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Abstract

We present a fast and scalable architecture
called Explicit Modular Decomposition
(EMD), in which we incorporate both
classification-based and extraction-based
methods and design four modules (for clas-
sification and sequence labelling) to jointly
extract dialogue states. Experimental results
based on the MultiWoz 2.0 dataset validates
the superiority of our proposed model in
terms of both complexity and scalability when
compared to the state-of-the-art methods,
especially in the scenario of multi-domain
dialogues entangled with many turns of
utterances.

1 Introduction

Dialogue state tracking (DST), responsible for ex-
tracting user goals/intentions from dialogues, is
a core component in task-oriented dialogue sys-
tems (Young et al., 2013). A dialogue state is
commonly represented as a (DOMAIN, SLOT TYPE,
SLOT VALUE) triplet, e.g., (hotel, people, 3). We
show an illustrated example of a multi-domain di-
alogue in Figure 1, which involves two domains,
i.e., TRAIN and HOTEL.

Previous approaches for DST usually fall into
the following four categories: (1) adopt encoder-
decoder models to generates states (Kim et al.,
2020; Ren et al., 2019; Li et al., 2019; Lee et al.,
2019; Wu et al., 2019) ; (2) cast DST as a multi-
label classification task when a full candidate-value
list is available (Shan et al., 2020; Ramadan et al.,
2018; Zhong et al., 2018; Ren et al., 2018); (3)
employ span-based methods to directly extract the
states (Chao and Lane, 2019; Gao et al., 2019);
and (4) combine both classification-based and span-
based methods to jointly complete the dialogue
state extraction (Zhang et al., 2019).

The most related work to ours is DS-DST (Zhang
et al., 2019), a joint model which highlights the
problem that using classification-based or span-

Figure 1: A multi-domain dialogue example extracted
from MultiWoz 2.0. The S-type slot values are marked
in bold and the arrow points to a pair of C-type slots
and its corresponding value. The domain discussed
changes from “train” to “hotel” at the fourth turn. Refer
to Section 2 for the definitions of C-type and S-type.

based approach alone is insufficient to cover all
cases of DST in the task-oriented dialogue. While
DS-DST has achieved some promising result on di-
alogue state tracking and demonstrated the utility of
combining these two types of methods, some prob-
lems still remain unaddressed. On one hand, since
the model is conditioned on domain-slot pairs, the
computational complexity is not constant and will
grow as the number of domains and slots involved
in dialogues increases. To be more specific, if there
are 1000 domain-slot pairs, the model needs to run
1000 times to obtain the expected dialogue states
for the current turn at each time, which is a huge
computational overhead. On the other hand, previ-
ous works usually directly concatenate the history
content and the current utterance as input, which
is difficult to scale in the multi-turn scenarios, es-
pecially when the number of turns of a dialogue
is large. Furthermore, we observe that generative
approaches may generate some domain outlier1

triplets due to lack of domain constraints.
To tackle these issues, we propose a fast and

1We refer a predicted result as “domain outlier” when slot
types are out of the domain pertaining to current utterances.
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scalable method called EMD, where we decom-
pose DST into three classification modules and one
sequence labeling module to jointly extract the di-
alogue states. The benefits of our approach are
summarised below:
• Efficient: Different to the previous work, we

employ a sequence labeling approach to directly
annotate the domain-slot values in the utterance
instead of iterating over all domain-slot pairs
one by one, and thus greatly reduce the model
complexity.

• Constrained output: To effectively model the
relationship between the predicted domain and
its associated slots, as well as to reduce the oc-
currence of domain outlier results, we propose
a list-wise global ranking approach which uses
Kullback-Leibler divergence to formulate the
training objective.

• Scalable: Based on turn-level utterances rather
than the whole history dialogue content, our pro-
posed model offers better scalability, especially
in tackling dialogues with multiple turns. Ad-
ditionally, we employ a correction module to
handle the changes of the states as the dialogue
proceeds.

2 Our Proposed Model

Formally, a multi-turn dialogue is represented as
T = {(s1, u1, d1), (s2, u2, d2), · · · , (sn, un, dn)},
di ∈ D, where si, ui and di refer to the system
utterance, the user utterance, and the domain at
turn i, respectively2, and D represents the set of
all domains in the training dataset. The overall
architecture of our model is shown in Figure 2.

