83%

8

+ some black women taking the
photo last month

0.00%
mall destruction alien whatsoever shark
pasture picnic no

0.00%

0
the man drowned in hospital
and died in

3.26%
cats rounds murder pandas in alien
spacecraft mars

0.00%

- they are helping for training
achievement for a

26.78%
human humans initiate accomplishment
energies near objects near

23.02%

Table 2: Attack results on SST and SNLI. Compared to the baseline, our attacks are slightly less successful at
reducing test accuracy but generate more natural triggers. For SST, “+”=positive, “-”=negative sentiment. For
SNLI, “+”=entailment , “0”=neutral, and “-”=contradiction. Lower numbers are better. ‘No trigger’=classifier
accuracy without any attack. Additional attack examples with varying trigger lengths are provided in Appendix.

Condition Ours Baseline Not Sure
Trigger-only 77.78 10.93 11.29

Trigger+Benign 61.16 21.69 17.15

Text Natural Unnatural Not Sure
Our attack 44.27 50.49 5.24

Baseline attack 22.84 72.00 5.16
Natural text 83.11 14.40 2.49

Table 3: Human judgement results: all numbers in %, columns represent the choices provided to human raters.
(Left) Our attacks are judged more natural than baseline attacks (both on their own and when concatenated with
benign input text). Significance tests return p < 1.7× 10−130 and p < 4.9× 10−45 for the two rows, respectively.
(Right) Individual assessments show that our attack is more natural than the baseline but less than benign text on
its own (as expected). Significance between natural ratings for our model and baseline has p < 1.4× 10−18.

baseline. Further, as shown in Table 1, two gram-
mar checkers (scr; che) report 12.50% and 21.88%
errors per word on our attack triggers, compared to
15.63% and 28.13% for the baseline.

4.2 Natural Language Inference

Setup We use the SNLI dataset (Bowman et al.,
2015) and the Enhanced Sequential Inference
Model (ESIM) (Chen et al., 2017) with GloVe em-
beddings (Pennington et al., 2014) as the classifier.
We attack the classifier by adding a trigger to the
front of the hypothesis.

Results From Table 2, we see that both our attack
and the baseline decrease the accuracy to almost
0% on entailment and neutral examples. On con-
tradiction examples, our attack brings the accuracy
down to 26.78% while the baseline decreases it
to 23.02%. Although less successful, our attacks
are much more natural than the baseline. In Fig-
ure 2, our attacks are closer to the word frequency
of benign inputs and even achieve a lower GPT-2

loss than the benign text. In Table 1, two grammar
checkers (scr; che) also report lower errors on our
attacks compared to the baseline.

4.3 Human-Subject Study
To further validate that our attacks are more nat-
ural than baseline, we perform a human-subject
study on Amazon Mechanical Turk. We collect
ratings by: (1) providing a pair of our trigger vs
baseline trigger (with and without benign text) and
asking the worker to select the more natural one; (2)
providing a piece of text (our attack text/baseline
attack text/benign input) and asking the human to
determine whether it is naturally generated or not.
Both conditions allow the human to choose a “Not
sure” option. We generated attack triggers with
lengths of 3, 5, and 8 (see Appendix for details)
and created 450 comparison pairs for (1) and 675
pieces of text (225 for each type) for (2). For each
instance, we collect 5 different human judgements
and report average scores.

From Table 3 (left), we observe that 77.78% of
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Test Class

Model Architecture Dataset
LSTM BERT SST IMDB
⇓ ⇓ ⇓ ⇓

BERT LSTM IMDB SST

positive 13.91% 41.26% 28.85% 33.67%
negative 51.19% 25.33% 18.13% 30.05%

Table 4: Attack transferability results: We report
the accuracy drop for our transfer attacks source-model
⇒ target-model, where we generate natural attack trig-
gers from source-model and test their effectiveness on
target-model. For transferability across model archi-
tecture, we use SST as the dataset; for transferability
across dataset, we use LSTM as the model architecture.

workers find our attack trigger to be more natural
than the baseline while 61.16% judge our attack
to be more natural even when concatenated with
benign text. The other table shows 44.27% human
subjects think our attack inputs are naturally gener-
ated. Although it is lower than the 83.11% for real
natural inputs, it is still significantly higher than the
22.84% of baseline attack inputs, which shows that
our attacks are more natural and harder to detect
than the baseline for humans.

