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Abstract

The capability to automatically detect human
stress can benefit artificial intelligent agents
involved in affective computing and human-
computer interaction. Stress and emotion are
both human affective states, and stress has
proven to have important implications on the
regulation and expression of emotion. Al-
though a series of methods have been estab-
lished for multimodal stress detection, limited
steps have been taken to explore the underly-
ing inter-dependence between stress and emo-
tion. In this work, we investigate the value of
emotion recognition as an auxiliary task to im-
prove stress detection. We propose MUSER
– a transformer-based model architecture and
a novel multi-task learning algorithm with
speed-based dynamic sampling strategy. Eval-
uations on the Multimodal Stressed Emotion
(MuSE) dataset show that our model is effec-
tive for stress detection with both internal and
external auxiliary tasks, and achieves state-of-
the-art results.

1 Introduction

Stress is a feeling of emotional or physical tension,
as a response to the environment when people have
difficulty dealing with the conditions (Dobson and
Smith, 2000; Muthukumar and Nachiappan, 2013).
Stress detection is a classification task that predicts
whether a certain target is under stress. The task
has drawn research attention for two reasons: first,
stress detection plays an important role in applica-
tions related to psychological well-being (Cohen
et al., 1991), cognitive behavior therapies (Tull
et al., 2007), and safe driving (Gao et al., 2014;
Chen et al., 2017); second, stress is a known reg-
ulator of human emotion mechanisms (Tull et al.,
2007), and thus research on stress detection can
potentially benefit the development of emotionally
intelligent agents.

The impact of stress on human behavior can
be observed through various modalities. Previ-

ous work has considered both unimodal and mul-
timodal stress detection using acoustic, video and
physiological sensor signals (Lane et al., 2015;
Jaques et al., 2016; Aigrain et al., 2016; Alberdi
et al., 2016; Bara et al., 2020). However, text-based
stress detection remains vastly underexplored, with
some studies (Lin et al., 2014) showing the poten-
tial for further research. In recent years, the surge
of advanced natural language understanding mod-
els and structures provides a great opportunity for
stress detection systems, especially using the tex-
tual modality. In this work, we focus on the textual
and acoustic modalities. For the model architec-
ture, we use Transformers (Vaswani et al., 2017)
as a textual encoder and Multi-Layer Perceptrons
(MLP) as an acoustic encoder.

The majority of existing stress detection meth-
ods are based on single-task learning with the bi-
nary stress/non-stress labels. However, stress is
not an isolated affective state, but closely related
to the expression and regulation of human emo-
tions. Physiological studies (Wang and Saudino,
2011) have demonstrated that emotion and stress
share some neural structures, including prefrontal
cortex (Taylor and Stanton, 2007), anterior cingu-
late cortex (Pruessner et al., 2008), and amygdala
(Adolphs, 2003). Acoustic studies (Paulmann et al.,
2016) have shown that the pitch and amplitude of
human emotional prosody is different under stress
and non-stressed status. Inspired by these stud-
ies, our work aims to exploit the inter-dependence
between emotion and stress. Specifically, we in-
vestigate the value of emotion recognition as an
auxiliary task for stress detection.

Multi-task learning (Pasunuru and Bansal, 2017;
Gottumukkala et al., 2020; Guo et al., 2018a; Gong
et al., 2019) has proven to be effective for transfer-
ring knowledge between different tasks. Dynamic
sampling strategies, which aim at adaptively ad-
justing the ratio of samples from different tasks,
are widely used to balance the training schedule.
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However, strategies based on gradients (Chen et al.,
2018b), uncertainty (Kendall et al., 2018) or loss
(Liu et al., 2019) cannot leverage the validation per-
formances, while some performance-based strate-
gies (Gottumukkala et al., 2020) are impractical
if the metrics for different tasks are not directly
comparable (i.e., with different scale ranges). To
this end, we propose a novel speed-based strategy
that is both effective and efficient in the multi-task
learning for stress and emotion.

Our method is evaluated on the Multimodal
Stressed Emotion (MuSE) dataset (Jaiswal et al.,
2019, 2020), which includes both stress and emo-
tion labels, making it the ideal benchmark for an
in-depth analysis of their inter-dependence. To test
the generalization ability of our method, we also
use an external emotion dataset for the auxiliary
task. Multimodal emotion recognition is a well-
studied field with many existing datasets (Busso
et al., 2008, 2016; Chen et al., 2018a; Barros et al.,
2018; Zadeh et al., 2018). We choose the OMG-
Emotion dataset (Barros et al., 2018) as the external
auxiliary task because it is representative and chal-
lenging, with numerical emotion scores instead of
categorical labels.