In our proposed model, we choose MT-
DNN (Liu et al., 2019), pretrained model which has
the same architecture as BERT but trained on mul-
tiple GLUE tasks (Wang et al., 2019). MT-DNN
has been shown to be a better contextual feature ex-
tractor for downstream NLP tasks. Given dialogue
utterances as input, we represent the output of MT-
DNN as {H[CLS], H1, H2, · · · , Hn}, where n is
the length of the concatenation of the system and
user utterances. As a sentence-level representation,
H[CLS] is expected to encode the information of
the whole input sequence (Devlin et al., 2019; Liu
et al., 2019). Based on these contextual representa-
tions, we predict the domain (see §2.1) and belief

2We assume that the turn-level utterances only contain one
domain, and the Multiwoz 2.0 dataset we use in this paper
also conforms to this assumption.

states (see §2.2 and §2.3).
Figure 1 shows a typical multi-domain dialogue

example, from which we can observe that some
slot values can be directly found from utterances
(e.g. cambridge and london), while other slot
values are implicit which are more challenging
to discover, e.g., requiring classification to infer
the values (e.g. internet:Yes). We divide
slots into two categories that are handled by two
two separate modules: S-type slots whose values
could be extracted from dialogue utterances, and
C-type slots whose values do not appear in utter-
ances and are chosen from one of the three values
{yes, no, don’t care}.

2.1 Domain Prediction Module (DPM)

In a multi-domain dialogue, the target domain may
change as the dialogue proceeds. Different from
some previous works (Chen et al., 2019; Castel-
lucci et al., 2019), which directly use the first
hidden state (H[CLS]), in our model, apart from
H[CLS], we additionally incorporate Dl, the do-
main result of the last turn into the our domain
prediction module. The rationale behind is that
when the domain of current utterances is not ex-
plicit, Dl can provide useful reference information
for domain identification. Formally, the domain is
predicted as:

yd = softmax(W d[H[CLS];E(Dl)]) (1)

Dc = argmax(yd), Dc ∈ D (2)

where ; denotes the concatenation operation and
E(·) embeds a word into a distributed representa-
tion using fixed MT-DNN (Liu et al., 2019). Dc is
the predicted domain result.

2.2 S-type Slots Tagging Module (SSTM)

Domain-slot-matching constraints R To pre-
vent our model from predicting some slots not be-
longing to the current domain, we generate a do-
main constrained contextual record R ∈ R1×(s+1),
where s is number of S-type slots of all domains3.
Concretely speaking, R is a distribution over all
S-type slots and [EMPTY] using

R = softmax(WR[H[CLS];E(Dl]) (3)

3We add a [EMPTY], the value of which is expected to be
1 when there is no slot needed to be predicted. In particular,
we consider the “don’t care” as a special case in which the
corresponding slot is considered not to be predicted.
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Figure 2: Our neural model architecture, which includes DPM for the domain prediction, whose output is the
predicted domain, Dc. Dl denotes the domain at the previous turn. CSCM for the three classification of the
domain-associated C-type slots, in which cDc

i denotes one of C-type slots in Dc, and SSTM for tagging S-type
slots in the given input, where tagging results are in IOB format; DSCM is for deciding whether to remove outdated
states from the history state set. ypi ∈ {yes, no}, yci ∈ {yes, no, don’t care} and ysi ∈ {O}

⋃
{all S-type slots}.

In particular, LR, the loss for R is defined as
the Kullback-Leibler (KL) divergence between
Div(Rreal||R), where distribution Rreal from the
ground truth is computed as follows:
• If there is no slot required to be predicted,
Rreal

[EMPTY ] receives a probability mass of 1 for
the special slot [EMPTY].

• If the number of slots needed to be predicted
is k(≥ 1), then corresponding k slot positions
receive an equal probability mass of 1/k.

Next, we employ a sequence labeling approach
to directly annotate the domain-slot values in the
utterance instead of iterating over all domain-slot
pairs one by one. Specifically, to tag S-type slots
of the given input, we feed the final hidden states
of H1, H2, · · · , Hn into a softmax layer to classify
all the S-type slots,

ysi = softmax(W sHi), i ∈ [1, 2, · · · , N ] (4)

Instead of directly predicting S-type slot results
based on ysi , we introduce a domain-slot-matching
constraint R, which helps avoid generating S-type
slots that do not belong to the predicted domain.
The multiplication operation is given below,

ŷsi = R� ysi (5)

where � is the element-wise multiplication.

2.3 C-type Slots Classification
Module (CSCM)

Given the currently predicted domain result Dc,
we build a set CDc which contains all C-type slots
from all domains D. If CDc is empty, it indicates

that there is no C-type slot needed to be predicted
in the current domain. Otherwise, we classify each
slot cDc

i in CD into one of the following follow-
ing categories, i.e., {yes, no, don’t care}, with the
classification function below.

yc = softmax(W c[E(cDc
i );E(Dl);H[CLS]]) (6)

2.4 Dialogue State Correction
Module (DSCM)

Previous models such as TRADE (Wu et al., 2019)
and COMER (Ren et al., 2019) requires that all
dialogue states need to be predicted from scratch
at each turn, including those dialogue states that
have already been predicted at previous turns. This
poses a big challenge to the model in terms of scala-
bility, especially when the number of dialogue turns
increases. Conversely, the input of our model con-
sists of the system utterance and the user utterance
at the current turn, so our model only outputs the
estimates of the dialogue states for the current turn,
and the previous dialogues are directly included
where no re-prediction is needed.