4.4 Attack Transferability

Similar to Wallace et al. (2019), we also evaluate
the attack transferability of our universal adver-
sarial attacks to different models and datasets. A
transferable attack further decreases the assump-
tions being made: for instance, the adversary may
not need white-box access to a target model and in-
stead generate attack triggers using its own model
to attack the target model.

We first evaluate transferability of our attack
across different model architectures. Besides the
LSTM classifier in Section 4.1, we also train a
BERT-based classifier on the SST dataset with
92.86% and 91.15% test accuracy on positive and
negative data. From Table 4, we can see that the
transferred attacks, generated for the LSTM model,
lead to 14% ∼ 51% accuracy drop on the target
BERT model.

We also evaluate attack transferability across
different datasets. In addition to the SST dataset in
Section 4.1, we train a different LSTM classifier
with the same model architecture on the IMDB
sentiment analysis dataset, which gets 89.75% and
89.85% test accuracy on positive and negative data.
Our attacks transfer in this case also, leading to
accuracy drops of 18% ∼ 34% on the target model
(Table 4).

5 Conclusion

We developed universal adversarial attacks with
natural triggers for text classification and experi-
mentally demonstrated that our model can generate
attack triggers that are both successful and appear
natural to humans. Our main goals are to demon-
strate that adversarial attacks can be made harder
to detect than previously thought and to enable the
development of appropriate defenses. Future work
can explore better ways to optimally balance attack
success and trigger quality, while also investigating
ways to detect and defend against them.

Ethical considerations

The techniques developed in this paper have po-
tential for misuse in terms of attacking existing
NLP systems with triggers that are hard to identify
and/or remove even for humans. However, our in-
tention is not to harm but instead to publicly release
such attacks so that better defenses can be devel-
oped in the future. This is similar to how hackers
expose bugs/vulnerabilities in software publicly.
Particularly, we have demonstrated that adversar-
ial attacks can be harder to detect than previously
thought (Wallace et al., 2019) and therefore can
present a serious threat to current NLP systems.
This indicates our work has a long-term benefit to
the community.

Further, while conducting our research, we used
the ACM Ethical Code as a guide to minimize
harm. Our attacks are not against real-world ma-
chine learning systems.
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A Experimental Details

Hyperparameter search For our gradient-based
attack approach (Equation (1) in the main paper),
there are three hyperparameters: the l2 norm bud-
get ε of the adversarial perturbation, the number
of attack steps T , and the step size η in each at-
tack step. Among them, ε is super critical for
our attacks. A too small ε limits the search space
over the ARAE (Zhao et al., 2018a) noise input,
thus leads to a low attack success. A too large ε
changes the noise input significantly, thus leads
to unnatural trigger generations. In our experi-
ments, we use grid search to manually try different
settings of these hyperparameter values: ε is se-
lected from {2, 5, 10, 20, 50}; T is selected from
{500, 1000, 2000, 5000}; and η is selected from
{10, 100, 1000, 10000}. Based on the attack suc-
cess and the naturalness of generated triggers, we
finally set ε = 10, T = 1000, and η = 1000.

Dataset and attack details We perform all the
attack experiments on a single NVIDIA Tesla P100
GPU. For the sentiment analysis task, we use the
binary Stanford Sentiment Treebank (SST) (Socher
et al., 2013), which has 6, 920 examples in the train-
ing set, 872 examples in the development set, and
1, 821 examples in the test set. The SST classifier
uses a two-layer LSTM (Hochreiter and Schmidhu-
ber, 1997) followed by a linear layer for sentiment
prediction, with 8.7 million parameters in total.
When attacking the SST classifier, it takes around
2 minutes to generate the final trigger.

For the natural language inference task, we use
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015), which has 549, 367
examples in the training set, 9, 842 examples in the
development set, and 9, 824 examples in the test
set. The SNLI classifier is a pretrained Enhanced
Sequential Inference Model (Chen et al., 2017)
provided by AllenNLP (Gardner et al., 2018). It has
14.5 million parameters in total. When attacking
the SNLI classifier, it takes around 27 minutes to
generate the final trigger.

B Additional Experimental Results

B.1 Attack Results with Different Trigger
Lengths

Table 5 provides examples of attacks with varying
lengths, along with their corresponding classifier
accuracies (lower numbers indicate more success-
ful attacks).

