
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3364–3374

June 6–11, 2021. ©2021 Association for Computational Linguistics

3364

Supervised Neural Clustering via Latent Structured Output Learning:
Application to Question Intents

Iryna Haponchyk
DISI, University of Trento

Povo (TN), Italy
gaponchik.irina@gmail.com

Alessandro Moschitti
Amazon Alexa AI

Manhattan Beach, CA, USA
amosch@amazon.com

Abstract

Previous pre-neural work on structured predic-
tion has produced very effective supervised
clustering algorithms using linear classifiers,
e.g., structured SVM or perceptron. However,
these cannot exploit the representation learn-
ing ability of neural networks, which would
make supervised clustering even more pow-
erful, i.e., general clustering patterns can be
learned automatically. In this paper, we de-
sign neural networks based on latent structured
prediction loss and Transformer models to ap-
proach supervised clustering. We tested our
methods on the task of automatically recreat-
ing categories of intents from publicly avail-
able question intent corpora. The results show
that our approach delivers 95.65% of F1, out-
performing the state of the art by 17.24%.

1 Introduction

Recent years have witnessed a vast spread of virtual
assistants, such as Google Home, Siri and Alexa,
which are based on the research areas of Conver-
sational Agents and Question Answering. When
designing such systems, the creation of classes
of expected questions, aka intents, is essential for
building the main states of a dialog manager. In par-
ticular, when an assistant is designed for a specific
domain, a knowledge engineer needs to analyze
typical user’s questions, answered by human oper-
ators. This work would be greatly sped up, if the
engineers could have questions clustered according
to the different topics they ask for. For example,
the following questions/requests from the intent
dataset by Larson et al. (2019):

i want to switch to direct deposit
set up direct deposit for me
how do i go about setting up direct deposit

all have a common intent of making a direct deposit.
Thus, the dialog designer will create this intent, if
the cluster captures a large number of requests.

However, for being effective, the clustering al-
gorithm must demonstrate a sufficient accuracy,
which is often not the case for completely unsuper-
vised methods. Thus, supervised clustering (Finley
and Joachims, 2005), which exploits some training
data of the target domain, e.g., previously designed
clusters, to discover new clusters, is a viable ap-
proach. A seminal work on structured prediction
was Latent Structural Support Vector Machines
(LSSVM) by Yu and Joachims (2009). Recently,
Haponchyk et al. (2018) have shown that LSSVM
as well as the Latent Structured Perceptron (LSP)
by Fernandes et al. (2014), originally designed for
coreference resolution, were also effective, when
provided with the appropriate node similarity func-
tion, for clustering questions into intents. These ap-
proaches used traditional feature engineering (ques-
tion similarity) and a linear classifier, i.e., SVM,
which can be highly improved by neural networks,
and pre-trained Transformers, e.g., Devlin et al.
(2019). Indeed, neural models enable representa-
tion learning, which can amplify the generalization
ability of supervised clustering algorithms.

In this paper, we design neural supervised clus-
tering (NSC) models using the structured predic-
tion algorithms, LSSVM and LSP. These are based
on a latent representation of clusters using graph
structures, which are used to compute an aug-
mented loss. The latter, in turn, is used together
with the model score to globally select the max-
violating constraint at each learning step. This is
the clustering that maximally penalizes the current
model, which is used for a model update. We apply
the same idea by computing the margin loss for our
neural model and then back-propagating it, as any
other differentiable loss. The augmented loss does
not depend on the neural model, thus our approach
can be applied to arbitrary learning settings.

We applied NSC to two different question intent
clustering tasks, defined by two datasets: IC&OOS
(Larson et al., 2019), which is an intent classifica-
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tion corpus, and Quora Intent Corpus (Haponchyk
et al., 2018). Another interesting contribution of
our work is the creation of a training set for clus-
tering from IC&OOS, which enables an effective
training of NSC. Our corpus and software are avail-
able to the research community1.

The comparative results of NSC using traditional
CNN networks and Transformer models against tra-
ditional methods, e.g., spectral clustering, show an
impressive boost in F1 of our NSC-BERT model,
e.g., 95.65% vs. 78.38%, more than 17% of im-
provement over the best spectral clustering method.
This accuracy enables the use of our approach for
dialog applications and opens up further directions
for other clustering tasks.

2 Related Work
This paper touches two main research areas: struc-
tured prediction, in particular with neural models,
and intent clustering, which are described below.