However, there is an issue with direct inclusion
of previously predicted results in that some states
may need to be updated or removed as the dialogue
proceeds. For example, a user firstly looks for a
hotel located in the center area, then a state (hotel,
area, center) is estimated. Subsequently, the user
utters a specified hotel name, e.g. “I wanna the
King House”, then the previous state (hotel, area,
center) is outdated and should be removed. To
this end, we design the dialogue state correction
module to update previously predicted results in
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order to improve the precision of the outputted
dialogues states at each turn. Similar to the C-
type classification module, we cast this situation
as a classification task, and for each triple tuple p
from the previous dialogue states, the classifier is
formulated as

yp = sigmoid(W p[p̂;E(Dl);H[CLS]]) (7)

Here each item in p is embedded using E(·) and p̂
is the embedding sum of the three items in p.

During training, we use cross entropy loss for yd,
yc, ys and yp, which are represented as Lyd , Lyc ,
Lys and Lyp , respectively. The loss for R (denoted
as LR) is defined as Kullback-Leibler (KL) diver-
gence between Rreal and R (i.e, KL(Rreal||R)).
All parameters are jointly trained by minimizing
the weighted-sum of five losses (α, β, γ, θ, ε are
hyper-parameters),

Loss = αLyd + βLyc + γLys + θLyp + εLR (8)

2.5 Analysis of model complexity
Table 1 reports the Inference Time Complex-
ity (ITC) proposed by (Ren et al., 2019), which is
used to measure the model complexity. ITC calcu-
lates how many times inference must be performed
to complete a prediction of the belief state in a di-
alogue turn. By comparison, we can observe that
our model achieves the lowest complexity, O(1),
attributed to the modular decomposition and the
usage of the sequence label based model.

Model ITC
DS-DST (Zhang et al., 2019) O(n)
SOM-DST (Kim et al., 2020) O(n)
SUMBT (Lee et al., 2019) O(mn)
GLAD (Zhong et al., 2018) O(mn)
COMER (Ren et al., 2019)n O(n)
TRADE (Wu et al., 2019) O(n)
EMD O(1)

Table 1: Inference Time Complexity (ITC) proposed
in (Ren et al., 2019), m is the number of values in a
pre-defined ontology list and n is the number of slots.
Note that the ITC reported refers to the worst scenarios.

3 Experimental Setup

3.1 Setup
Dataset We evaluate our model performance
based on the MultiWoZ 2.0 dataset (Budzianowski
et al., 2018), which contains 10, 000 dialogues of 7
domains and 35 domain-slot pairs. Detailed dataset
statistics is summarised in Table 2.

Evaluation metrics We utilize joint goal accu-
racy (JGA) (Henderson et al., 2014) to evaluate
the model performance. Joint goal accuracy is the
accuracy of the dialogue state of each turn and a
dialogue state is regarded as correct only if all the
values of slots are correctly predicted.

Implementation details The hyper-parameters
of our model go as follows: both the embedding
and the hidden size is 1024; we used a learning
rate of 0.0001 with a gradient clip of 2.0, mini-
batch SGD with a batch size of 32, and Adam
optimizer (Kingma and Ba, 2014) for 50 epoch
training. We set a value of 1 to the five weighted
hyper-parameters: α, β, γ, θ, ε.

Metric Train Dev Test
# of multi-domain dialogs 5,459 796 777
# of single-domain dialogs 2,979 204 223
# of total dialogs 8,438 1,000 1,000
Avg. # turns by dialog 6.7 7.4 7.3

Table 2: The statistics of the MultiWoZ2.0.

3.2 Results

Overall comparison We compare our models
against six strong baselines on the multi-domain
dataset MultiWoz. Results are reported in Table 3
based on joint goal accuracy (JGA). Our model
achieves the best performance of 50.18% in the
multi-domain testset, while the accuracy achieved
in the single-domain is on par with the state-of-the-
art results, which demonstrates the superiority of
our model.

Model JGAs JGAm JGA
SOM-DST (Kim et al., 2020) - - 51.72
COMER (Ren et al., 2019) 48.62 41.21 45.72
SUMBT (Lee et al., 2019) 46.99 39.68 42.40
DS-DST (Zhang et al., 2019) 51.99 48.69 51.01
GLAD (Zhong et al., 2018) 37.19 33.76 35.58
TRADE (Wu et al., 2019) 49.57 47.01 48.62
EMD 51.92 50.18 51.03

Table 3: Experimental results. JGAs represents the
accuracy calculated in all single domain dialogues and
JGAm refers to all multi-domain dialogues.