Our paper makes four main contributions. First,
we show the inter-dependence between stress and
emotion via quantitative analyses on linguistic
and acoustic features, and propose to use emo-
tion recognition as an auxiliary task for stress de-
tection. Second, we establish a stress detection
model with a transformer structure, as well as
a novel speed-based dynamic sampling strategy
for multi-task learning. We name our framework
the MUltimodal Stress Detector with Emotion
Recognition (MUSER). Third, we achieve state-
of-the-art results on the MuSE dataset via multi-
task training with stress and emotion labels. We
also achieve competitive results when we use the
OMG-Emotion (Barros et al., 2018) dataset as an
external auxiliary task. Finally, experimental re-
sults show that our speed-based dynamic sampling
significantly outperforms other widely-used meth-
ods.

2 Related Work

2.1 Unimodal Stress Detection

Stress detection based on textual modality has
been studied by (Lin et al., 2014) and (Jaiswal
et al., 2020), using the Linguistic Inquiry and Word
Count (LIWC) lexicon (Pennebaker et al., 2001) to

extract features that are indicative of human emo-
tion. Acoustic features (Lane et al., 2015; Paul-
mann et al., 2016; Horvath, 1982; Lech and He,
2014) have also been used for unimodal stress de-
tection in both physiological and computational
studies.

A drawback of the unimodal approaches is that
they only have access to partial information about
the expression of stress, while multiple modalities
can potentially be informative at the same time
(Aigrain et al., 2016). As demonstrated by previ-
ous work on human sentiment and emotion predic-
tion (Zadeh et al., 2016, 2018; Yao et al., 2020),
multimodal features usually results in better perfor-
mances.

2.2 Multimodal Stress Detection

Commonly-used modalities for stress detection in-
clude video, audio, text and physiological signals
such as thermal maps from sensors (Aigrain et al.,
2016; Alberdi et al., 2016; Lane et al., 2015; Jaques
et al., 2016).

Jaiswal et al. (2020) proposed the Multimodal
Stressed Emotion (MuSE) dataset, which includes
records from all the commonly-used modalities.
Each video clip is annotated for both stress de-
tection and emotion recognition. Unimodal and
multimodal baselines are provided for each task.
Bara et al. (2020) developed a multimodal deep
learning method that learns modality-independent
representations in an unsupervised approach. How-
ever, none of these models leverage the intrinsic
connections between stress and emotion.

Our experiments are conducted on the MuSE
dataset using only the textual and acoustic modali-
ties, to be compatible with most external emotion
recognition tasks. However, our proposed multi-
task learning method is model-agnostic and can
be generalized to any structure and any modality
combinations.

2.3 Emotion Recognition

Widely-used multimodal emotion recognition
datasets include SEMAINE (McKeown et al.,
2011), IEMOCAP (Busso et al., 2008), MOSEI
(Zadeh et al., 2018) and OMG-Emotion (Barros
et al., 2018). Emotion can be annotated either
with pre-defined emotion categories or through
two-dimensional scores of activation (arousal) and
valence, according to the self-assessment manikin
proposed by (Bradley and Lang, 1994). MuSE, in
particular, has emotion annotations expressed by
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Table 1: LIWC features that have the top 20 highest
regression coefficients in all three tasks.

Feature Examples
bio eat, blood, pain
health clinic, flu, pill
relativity area, stop, exit
body cheek, hands, spit
ingest dish, eat, pizza
positive-emo love, nice, sweet
space down, in, thin
time end, until, season
perceptual observe, hear, feeling

activation and valence scores (1∼9), which is more
fine-grained than categorical definitions (happy, an-
gry, etc.). The OMG-Emotion dataset we use as
external auxiliary task is annotated in the same way
with a score range of 0∼1.