Structured prediction has shown powerful ma-
chine learning algorithms for solving NLP tasks
requiring complex output, e.g., syntactic parsing
(Smith, 2011), coreference resolution (Yu and
Joachims, 2009; Fernandes et al., 2014). This work
has mainly regarded traditional frameworks, e.g.,
SVMs, CRF, perceptron. Only little work has been
devoted to the integration of the above theory in
neural networks (LeCun et al., 2006; Durrett and
Klein, 2015; Weiss et al., 2015; Kiperwasser and
Goldberg, 2016; Peng et al., 2018; Milidiú and
Rocha, 2018; Xu et al., 2018; Wang et al., 2019),
and, to the best of our knowledge, none to super-
vised clustering.

This is partially due to the fact that local solu-
tions have usually produced optimal results. For
example, in case of supervised clustering, it is dif-
ficult to design a loss function that captures the
global information about the clusters. Work in neu-
ral coreference resolution, e.g., (Lee et al., 2017),
uses simple losses, which deliver state-of-the-art re-
sults but do not strictly take into account the cluster
structure. Secondly, this is also due to the com-
plexity associated with adapting the methods from
previous work to neural frameworks. For exam-
ple, using ILP (Roth and Yih, 2004) for clustering
inference in SPIGOT (Peng et al., 2018), which fa-
cilitates the backpropagation through argmax based
on a projection onto the feasible set of structured
outputs, would inevitably require reducing the com-

1https://github.com/iKernels/intent-qa

putational overhead (Miyauchi et al., 2018).
On the line of research of question clustering,

Wen et al. (2001) proposed to cluster queries with
respect to a group of web pages frequently selected
by users. Deepak (2016) describes a k-means like
algorithm, MiXKmeans, that can cluster threads in
Community Question Answering websites. These
methods are unsupervised and, thus, are likely sen-
sitive to setting the optimal number of clusters or
to a heuristic adopted for the clustering criterion.

Also among the classification approaches, there
are semi-supervised and mixed classification meth-
ods which advance on the use of vast amounts of
unlabelled queries. Li et al. (2008) classify un-
labeled queries using their proximity to labeled
queries in a click graph. Beitzel et al. (2007) clas-
sify queries from logs into topics using supervised
or unsupervised methods.

The following classification approaches address
new emerging intents. Lin and Xu (2019) enable a
neural model to detect unknown intents as outliers
using a novelty detection technique. This model,
however, does not have the capability to distin-
guish between different unknown intents. Xia et al.
(2018) devise a capsule neural network able to dis-
criminate between different emerging intents. Its
zero-shot learning ability critically depends on the
definition of a similarity between existing and new
intents. Our approach does not hold any explicit
representation of intents.

The recent work by Lin et al. (2020) proposes
a deep intent clustering model which takes advan-
tage of labeled data for discovering new user in-
tents, but it requires the indication of the exact
number of output clusters. Finally, Zhang et al.
(2021) propose Deep Aligned Clustering, a semisu-
pervised method, to discover new intents using lim-
ited knowledge over intent data. We believe their
approach is completely compatible with ours, i.e.,
our supervised clustering models can be integrated
in their approach to improve intent discovering.

3 Structured Output for Clustering
LSSVMs train a clustering function from a series
of training examples {(xi,yi)}ni=1, where xi are
input sets of elements, and yi are structured out-
puts, i.e., gold clusters. This function applied to
unseen elements x predicts their clusters y.

3.1 Cluster inference
The clustering y of a set x is inferred over a fully-
connected graph G, which nodes represent the el-
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ements xk of x, and edges e= (xi, xj) – the pair-
wise links between them. The inference step con-
sists in finding a maximum spanning forest h on
G, e.g., using Kruskal’s algorithm (Kruskal, 1956).
The nodes appearing in the same connected com-
ponent (tree) in h are placed together in the same
cluster in y (deterministically obtained from h).

3.2 Learning

The approach learns a linear scoring function which
decomposes over the edges of h:

sw(x,y,h) =
∑

e=(xi,xj)∈h

w · φ(e), (1)

where φ(e) is a feature representation for edge e,
describing a pair of elements of x. Graph structures
h are incorporated as latent variables into the latent
formulation of LSSVM. Haponchyk et al. (2018)
adapt the latent structured perceptron (LSP) by Fer-
nandes et al. (2014) to the graph structures h and
apply the approach to question pairs, (qi, qj), to
cluster sets of questions into different user intents;
we compare to these methods.

4 Neural Structured Output Clustering

We propose a model for optimizing a structural
clustering loss with neural networks.