Analysis of model scalability We select 200
samples from the testing dataset, in which each
dialogue has more than 8 turns of utterances be-
tween the system and the user. Then, taking the
turn number 6 as a threshold, we divide the dia-
logue content into two categories, i.e., COLD and
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Turn Previous States Domain Target states
Predicted states for the current turn

COMMER TRADER EMD

1 { } Hotel (hotel, internet, yes) (hotel, internet, yes) (hotel,  internet, yes) (hotel, internet, yes)

… … … … … … …

3 (hotel, internet, yes)
(hotel, name, holiday inn)

Taxi (hotel, internet, yes)
(hotel, name,  holiday inn)
(taxi, destination, holiday inn)

(hotel, internet, yes)
(hotel, name, holiday inn)
(train, destination, holiday inn)

(hotel, internet, yes)
(hotel, name, holiday inn)
(taxi, destination, holiday inn)

(hotel, internet, yes)
(hotel, name, holiday inn)
(taxi, destination, holiday inn)

… ... … … … … …

8 (hotel,  internet, yes)
(hotel,  name,  holiday inn) 
(taxi, destination, holiday inn)

Taxi (hotel, internet, yes),
(hotel,  name, holiday inn),
(taxi, destination, holiday inn)

(hotel, internet, yes)
(hotel, name, holiday inn) 
(train, destination, holiday inn)

(hotel,  internet, no)
(hotel, name, holiday inn)
(taxi, destination, holiday inn)

(hotel, internet, yes)
(hotel, name, holiday inn)
(taxi, destination, holiday inn)

Figure 3: Case study of predicated states by our model and two baselines. Erroneous states are highlighted in red.

HOT. Utterances with turn numbers lower than 6
are assigned to the COLD category and those above
6 to the HOT category.

Model JGA
COLD HOT

SOM-DST (Kim et al., 2020) 52.21 48.92
COMER (Ren et al., 2019) 46.01 40.72
SUMBT (Lee et al., 2019) 42.51 33.99
TRADE (Wu et al., 2019) 47.98 46.12
EMD 51.89 51.01

Table 4: Experimental results for the analysis of model
scalabitiy. The sample size is 200.

From Table 4, we observe that the model perfor-
mance has a big drop for the four baseline mod-
els, but our model achieves a relatively stable per-
formance, achieving 51.01% in HOT and 51.89%
in COLD, respectively. This demonstrates that
our model is not only fast in terms of inference
speed (cf. §2.5), but also has a good scalability
which can maintain a high accuracy even when the
dialogue proceeds into more turns and the input
length becomes larger.

Ablation study We conduct two ablation experi-
ments to investigate the impacts of Dl and R. We
introduce a metric, called outlierslot ratio (OSR),
denoting the proportion of slots predicted by our
model that do not belong to the current domain.
From Table 5, we notice that adding Dl improves
the domain accuracy, where one possible reason is
that some utterances may not have a clear domain
attribute, and thus the incorporated previous do-
main is believed to provide useful guiding informa-
tion in domain prediction. Besides, by comparing
OSR with and without usingR, we can observe that
using R reduces the proportion of generating slots
that do not align to the predicted domain, which
further improves the model performance.
Case study To evaluate our proposed model qual-

Model Domain Acc. OSR JGA
EMD 95.23 44.62 51.03
- Dl 91.83 45.62 48.62
- R 93.19 54.83 47.23

Table 5: Ablation study results.

itatively, we show an exemplary dialogue and il-
lustrate some generated results by EMD and two
baseline models in Figure 3. At turn 3 when the dia-
logue domain change from hotel to taxi, COMMER
fails to capture the domain information and gener-
ates a domain outlier, “train”, which does not con-
form to the current context. Conversely, dialogue
generated by our model always conforms to the
domain at the current turn, which may benefit from
the incorporation of the domain constrained con-
textual record R. Besides, another observation is
that as the dialogue proceeds to the turn 8 when the
history dialogue content accumulates, TRADER
makes an incorrect prediction in the hotel-internet
slot, which is correctly identified at the turn 1. One
possible reason is that it becomes more challeng-
ing for the model to correctly predict all dialogue
state from scratch when both the history dialogue
content and states involved increase. Instead of
repeatedly generating those previously predicted
states at each turn, our model only outputs the states
for the current turn, and updates previous dialogue
states with a separate module.

4 Conclusion

In this paper, we propose to decompose DST into
multiple submodules to jointly estimate dialogue
states. Experimental results based on the Multi-
Woz 2.0 dataset show that our model not only re-
duces the model complexity, but also gives high
scalability in coping with multi-domain and long
task-oriented dialogue scenarios.
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