B.2 Attack Results on the Development Set
and the Test Set

In our experiments, the attack trigger is first gen-
erated by increasing the target classifier’s loss on
the development set, and then applied on the test
set to measure its success. Here, we present both
the development accuracy and the test accuracy un-
der the same attack triggers in Table 6. We can
see that although generated by only attacking the
development set, the trigger also works well on the
test set: it causes similar accuracy drop on both the
development set and the test set.

B.3 Naïve Attacks with Random Triggers

In this section, we check how difficult it is to at-
tack a certain task by implementing two naïve at-
tacks without gradient information. In the first at-
tack method (“Random ARAE”), we randomly col-
lect the candidate triggers generated by the ARAE
model (Zhao et al., 2018a), compute the classi-
fier accuracy for each trigger, and finally select
the attack trigger as the one with lowest classifier
accuracy. We can consider this attack as a simpli-
fied version of our attack (NUTS) by removing the
gradient information. The second attack method
(“Random outputs”) is similar as the first one, ex-
cept that we do not enforce the naturalness of the
triggers: we select the attack trigger with the low-
est classifier accuracy from many random word
sequences. We can also consider this attack as a
much simplified version of the baseline attack (Wal-
lace et al., 2019). For both naïve attacks, following
our gradient-based attack, we select the final trigger
from 256 candidates triggers for a fair comparison.

Table 7 shows all the attack results. First, we
observe that these two naïve attacks (“Random
ARAE” and “Random outputs”) are quite success-
ful in attacking entailment and neutral examples
in the SNLI task: they successfully decrease the
classifier accuracy to 0% and 3.45%. This indicates
that those examples are quite easy to be attacked.
Second, for both positive and negative examples
in the SST task and the contradiction examples in
the SNLI task, the success of these two naïve at-
tacks is quite limited. We also observe a significant
improvement on the attack success with these two
gradient-based attacks correspondingly.
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NUTS (our attack) Baseline (Wallace et al., 2019)

Task Trigger Test Trigger Classifier Trigger Classifier
length data accuracy accuracy

SST

No trigger
+ - 89.00% - 89.00%
- - 82.57% - 82.57%

3
+ but neither the 43.01% drown soggy timeout 18.92%
- combined energy efficiency 19.96% vividly riveting soar 9.10%

5
+ a flat explosion empty over 25.85% drown soggy mixes soggy timeout 10.67%
- they can deeply restore our 17.11% captures stamina lifetime without prevents 5.26%

8
+ the accident forced the empty

windows shut down
26.95%

collapses soggy timeout energy energy
freshness intellect genitals

15.51%

- will deliver a deeply affected
children from parents

8.55%
sunny vitality blessed lifetime lifetime
counterparts without pitfalls

2.85%

SNLI

No trigger
+ - 89.76% - 89.76%
0 - 86.52% - 86.52%
- - 79.83% - 79.83%

3
+ he was jailed 0.06% alien spacecraft naked 0.00%
0 there is no 2.52% spaceship cats zombies 0.06%
- he could leave 54.56% humans possesses energies 47.20%

5
+ a man stabbed his son 0.03% alien spacecraft nothing eat no 0.00%
0 there is no one or 2.27% cats running indoors destroy no 0.00%
- he likes to inspire creativity 40.07% mammals tall beings interact near 13.44%

8

+ some black women taking the
photo last month

0.00%
mall destruction alien whatsoever shark
pasture picnic no

0.00%

0
the man drowned in hospital
and died in

3.26%
cats rounds murder pandas in alien
spacecraft mars

0.00%

- they are helping for training
achievement for a

26.78%
human humans initiate accomplishment
energies near objects near

23.02%

Table 5: Attack results on SST and SNLI: Compared to the baseline (Wallace et al., 2019), our attacks are slightly
less successful at reducing test accuracy but generate more natural triggers. For SST, “+”=positive, “-”=negative
sentiment. For SNLI, “+”=entailment , “0”=neutral, and “-”=contradiction. Lower numbers are better. ‘No trig-
ger’=classifier accuracy without any attack.

B.4 Attack Results without GPT-2 Based
Reranking

The GPT-2 based reranking is used to balance at-
tack success and trigger naturalness. Without GPT-
2 based reranking, the selected trigger will have a
slightly higher attack success, however with sig-
nificantly larger GPT-2 loss. For SST, without
reranking, our attack triggers decrease accuracy
to 26.84% and 7.68% on positive and negative data,
but GPT-2 losses increase from 6.85 (or 6.65) to
8.80 (or 8.88) for positive (or negative) data.