4.1 Global max-margin objective

As a standard practice in structured prediction, our
goal is to train a model with a scoring function sθ
such that the correct clustering y is scored higher
than incorrect clusterings ŷ. LSSVM optimizes an
upper bound, E, on the structural loss ∆, which, in
general terms, can be rewritten using the parame-
ters θ as:

∆(y, ŷ(θ), ĥ(θ)) ≤ E(y, ŷ(θ), ĥ(θ)) =

max
(ŷ,ĥ)∈Y×H

[∆(y, ŷ, ĥ) + sθ(x, ŷ, ĥ)]−
max
h∈H

sθ(x,y,h),

(2)

where ŷ(θ) is an output of the model with its auxil-
iary latent structure ĥ(θ); Y and H are the spaces
of all possible clusters and latent trees; ∆(y, ŷ, ĥ)
is a standard structural loss, measuring the differ-
ence between the gold y and the output ŷ clusters;
and (ŷ(θ), ĥ(θ)) = argmax

(y,h)∈Y×H
sθ(x,y,h).

The right-hand side of Eq. 2 is essentially a
margin-based objective with margin rescaled by
the loss ∆. Its minimization forces maximum

weighted incorrect ĥ score lower than the maxi-
mum weighted correct h by at least the value of the
loss ∆(y, ŷ, ĥ) on that ĥ under θ parameters. Our
neural model optimizes the objective E defined
in Eq. 2. We use the loss ∆ of Yu and Joachims
(2009) based on computing edge mistakes in ĥ, in
which negative edge penalties are scaled with an
r-parameter.

4.2 Differentiable scoring function
For optimizing E in Eq. 2, we define a scoring
function that decomposes over the edges of h:

sθ(x,y,h) =
∑

e=(xi,xj)∈h

netθ(e). (3)

This enables the inference by Kruskal’s algorithm,
where the network netθ activates on edge repre-
sentations2. Eq. 3 indicates that our approach is
applicable to any network netθ.

Our work is inspired by Kiperwasser and Gold-
berg (2016), who pass the arcs of dependency
parses through a multi-layer perceptron and op-
timize a structured margin loss. Differently to
them, we elaborate on the case of the margin
rescaled with the structural loss, which includes
max-violating inference. The objective E in Eq. 2
is sub-differentiable as a summation of edge net-
works; ∆ inE does not depend on θ. We propagate
the error from the margin loss E in Eq. 2 back to
input layer of netθ.

One iteration of the algorithm operates on one
sample of training data (x,y), where, in the context
of intent task, x = {xi} is a set of questions, y are
gold clusters of the questions in x. We pass all the
pairs of questions, i.e., edges e = (xi, xj), i < j
of a fully connected graph G, through netθ, and
compute the global error E. The error computation
includes finding (i) the max-violating graph, ĥ,
among all possible spanning graphs h of G; and
(ii) the max-scoring correct spanning graph, h∗,
over the set of graphs that comply with the gold
label y. If E > 0, the backward pass of the model
computes gradients for an update of the model. The
partial derivatives with respect to the parameters θj
in the last layer of the network are

∂E

∂θj
=
∑
e∈ĥ

∂ netθ(e)

∂θj
−
∑
e∈h∗

∂ netθ(e)

∂θj
,

2The scoring function follows the standard formulation of
structured prediction tasks, where the score of a structure is
computed by aggregating the scores of its constituent parts. In
our case, it is a summation of edge scores. The reader may
refer to the work on dependency parsing by Kiperwasser and
Goldberg (2016).
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and so on down to the input nodes of netθ follow-
ing the chain rule.

5 Our Baseline Network

We intentionally do not specify the architecture of
netθ in Sec. 4.2 as it could be of any form once
encoding a pair of questions (xi, xj). However,
we further describe the architecture with which we
experiment in this work.

We use a simple feedforward neural network,
which consists of (i) an input layer encoding a pair
(xi, xj), (ii) one fully connected hidden layer with
ReLU activation functions, and (iii) an output layer,
which is a linear operation over the outputs of the
hidden layer. This way, for edge e, netθ(e) is a
real number without any restriction on its range.

The pairwise encoder is practically trained to
score good edges higher than bad edges. However,
doing it jointly for all the edges over a sample, in a
structured way, has the goal of producing a more
consistent decision in terms of clustering.

5.1 Input layer

We consider two ways for representing question
pairs φ(e) = φ(xi, xj) ∈ Rd, using embeddings:

(1) We use a sentence encoder (Severyn and
Moschitti, 2016) to map each question xi into
a fixed-size intermediate vector representation
ψ(xi). The encoder operates on a sentence ma-
trix S, in which the k-th column corresponds to
the k-th word in xi and is a concatenation of the
word embedding and overlap embedding: Sk =
[word_emb(wk), ov_emb(wk)]. The ov_emb part
for xi, in each pair, is formed in association
with the other question of the pair, xj . S is
given as input to a series of convolution opera-
tions with ReLU activations followed by a max-
pooling layer. From the obtained question repre-
sentations ψ(xi) and ψ(xj), we compose a sym-
metrical pairwise representation as φ(xi, xj) =
[max

(
ψ(xi), ψ(xj)

)
,min

(
ψ(xi), ψ(xj)

)
], where

max and min are component-wise vector opera-
tions, i.e., max and min are applied to pair of com-
ponents, so that two final vectors are obtained.