2.4 Multi-task Learning
Because of the different task natures, balancing the
training procedure with all the tasks is a critical
problem for multi-task learning. Loss-balancing
strategies (Chen et al., 2018b; Kendall et al., 2018;
Liu et al., 2019; Gong et al., 2019; Guo et al.,
2018a; Lample et al., 2017; Yao et al., 2019) are
suitable for situations in which there are mul-
tiple training objectives that can be combined
via weighted summation for each data point. In
contrast, for multi-task learning across different
datasets, a sampling strategy should be applied to
decide the mixing ratio (how many batches to sam-
ple from each task) in each epoch. To this end,
Pasunuru et al. (2017) used a fixed sampling ratio;
Guo et al. (2018b) proposed a dynamic sampling
strategy based on reinforcement learning, which de-
pends on the estimation of Q-values; Gottumukkala
et al. (2020) used a dynamic sampling procedure
based on the gap between multi-task and single-
task results – a performance-based method that re-
quires all the tasks to use the same set of evaluation
metrics. For comparison, our proposed strategy is
also based on how fast the model is learning each
task, but does not require the metrics to be directly
comparable.

3 Expressions of Stress in Data

3.1 Dataset
The MuSE dataset (Jaiswal et al., 2020) is collected
from the multimodal video recordings of 28 student
participants, 9 female and 19 male. Each partici-

Table 2: LIWC features that are among the top 20 high-
est regression coefficients unique to stress, activation
and valence tasks.

Feature Examples
nonfl er, hmm, umm
affect happy, cried, abandon
social mate, talk, child
family daughter, husband, aunt
past went, ran, had
money audit, cash, owe
tentat maybe, perhaps, guess
feel feels, touch
sad crying, grief, sad
negate no, not, never
anger hate, kill, annoyed
achieve earn, hero, win
quant few, many, much

pant is invited to a video-recording session before
and after the final exam period; sessions before
exams are labeled as stressed, and the remainng
ones are labeled as non-stressed. We use only the
records from the monologue sub-sessions where
both acoustic and textual modalities are available.
In these sub-sessions, the participants view five
emotion-eliciting questions on the screen in a se-
quence, and answer them with monologues. Af-
ter each monologue, the participants provide self-
assessment scores for activation (calm vs. excited)
and valence (negative vs. positive). The scores
range from 1∼9. The monologues are segmented
into sentences for pre-processing; each sentence is
annotated with the same stress label and emotion
scores as the whole monologue.

We use a train, validation, and test split of 1,853,
200, and 273 sentences, respectively. Textual fea-
tures come from the automatic transcripts for the
audio clips of each sentence. Although the sen-
tences come with visual and thermal features as
well, we focus mainly on the textual and acoustic
modalities because this allows us to use almost any
external emotion recognition dataset as our auxil-
iary task.

3.2 Characteristics of Stress in Language

In order to analyze the connections between linguis-
tic features that are most indicative of stress, acti-
vation, and valence, we first extract a feature vec-
tor based on the LIWC lexicon (Pennebaker et al.,
2001). Each dimension of the vector corresponds
to a certain word category and has a value equal
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Table 3: Opensmile eGeMap features that have the top 20 highest regression coefficients for different tasks.

Task Feature Category Examples

All
Amplitude Energy F1/F2/F3 mean amplitude
Loudness Energy mean loudness

Spectral Flux Spectral mean flux in voiced regions

Only in stress
Hammarberg Index Spectral hammarberg index in unvoiced regions

Alpha Ratio Spectral mean ratio for unvoiced regions
Slope Spectral 500-1500Hz in unvoiced regions

Only in activation
HNR Energy mean HNR (Harmonics-to-Noise Ratio)

Voice Length Temporal mean voiced segment length

Only in valence
Pitch Frequency F0 semitone

Formant Frequency frequency of formant 3

to the count of words observed in that category in
the sentence. We then apply z-normalization on
each feature and fit a linear model to predict the
stress/non-stress label, as well as the activation and
valence scores. For each of the three tasks, we pick
the features with the top 20 highest absolute values
of the linear classification/regression coefficients,
which we assume to be the key indicators.

Features that appear in top 20 for all three tasks
are shown in Table 1. The features are ranked
by the absolute value of their linear coefficients.
As shown, the “positive-emotion” and “perceptual”
word classes are critical for both emotion and stress
tasks, which is intuitive because they are a pair of
inter-dependent human affect status. Bio, health,
and body words are also on the list, suggesting that
both stress and emotion are closely related to phys-
iological status and feelings, which is potentially
because they share some neural structures in brain
(Wang and Saudino, 2011). The intersection of
all the three top-indicator sets has nine elements,
reflecting a reasonable overlap.