B.5 Variance over Candidate Triggers

For our attacks against negative SST data with trig-
ger length of 8, among all 256 candidate triggers,
the average classifier accuracy after attack is 0.23
with a standard deviation of 0.10; and the average
GPT-2 loss is 7.93 with a standard deviation of
0.85. There is no inherent tradeoff between natu-
ralness and attack success: some triggers have both
low classifier accuracy and low GPT-2 loss, and the
pearson correlation is -0.08.

C Human-Subject Study Details

We perform the human-subject study on Amazon
Mechanical Turk. Crowdworkers were required to
have a 98% HIT acceptance rate and a minimum
of 5000 HITs. Workers were asked to spend a
maximum of 5 minutes on each assignment (i.e.,
comparing the naturalness of a pair of our trigger vs
baseline trigger, or evaluating the naturalness of a
piece of text), and paid $0.01 for each assignment.
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NUTS (our attack) Baseline

Task Trigger Data Accuracy Accuracy Accuracy Accuracy
length (dev set) (test set) (dev set) (test set)

SST

No trigger
+ 88.29% 89.00% 88.29% 89.00%
- 82.94% 82.57% 82.94% 82.57%

3
+ 40.54% 43.01% 20.27% 18.92%
- 21.26% 19.96% 10.51% 9.10%

5
+ 26.35% 25.85% 12.39% 10.67%
- 18.46% 17.11% 6.31% 5.26%

8
+ 27.25% 26.95% 17.79% 15.51%
- 10.05% 8.55% 1.87% 2.85%

SNLI

No trigger
+ 90.96% 89.76% 90.96% 89.76%
0 88.07% 86.52% 88.07% 86.52%
- 79.53% 79.83% 79.53% 79.83%

3
+ 0.03% 0.06% 0.00% 0.00%
0 2.53% 2.52% 0.00% 0.06%
- 54.58% 54.56% 46.55% 47.20%

5
+ 0.00% 0.03% 0.00% 0.00%
0 1.82% 2.27% 0.00% 0.00%
- 39.48% 40.07% 13.24% 13.44%

8
+ 0.00% 0.00% 0.00% 0.00%
0 3.74% 3.36% 0.00% 0.00%
- 25.90% 26.78% 22.76% 23.02%

Table 6: Universal attack results on both the development (dev) set and the test set for the Stanford Sentiment
Treebank (SST) classifier and the Stanford Natural Language Inference (SNLI) classifier. For SST, “+”=positive,
“-”=negative sentiment. For SNLI, “+”=entailment , “0”=neutral, and “-”=contradiction. We first generate the
attack trigger by increasing the classifier’s loss on the dev set, and then apply the same trigger on the test set. ‘No
trigger’ refers to classifier accuracy without any attack. We can observe that the same triggers achieve similar
attack success in both the development set and the test set.
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SST SNLI
Attack Trigger Positive Negative Entail- Neutral Contrad-
method length ment iction

No attack - 89.00% 82.57% 89.76% 86.52% 79.83%

3 43.01% 19.96% 0.06% 2.52% 54.56%
NUTS 5 25.85% 17.11% 0.03% 2.27% 40.07%

(Our attack) 8 26.95% 8.55% 0.00% 3.26% 26.78%

3 54.46% 66.78% 0.09% 11.59% 58.02%
Random 5 50.28% 43.75% 0.00% 13.36% 55.51%
ARAE 8 43.23% 39.69% 0.03% 8.01% 42.79%

3 18.92% 9.10% 0.00% 0.06% 47.20%
Baseline 5 10.67% 5.26% 0.00% 0.00% 13.44%
attack 8 15.51% 2.85% 0.00% 0.00% 23.02%

3 49.17% 32.79% 0.36% 17.43% 61.48%
Random 5 47.19% 23.90% 0.00% 3.45% 53.35%
outputs 8 41.58% 20.07% 0.00% 7.80% 50.82%

Table 7: Universal attack results on both the Stanford Sentiment Treebank (SST) classifier and the Stanford Natural
Language Inference (SNLI) classifier. Besides gradient-based attacks including our attack (NUTS) and the baseline
attack (Wallace et al., 2019), we further implement two naïve attacks without gradient-guided search: “Random
ARAE” means we select the best attack trigger from random natural ARAE outputs; “Random outputs” represents
we select the best attack trigger from random unnatural word sequences.