(2) We exploit BERT (Devlin et al., 2019) em-
beddings: φ(xi, xj) = 1

2(bert_emb(xi, xj) +
bert_emb(xj , xi)), where bert_emb for a pair of
questions comes from the final hidden layer repre-
sentations, i.e., [CLS] token from the BERT model.

6 Question Clustering Data
In this section, we describe two datasets: (i)
IC&OOS for intent classification; and (ii) Quora
for intent clustering. We illustrate our procedure to
transform the former into a dataset for clustering.

6.1 Intent clustering with IC&OOS
The dataset for Intent Classification and Out-Of-
Scope prediction by Larson et al. (2019), which we
denote IC&OOS, is a classification dataset, com-
posed of user’s queries distributed into 150 dif-
ferent intent classes over 10 domains, plus out-of-
scope (OOS) queries falling outside the pre-defined
classes. The data3 contains 50, 20 and 30 user’s
queries per intent class in training, dev. and test
parts, respectively. Plus 100 OOS queries for train-
ing, 100 – for development, and 1000 for test.

For example, we may see class categories such
as MEAL SUGGESTION, with queries such as, ’sug-
gestions for thai food’ or ’help me find some new
dinner recipes’, which may be challenging to sep-
arate from the items of RESTAURANT REVIEWS,
e.g., ’at yakamoto how is their sushi’, and even
more difficult to discern from ’what are some good
sushi restaurants in reno’, belonging to RESTAU-
RANT SUGGESTION class.

The data from all of the pre-defined classes are
present in training, dev. and test parts. The main
steps for transforming this dataset in one for clus-
tering are (i) merging the items of all the categories
together; and (ii) using the original class labels as
indication of belonging to different clusters.

However, a real-world application scenario of
automatic clustering would entail that new incom-
ing data can contain items which constitute new
clusters (class categories). Thus, in order to demon-
strate the capability of the supervised clustering
models to group together the items of unseen clus-
ters, we use one set of intent classes for training
and another set for evaluation, which is constituted
by a completely different set of intent classes and
questions. This way, we retain the queries from one
third of intent classes, i.e., 50, from the training
part, the dev. queries from another third of intent
classes, and the test queries from the remaining one
third4 of classes, and use them as new training, dev.
and test parts, respectively.

Additionally, it should be noted that the original
dataset contains OOS queries, which we keep all.

3We use the Small variant of the dataset.
4The split of the classes into three sets is done randomly

without reference to the 10 original topic domains.
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Thus, our new split can be also used to analyze
OOS queries, which might not be put in any se-
mantically meaningful cluster, as well as unseen
intent items, for which, we know that their natural
clusters (original categories) exist.

Data sampling and instance creation Training
and test examples in a clustering problem are sets
of items. In order to be able to effectively update
the structural clustering objective in Eq. 2 with
NNs, we need to limit the size of training examples
(x,y). Precisely we need to limit the size of input
query sets x, as the number of edges e (Eq. 3) to
be passed trough the network grows exponentially
with it. Thus, we split the data into samples: (i)
from test set, we just extract random disjoint sam-
ples of equal size M ; and (ii) from training and
dev. sets, we form samples according to a more
elaborated procedure to avoid having too many sin-
gletons in an instance.

More specifically, for each class C: (i) we shuf-
fle its items in a random order; and (ii) we split
them into a set P ofm disjoint parts (mini-clusters)
of random sizes (different sizes, necessarily ≥ 2)
each, s.t., ∪p∈P = C. Then, to build the training
clustering examples, x, we iterate for several times
over the entire list of classes C, in a random order,
and, ∀C ∈ C, we select a mini-cluster p ∈ PC ,
which we append to a current sample S (initial-
ized as empty), if |S ∪ p| ≤ M . Otherwise, we
start a new sample with S = {p}, and go to the
next category, until all PC are exhausted (this hap-
pens simultaneously ∀C, as PC have the same size).
Now, our x sets consist of items contained in S’s.

This procedure makes the presence of each cate-
gory uniform (binary presence, yes/no): after see-
ing each N number of samples S, we encounter
elements of all the classes, however, without pre-
serving the original relative proportions of the class
distribution. This way, by setting the sample size
limit M = 100, we obtain around 28 and 12 clus-
tering examples from training and dev. sets, respec-
tively, and 35 examples from the test set.

6.2 Quora question clustering

The Quora dataset, made available by Lee et al.
(2017), was designed to learn and test question
duplication classifiers. That is, for automatically
detecting if two questions are semantically dupli-
cate or not. We use the Quora Intent Corpus by
Haponchyk et al. (2018) based on a sample of ques-
tions from Quora.