Table 2 shows the word classes appearing
uniquely in the top 20 indicator list for each task.
It is worth noticing that the non-fluent words (er,
hmm, etc.) are the strongest unique indicator of
stress, which reflects the differences in the audio
speeches under stressed/non-stressed conditions.
We could also observe that activation is more con-
nected to entities and events, while valence is more
related to personal feelings.

3.3 Characteristics of Stress in Speech
For stress indicators in the acoustic modality, we
extract 88-dimensional features using OpenSmile
(Eyben et al., 2010) with the eGeMaps (Eyben et al.,
2015) configuration. We follow (Jaiswal et al.,
2020) to do speaker-level z-normalization on each

feature, and fit a linear classification/regression
model as we did for the textual features.

Table 3 shows the most indicative acoustic fea-
ture classes for all the tasks, as well as the ones
that are unique for each task. Amplitude/loudness
is the strongest indicator class for all tasks, fol-
lowed by spectral flux, which is a measure of how
quickly the power spectrum of a signal is changing.
It also suggests that stress has a closer relationship
with spectral features such as slope, describing how
quickly the spectrum of an audio sound tails off
towards the high frequencies.

The intersection of all three indicator sets has 11
elements, suggesting that they share many acous-
tic patterns. For more detailed explanations and
examples of the eGeMaps features please refer to
(Eyben et al., 2015) and (Botelho et al., 2019).

Regarding the differences in the task nature, as
seen in Table 4, the number of unique indicators
for each each and for each modality show that the
activation task is less independent of the stress task
than the valence task. In other words, the activation
task has more indicators in common with the stress
task.

Table 4: Number of unique textual and acoustic indica-
tors for stress, activation and valence.

Feature Stress Activation Valence
LIWC 4 3 6

eGeMaps 7 6 8

4 Method

4.1 Auxiliary Tasks
Based on the task inter-dependency demonstrated
in Section 3.2 and 3.3, we propose to use multi-
modal emotion recognition as an auxiliary task for
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Figure 1: Multimodal fusion architecture for MUSER.

stress detection. Since MuSE has both stress and
emotion labels, their activation and valence scores
can be used as an internal auxiliary task.

To test the generalization capability of our multi-
task learning method, we choose OMG-Emotion
(Barros et al., 2018) as an external emotion recog-
nition dataset for the auxiliary task, which is an-
notated in the same manner as MuSE (activa-
tion/valence). We download the videos from the
training and validation sets and filter out all the sam-
ples where the video link is broken or the length
of automatic transcription is less than 5, resulting
in 1,484 videos. The contents and scenarios in
the OMG-Emotion dataset are completely different
from MuSE. We hold out 300 videos as a validation
set to enable dynamic sampling.

Note that stress detection is a binary classifica-
tion task, while the two auxiliary emotion tasks
have a regressive nature.

4.2 Pre-processing

Each utterance in the MuSE dataset is automati-
cally segmented into sentences, transcribed, and
tokenized by a pre-trained BERT tokenizer (De-
vlin et al., 2019). For the acoustic modality,
we use OpenSmile (Eyben et al., 2010) with the
eGeMAPS configuration (Eyben et al., 2015) to ex-
tract 88 utterance-level statistical features. Follow-
ing (Jaiswal et al., 2020), we perform speaker-level
z-normalization on all acoustic features. For videos
in the OMG-Emotion dataset, we first extract the
audio and automatic transcripts, and then do the
same pre-processing as on MuSE.

4.3 MUSER: Architecture
We propose MUSER: MUltimodal Stress Detector
using Emotion Recognition. The model structure
is based on neural networks. Specifically, we use a
Transformer (Vaswani et al., 2017) textual encoder
pre-trained with BERT (Devlin et al., 2019), and
an MLP-based acoustic encoder to generate repre-
sentations on each modality, and fuse them before
classification or regression. Our model architecture
is depicted in Figure 1.

4.3.1 Textual Encoder
For the textual encoder, we use a Transformer neu-
ral network pre-trained with BERT on BookCor-
pus and English Wikipedia (Devlin et al., 2019).
Our Transformer model has 12 layers, 12 attention
heads, and 768-dimensional hidden states. The
averaged hidden states on the top level are pro-
jected to 256-dimensional representations by a
fully-connected layer.