One main difference with IC&OOS is the fact
that the negative examples selected by the organiz-
ers of the Quora challenge refer to pairs of ques-
tions that have always some degree of lexical over-
lap. For example, the following pair How much
water on earth is consumable? and How much wa-
ter is on earth? is not duplicate. On the other hand,
the two questions could be surely put in the same
cluster WATER OF EARTH. This means that a simi-
larity function learned from Quora labels may not
be enough accurate for clustering. Also a simple
scalar product between two embeddings would not
be enough as it can only capture lexical overlap.
The latter would surely fail on the pairs of the fol-
lowing questions What is a recursion tree?, What
does your family tree look like?, How does your
Christmas tree look like? since their specific se-
mantics is different but the overlap is large. These
examples suggest that a clustering algorithm must
learn a similarity that looks to the entire set of
items to be clustered, not just to single pairs. This
requirement is inline with the characteristics of the
methods we presented in Sec 4.

7 Experiments

We present the results of our empirical evaluation
of the neural clustering models using IC&OOS
data, followed by that using Quora Intent Corpus.
We summarize afterwards the highlights of a deeper
investigation, we conducted on the performance of
our approach and of its errors.

7.1 Setup
Data: We created data from IC&OOS as dis-
cussed in Sec 6.1, which contains, 2650, 1100, and
2470 queries and 28, 12, 35 clustering examples,
in training, dev., and test sets, respectively.

We also evaluate our approaches on Quora In-
tent Corpus5 (Haponchyk et al., 2018) based on
1,334 questions from Quora duplicate detection
competition6. This corpus contains 270, 146 and
212 question clusters respectively in the training,
dev. and test parts. The clusters in each part are
split into samples: training – in 10 samples, both
dev. and test – in 5. A part of the test set is also
provided with an expert annotation. We refer to
the whole test set with labels automatically derived
from Quora annotation as automatic test set, and to
its part with expert annotation – as manual

5
https://ikernels-portal.disi.unitn.it/

repository/intent-qa
6
https://www.kaggle.com/c/quora-question-pairs

https://ikernels-portal.disi.unitn.it/repository/intent-qa
https://ikernels-portal.disi.unitn.it/repository/intent-qa
https://www.kaggle.com/c/quora-question-pairs
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Type of Supervision Model Clustering measure CEAFePrecision Recall F1
None

Spectral clustering
tfidf 78.44 78.38 78.41±0.24 71.55±0.57

Clustering Function
(instance similarity)

CNN 75.75 75.75 75.75±0.29 69.09±0.54
BERT 75.74 75.74 75.74±0.21 69.02±0.36

Kruskal CNN 97.72 79.00 87.28±0.82 80.23±1.15
BERT 79.95 91.30 85.25±0.46 78.59±0.61

Our Supervised Clustering NSC-CNN 88.83 89.61 89.19±0.99 82.66±1.07
NSC-BERT 94.98 96.36 95.65±0.82 91.76±1.51

Table 1: Comparison of clustering models: completely unsupervised, using supervised instance similarity function, and our
supervised clustering on the test set of IC&OOS by Larson et al. (2019); disjoint scenario.

Models: We experiment with two variants of our
Neural model for Supervised Clustering (NSC),
based on two ways to encode question pairs out-
lined in Sec. 5.1: (i) NSC-CNN, using word and
word overlap embeddings, and (ii) NSC-BERT, us-
ing BERT embeddings of question pairs.

For NSC-CNN, we employ fastText7 word em-
beddings, in dimension 300, pre-trained for English
language on Wikipedia (Bojanowski et al., 2017).
We set the max length of questions to 50 and pad
the shorter questions on the right. The size of the
hidden layer is set to 1

3 of the size of the input layer.
The convolution filter width varies from 1 to 3.

For NSC-BERT, we use BERTBASE model,
which we train for 3 epochs for fine-tuning on the
question pair classification task.

Since the training samples vary in size, we clip
the gradients to have their L∞ norm less than or
equal to 1. This is to prevent the updates being
dominated by the samples of bigger size.

Evaluation: We follow the evaluation setting
of Haponchyk et al. (2018). Thus, we compute
(i) clustering F1 measure, based on assigning each
cluster to the most frequent (gold/output) clus-
ter, (ii) coreference resolution CEAFe score (Luo,
2005; Cai and Strube, 2010).

Parameterization: We use dev. set for tuning
the loss parameter r, which takes values from
{0.1, 0.5, 1.0}, and selecting the best epoch with
respect to clustering F1.

Baselines We consider a number of baselines
based on the pairwise query similarities. We experi-
ment with the following sources of pairwise signals:
(i) tf-idf scores, (ii) outputs of the binary question
pair classifier, which we train in two modalities,
CNN and BERT.

We group the pairwise signals into a clustering
output using spectral clustering algorithm (Ng et al.,

7
https://fasttext.cc/docs/en/pretrained-vectors.

html

2001) (implementation from smile8 library), which
we run on a matrix of pairwise similarities between
data points. Spectral clustering is unsupervised,
and requires the indication of the number of clus-
ters k. For each sample, we set the parameter k
to the gold number of clusters. This means that
we are computing an upper bound and unrealis-
tic performance, which can be used to provide a
meaningful comparison (especially if our approach
outperforms it). As an alternative to spectral clus-
tering, we run Kruskal’s algorithm on the graph
of pairwise edges, using 0.5 as a threshold for the
question pair classifier scores on them; pairs having
the scores lower 0.5 are neglected.

7.2 Experiments on IC&OOS task

In Tab. 1, we present the results on IC&OOS
dataset averaged over 10 different sample splits,
obtained with 10 different random seeds. First, we
note that NSC consistently improves over all the
baselines in terms of both F1 and CEAF. It also
shows a good precision/recall balance.

The significantly lower results of the unsuper-
vised baseline, spectral clustering+tf-idf, suggest
that, in IC&OOS, we are supposedly dealing with
a rather non-trivial task, where queries expressing
the same intent do not necessarily have surface
closeness. Even if the model is aware of the true
number of present intents in a sample (gold k).

The other four baselines capitalize on training
a supervised scoring function for query pairs, to
be further used as a clustering criterion. From our
experiments with IC&OOS data, we conclude that
it is also not trivial to train a pairwise classifier to
convey a notion of semantic similarity to the pairs
of queries from unseen classes. This is reflected
in the results of using a supervised similarity func-
tion. The performance of spectral clustering on the
output of the pairwise classifier, equally low for
CNN and BERT, and lower than model using tf-idf

8http://haifengl.github.io/smile/

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
http://haifengl.github.io/smile/
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Model Clustering measure CEAFePrecision Recall F1
LSSVM 84.92 51.76 64.32 49.72
LSP 71.36 89.45 79.38 59.99
LSPpy 70.80 90.00 79.22 ± 0.33 59.82
NSC-CNN 80.25 82.16 81.12 ± 1.76 62.80
NSC-BERT 86.93 72.96 79.19 ± 1.41 63.89

Table 2: Comparison of our neural models to the structural
baselines on the manual test set of Quora Intent Corpus.

Model Clustering measure CEAFePrecision Recall F1
LSSVM 80.16 77.81 78.96 63.68
LSP 66.06 91.64 76.78 51.50
LSPpy 65.32 91.47 76.18 ± 0.63 50.62
NSC-CNN 71.44 91.10 80.07 ± 0.28 59.08
NSC-BERT 88.01 96.96 92.23 ± 0.98 86.07

Table 3: Comparison of our neural models to the structural
baselines on the automatic test set of Quora Intent corpus.

scores, is clear evidence for this. When we run
Kruskal’s on top of the output of the pairwise clas-
sifier, we observe a huge bias, towards precision in
case of CNN and recall in case of BERT. The use
of a threshold does not seem robust, when training
examples (query pairs) are treated as independent.

In NSC, we assume, this problem is mitigated by
"collaborative" updates of the structural loss. Over-
all, we note the impressive performance of NSC,
especially when fed by BERT. A clustering F1 of
95.65 suggests that NSC can replicate the clusters
of questions that the human annotator/knowledge
engineer devised.

7.3 Experiments on Quora Intent Corpus

We run each model with 10 different random seeds
for shuffling training examples and report the aver-
aged results on the manual, Tab. 2, and automatic
test sets, Tab. 3.

7.3.1 Baselines
We compare NSC with two state-of-the-art struc-
tural approaches, LSSVM and LSP proposed in
(Haponchyk et al., 2018), reporting their numbers
on the same data. LSPpy is our LSP reimplemen-
tation in python using text similarity. We trained
LSPpy for 100 epochs.

7.3.2 Results
NSC-CNN improves over the state of the art on
both the test sets for both measures. On the manual
test set, NSC-BERT achieves, as expected, higher
CEAF. One possible explanation for its lower F1 on
the manual test set is its small size, which probably
does not enable an accurate evaluation.

BiMPM Our fine-tuned BERT
Accuracy 88.17 90.88

Table 4: Accuracy comparison on question duplicate
detection task on Quora split by Wang et al. (2017).