4.3.2 Acoustic Encoder
Our acoustic encoder is a Multi-layer Perceptron
network with four hidden layers and ReLU ac-
tivation. The input of the acoustic encoder is
the OpenSmile features extracted from the audio
speech of each sentence, and the output of each
hidden layer is 256-dimensional.

4.3.3 Multimodal Fusion
We fuse the multimodal features by concatenating
the top-level 256-dimensional textual and acoustic
representations. For the emotion recognition tasks,
the concatenated representation is fully connected
to a single output unit by a task-specific linear layer
with a 0.1 dropout rate. For the stress detection
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Figure 2: Dynamic sampling procedure for MUSER multi-task training.

task, two output units are used to predict the logits
for stress and non-stress labels. A softmax layer
is used to compute probabilities and training loss.
Note that in related work (Jaiswal et al., 2020; Bara
et al., 2020), the “late fusion” stands for an ensem-
ble method, while MUSER solves the task with a
single model.

4.4 MUSER: Multi-task Learning

4.4.1 Weight Sharing
We directly share all the trainable parameters (hard
sharing) except the task-specific output layers. For
each batch of training samples, only one task is
assigned, and one step of back-propagation is per-
formed according to the task objective function
with the task-specific output layer plugged in.

4.4.2 Sampling Strategy
In each epoch of multi-task training, different
amounts of training data are sampled from both
the auxiliary task of activation/valence regression
and the main task of stress classification. We ex-
plore both uniform sampling and dynamic sam-
pling strategy to adaptively decide the mixing ratio
of the multiple tasks in each epoch.

Uniform Sampling. In our conditions, the num-
ber of training samples in the main task and the
auxiliary tasks are approximately on the same scale.
Therefore, an intuitive method is to switch between
the tasks with uniform sampling: for each batch,

we first decide which task to train with an equal
chance, and then randomly select 32 (the batch size)
samples; the batch is trained with the correspond-
ing supervision signals (either emotion scores or
stress labels) from the selected task.

Dynamic Sampling. Having an equal number
of samples for each task in each epoch is not the
most efficient way for multi-task training because
it is not searching for the most informative task
during each epoch. It is more intuitive that when
one task reaches a bottleneck, more samples from
the other tasks should be selected instead.

Motivated by this idea, we propose to dynam-
ically select the task for each batch according to
the model’s speed of learning each task. After
each training epoch, the sampling distribution is
updated based on the model’s current and histor-
ical performance on each task on the validation
set. Specifically, for activation and valence tasks,
we compute the ratio of the average rooted mean
square error (RMSE) score on the past n epochs to
the RMSE score in the current epoch. The ratios
are noted as ra and rv, respectively. For the stress
task, we compute the ratio of the accuracy in the
current epoch to the average of the past n epochs,
noted as rs. The history length n is picked by hand.
The sampling distribution for the next epoch is then
computed as:

pa, pv, ps = softmax([ra/ρ, rv/ρ, rs/ρ]), (1)
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Table 5: Comparison with look-alike methods for multi-task learning.

Method Type Based on History
(Liu et al., 2019) Loss Balancing Ratios of training loss 1
(Gottumukkala et al., 2020) Dynamic Sampling Validation metrics 1
MUSER Dynamic Sampling Ratios of validation metrics n ≥ 5

where ρ is the temperature coefficient set to 0.1.
We use the “ratios to history” instead of the val-

idation scores themselves to compute the distri-
bution because this makes different metrics com-
parable to each other, and it is a good estimation
of which task is the model currently learning the
fastest. We name this strategy a “speed-based” dy-
namic sampling. The sampling procedure is shown
in Figure 2, and a comparison to look-alike multi-
task learning methods is included in Table 5.

5 Experiments

5.1 Settings

We use an AdamW (Loshchilov and Hutter, 2018)
optimizer with an initial learning rate of 3e-4 for
all our multimodal and multi-task experiments. In
each epoch, we repeatedly sample data with a
batch-size of 32 from the main task or the auxil-
iary tasks, and apply one-step back-propagation for
each batch, until the total selected number reaches
the size of the MuSE training set. Gradients are
clipped to have a maximum norm of 1.0. The his-
tory length n in speed-based dynamic sampling
is chosen from {1, 5, 10} according to the per-
formance on the validation set. We warm up the
dynamic sampling by applying uniform sampling
for the first n epochs. The maximum epoch number
is typically set to 1000, while the training process is
controlled by early stopping. For the Transformer
textual encoder, we limit the maximum sequence
length to be 128. The evaluation metrics include
overall accuracy, as well as the precision, recall,
and f-score for the “stressed” class.

5.2 Unimodal Results

For unimodal experiments, we use the textual en-
coder or the acoustic encoder independently to com-
pute representations before regression or classifica-
tion. For the Transformer textual encoder, we use a
learning rate of 2e-5; for the MLP acoustic model,
we use a learning rate of 5e-4. These learning rates
are separately fine-tuned on each unimodal task.
Other hyperparameters of the models are kept the
same as the multimodal structure.

Table 6 shows the stress detection results with
single modalities. Our Transformer encoder out-
performs the baseline textual model because of its
capability to discover syntactic-level long distance
relationships in natural language and the external
linguistic knowledge from the advanced BERT pre-
training; our acoustic model also improves beyond
the baseline results, potentially because we used a
more up-to-date version of eGeMaps configuration
and a fine-tuned learning rate.

5.3 Multimodal Results
To jointly train with both the textual and acous-
tic features, we use the multimodal fusion model
introduced in Section 4.3 as a basic architecture.

5.3.1 Pre-training
Our MUSER model is trained from scratch to set
up a single-task baseline for multimodal stress de-
tection. Besides, a potential alternative to multi-
task learning is pre-training on the auxiliary tasks
and fine-tuning on the main task. For a complete
comparison, we set up several strategies for pre-
training. All the pre-training methods use the inter-
nal auxiliary task of MuSE. The compared methods
are as follows:
Activation-100: pre-train for 100 epochs with the
activation annotations, then switch to the main task
of stress detection.
Valence-100: pre-train for 100 epochs with the va-
lence annotations, then switch to the main task of
stress detection.
Activation-valence-stress: pre-train for 100
epochs on the activation task, then 100 epochs on
the valence task, and switch to stress detection.
Valence-activation-stress: pre-train for 100
epochs on the valence task, then 100 epochs on
the activation task, and switch to stress detection.

The results are presented in Table 7. Among
the pre-training and fine-tuning results, Activation-
100 shows the most significant improvement. The
second-best score is the valence-activation-stress
order. Thus, we can conclude that activation is the
better auxiliary task under this paradigm. Addi-
tionally, using only one auxiliary task is always
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Table 6: Results: stress detection with single modality.

Models Accuracy Precision Recall F-score
MLP+LIWC (Jaiswal et al., 2020) 0.60 0.74 0.61 0.67
MLP+Opensmile (Jaiswal et al., 2020) 0.67 0.70 0.69 0.69
MUSER Textual Encoder 0.69 0.77 0.74 0.75
MUSER Acoustic Encoder 0.79 0.80 0.79 0.80

Table 7: Stress detection results with multiple modalities, with or without pre-training.

Method Accuracy Precision Recall F-score
LIWC+Audio (Jaiswal et al., 2020) 0.60 0.74 0.61 0.67
A-modal GRU (Bara et al., 2020) 0.573 0.582 0.557 0.569
MUSER from scratch 0.821 0.834 0.828 0.831
Activation-100 0.842 0.866 0.832 0.849
Valence-100 0.823 0.830 0.839 0.834
Activation-valence-stress 0.819 0.841 0.813 0.827
Valence-activation-stress 0.828 0.854 0.817 0.835

better than using two of them; this is because when
the model learns from the second auxiliary task,
it “forgets” the knowledge from the previous task
because it lacks a memory mechanism to look back
(Hayes et al., 2020).

Pre-training on the emotion recognition tasks
using either activation or valence improves stress
detection because the model is equipped with the
capabilities to encode the features and predict emo-
tions before the training of stress detection task
starts.

5.3.2 Multi-task Learning on MuSE
For multi-task learning, we compare two sampling
strategies: uniform sampling and our proposed
speed-based dynamic sampling. We also imple-
ment and modify the loss-based weight balancing
method proposed by (Liu et al., 2019) to adjust
the mixing ratios in dynamic sampling instead, and
compare it with our methods. The results using the
internal MuSE emotion recognition as an auxiliary
task are shown in Table 8.