Model Inclass Acc. OOS Recall
Larson et al. (2019)

NN + avg. FastText emb. 84.50 23.20
CNN + Glove emb. 88.90 22.20
BERT 96.40 40.90

Our Models
CNN 80.20 28.88
BERT 94.87 38.80

Table 5: Comparison of our intent classification baselines to
the intent classification models from Larson et al. (2019) on

IC&OOS test set.

In contrast, on the evaluation over the automatic
test set, NSC-BERT largely outperforms any model,
according to any measure. This is mainly due to the
fact that the automatic clusters are more consistent
with the information present in the training data,
used for fine-tuning BERT. Indeed, we fine-tuned
BERTBASE on the full Quora dataset of question
pairs9 (except for the pairs containing questions
from development and test parts of Quora Intent
Corpus). For the sake of transparency, in Tab. 4,
we report the accuracy of the fine-tuned BERT on
Quora split by Wang et al. (2017) compared to the
official results of their BiMPM model.

We believe the result of NSC-BERT is promis-
ing, and, in the scope of intent detection, by not
being bounded to a particular set of intents, it con-
tributes to the existing neural solutions (Xia et al.,
2018; Lin and Xu, 2019; Lin et al., 2020).

7.4 Deeper Analysis
In this section, we investigate the general clustering
ability of NSC, and in this way, enable the compar-
ison to the upper bound of intent detection, i.e., the
intent classifier, and list its most common mistakes.

7.4.1 How good is the clustering per se?
Here, we address the standard IC&OOS scenario
with the original class distribution of dataset, where
all the 150 intent classes are equally presented in
the data. Moreover, we explore the upper bound
to any clustering algorithm, i.e., the use of a super-
vised classifier in an unrealistic (useless for cluster-
ing) scenario, that is, having in the training data, all
the clusters (classes) to be discovered. To carry out
this comparison, we trained two intent classifier

9https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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Model Clustering measure CEAFe OOS RecallPrecision Recall F1
CNN intent classifier 88.70 93.14 90.76±0.93 86.12±0.75 28.88
BERT intent classifier 90.53 98.36 94.29±0.24 89.10±0.40 38.80
NSC-CNN 89.32 91.25 90.24±1.09 84.86±1.34 85.49±3.94
NSC-BERT 93.58 97.27 95.38±0.34 92.05±0.58 71.45±4.35

Table 6: Comparison of the neural clusterings models to the classification baselines on the test set of IC&OOS dataset by
Larson et al. (2019); full scenario.

models, CNN and BERT, with 150+1(OOS) target
classes. In Tab. 5, we report their performance in
terms of in-class accuracy and OOS recall. We also
report the performance of the classification models
from Larson et al. (2019) for reference. As it can
be observed, our models perform comparably, e.g.,
our BERT model is just 1.5 points behind.

We trained NSC on the same data, split into
samples, so that we could compare to the above
classifiers. For this purpose, we follow our sam-
pling procedure in Sec. 6.1, this time keeping all the
classes, which gives us around 79 and 32 samples
for training and dev., respectively, and 66 samples
for test. To keep the two types of systems aligned,
we evaluate the classifiers also in terms of cluster-
ing F1 on the same test samples (of size M ), which
are then averaged. Namely, we consider queries,
within a sample, predicted by a classifier model,
as the same class to form a distinct cluster, while
those predicted as OOS – singletons.

We note that (i) as expected, the results of NSC
in Tab. 6 improve with respect to the completely
disjoint setting (Tab.1). (ii) NSC-CNN is able to
almost replicate the result of the CNN classifier in
terms of F1, yielding only 1.3 of a point in terms of
CEAF. (iii) Interestingly, the OOS Recall is more
than 85% (2-3 times the one of the classifiers),
which means that 85% of all OOS queries were de-
tected by NSC-CNN (predicted singletons in their
corresponding samples). Although, we recognize
that it can be easier to detect OOS queries in a
small sample than in a big set. (iv) NSC-BERT
improves over the classifier model on the test sam-
ples by 1.5 in terms of clustering F1 and by more
than 3 CEAF points, also achieving a better pre-
cision/recall balance (same as for CNN modality).
We hypothesize here an advantage of the supervised
clustering model might lie over the classification
models, which are generally not as well adaptive to
class imbalance in data. (v) Again, the NSC-BERT
highly improves (at least 2 times) the recall of the
classifier for the OOS task.

7.4.2 Error analysis
Analysing the output of NSC (here, we limit the
discussion to NSC-BERT in the disjoint scenario
of Sec. 7.2), we discovered that the majority of the
mistakes made by the clustering algorithm can be
traced back to several interpretable causes.

A trivial case of word overlap or generally string
matching in Ex. 4 made NSC put the examples of
seemingly distinct classes together. Actual ground
truth intent classes are denoted in parentheses.

(4) cluster:
(1) what is the reason humans even exist (mean-
ing_of_life)
(2) let me know if you are a human or are a computer
(are_you_a_bot)

Next, we find the presence of the word-indicators of
the same semantic category, i.e., SPEED, in Ex. 5,
that misled NSC.

(5) cluster:
(1) speak more quickly (change_speed)
(2) i’m in the mood for slow songs and nothing else
(play_music)
(3) talk faster (change_speed)

A frequent type of NSC’s mistakes is merging to-
gether instances of different intent classes which
belong to the same topic domain, especially in case
of rather close subtopics as in cluster Ex.-s 6–7.

(6) cluster:
(1) put on my 90s playlist (play_music)
(2) put on some metallica music (play_music)
(3) what kind of music on the speaker now (what_song)

(7) cluster:
(1) how do i freeze my bank account (freeze_account)
(2) why is there a stop on my deposit account (ac-
count_blocked)

In addition, Ex. 7 has another complicating factor
of using semantically very close expressions for
distinct intent concepts. Right the opposite situa-
tion of erroneously splitting the instances of the
same intent class is also common, as in Ex.-s 8–9.

(8) cluster:
(1) bye bye then (goodbye)
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(9) cluster:
(1) good speaking to you (goodbye)
(2) it was great talking to you (goodbye)

In general, we assume, that the last two types of
mistakes can be reduced if the model sees on train-
ing the data from the corresponding intent classes.

NSC also drew some (not absolutely meaning-
less) connections between OOS queries (Ex. 10).

(10) cluster:
(1) what is the highest quality carpet available (oos)
(2) find schematics for ikea desk assembly (oos)
(3) i have a super runny nose and want to find a doctor
(oos)
(4) what was the latest tremor on the richter scale (oos)

And finally, the clustering decision in Ex. 11 po-
tentially highlights an annotation error of query (2)
being a false positive OOS.

(11) cluster:
(1) where is the closest mcdonald’s to foxwoods casino
(directions)
(2) where is the closest driving range (oos)

7.5 Discussion

In this section, we discuss some of the important
findings of our paper: First, our experiments sug-
gest that the transformer model boosts the perfor-
mance of our clustering approach. This is justified
by the mainstream research: with respect to the
standard embeddings (word2vec, glove,..), trans-
former models provide contextual representation
of words, i.e., the embedding of a word is defined
with respect to the others that are in the same piece
of text. They provide a very powerful representa-
tion of pieces of text. Thus, we can obtain a precise
similarity between pairs of questions. Thanks to
our structural loss function, we can back-propagate
structure properties of the entire cluster back to the
transformer models so that we enrich even more its
contextual similarity.

Second, in the field of dialog systems, our ap-
proach can be extended to jointly predict intent
and slot attributes. NSC can use information about
slots and the background knowledge given by at-
tributes and values, to cluster questions into intents.
The latter will be then more related to the specific
task defined by the available slot information. Con-
versely, if we suppose the developer has already
the intents, our clustering algorithm could be used
to cluster values into attributes. Then, since NSC
can reach performance similar to supervised classi-
fication methods, it would be interesting to see if
it can be more accurate than them, considering the

critical problems of transfer learning (i.e., when
the data for training is different from the one the
deployed system receives).

Third, we showed the performance on NSC ex-
actly on unseen clusters. Our approach only uses
some clusters of the data for training (each cluster
is a training example). Then, it can predict unseen
clusters in the test set. In other words, our models
generalize what they learn from some clusters to
unseen clusters.

Finally, given one of our models trained on a
set of clusters, we can easily continue its train-
ing with new examples, i.e., new training clusters,
as our neural architecture is an online framework.
One main scalability question could be: Given one
domain for which we have clusters to train our
approach, how can we scale to other domains?

We will need new clusters for the new domains,
i.e., target domain data, which is typically used for
effective transfer learning. This does not mean that
we need a large number of clusters, we just need
some of them to transfer our clustering model from
one domain to another. The transferred models will
be able to predict many more new clusters from the
new target domain.

8 Conclusions

In this work, we firstly proposed supervised neural
clustering based on traditional LSSVM and LSP
models, which hinge on optimizing the structural
margin loss. This extends the structured predic-
tion methods for supervised clustering to a neural
setting. Our experiments on IC&OOS and Quora
Intent Corpora show an impressive improvement
over the state of the art, 17.24% absolute over un-
supervised models, and 8% points more than our
proposed semi-supervised approaches. This sug-
gests that our neural structured prediction can (i)
effectively optimize a structural clustering objec-
tive function on structured examples, such as sets
of questions for intent detection, and (ii) uncover
clusters of questions of unseen classes, i.e., poten-
tial intents not seen in training.
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