Comparing the uniform sampling results with Ta-
ble 7, we conclude that using any auxiliary task is
better than training from scratch. However, multi-
task training with the activation and valence tasks
together is better than using them separately. This
is different from the observations in Table 7 and
can be explained by the differences in the train-
ing procedure: in multi-task learning, the model
looks back-and-forth into each task in each epoch,
making it able to memorize the shared knowledge
from all the tasks. Additionally, when the model

is optimized for the two emotion tasks at the same
time, the lower-level representation becomes more
general and informative because it is frequently
plugged with different task-specific layers.

Comparing the results of using a single auxil-
iary task of activation vs. valence, activation leads
to better results as compared to valence, which is
in agreement with Table 7. This is further sup-
ported by the analyses in Tables 2 and 4: given
the lower unique indicator count of the activation
task, as well as the fact that the pre-training and
multi-task learning results are all compatible, we
can conclude that for stress detection, the nature
of the activation dimension of emotion is closer
and more helpful than the valence dimension. This
potentially suggests that stress has a major effect
on whether people feel excited (activation), but a
minor effect on their opinion toward events and
objects (valence).

We test our speed-based dynamic sampling al-
gorithm using activation and valence together as
auxiliary tasks and it yields promising results with
history set to 5 and 10. It significantly outperforms
both the uniform sampling and our implementa-
tion of the loss-based strategy (Liu et al., 2019) (t-
test, p < 0.05), achieving state-of-the-art scores on
MuSE stress detection task with one single model
and only two modalities.

Our model works the best with a history length
between 5 and 10. If the history is too short, the
model takes longer to converge and has unstable
performance, while if the history is too long, it fails
to capture the dynamics.
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Table 8: Stress detection results with multi-task learning

Strategy Accuracy Precision Recall F-score
Uniform sampling with activation 0.832 0.833 0.857 0.845
Uniform sampling with valence 0.823 0.837 0.828 0.832
Uniform sampling with activation & valence 0.846 0.862 0.846 0.854
(Liu et al., 2019) - modified 0.842 0.856 0.846 0.851
Speed-based sampling (history=5) 0.854 0.861 0.864 0.863
Speed-based sampling (history=10) 0.856 0.867 0.861 0.864

Table 9: Stress detection results with multi-task learning with OMG-Emotions

Strategy Accuracy Precision Recall F-score
Uniform sampling with activation & valence 0.844 0.867 0.835 0.850
(Liu et al., 2019) - modified 0.836 0.820 0.886 0.852
Speed-based sampling (history=5) 0.850 0.871 0.842 0.856

5.3.3 Generalization
In real-world applications, stress detection data
does not necessarily have emotion labels. How-
ever, because of the intrinsic inter-dependence be-
tween emotion and stress, any existing dataset with
emotion labels can potentially serve as an external
auxiliary task for stress detection. However, this re-
quires our model and multi-task training algorithm
to generalize beyond the internal MuSE emotion
tasks. We test our model on OMG-Emotions as an
example of external emotion datasets.

Table 9 shows results on MuSE stress detection
using OMG-Emotion as an auxiliary task. Compar-
ing to Table 7, although the source and content of
OMG-Emotions are different from MuSE, multi-
task learning still outperforms single-task learning
and pre-training (t-test, p < 0.05). This reveals that
the connection between stress and emotion widely
exists, and our multi-task learning method works
in general cases.

Additionally, Table 9 suggests that while using
an external emotion dataset, our speed-based sam-
pling method still outperforms uniform sampling,
as well as our implementation of loss-based dy-
namic sampling (Liu et al., 2019). This supports
the robustness and effectiveness of our speed-based
strategy.

6 Conclusions

In this work, we uncovered the connections and
differences between stress detection and emotion
recognition using textual and acoustic features, and
proposed to use emotion recognition as an auxiliary
task for stress detection. We proposed MUSER: a

Transformer-based model structure, together with
a novel speed-based dynamic sampling strategy
for multi-task learning. Experimental results sup-
port the inter-dependence of stress and emotion
(activation/valence), and proves the effectiveness
and robustness of our methods. MUSER achieved
state-of-the-art results on the MuSE stress detection
task both when internal (MuSE) and when external
(OMG-Emotions) emotion data and annotations
were used.

Our code is publicly available at
https://lit.eecs.umich.edu/
downloads.html#MUSER
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