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Abstract

While the predictive performance of modern
statistical dependency parsers relies heavily on
the availability of expensive expert-annotated
treebank data, not all annotations contribute
equally to the training of the parsers. In this
paper, we attempt to reduce the number of la-
beled examples needed to train a strong de-
pendency parser using batch active learning
(AL). In particular, we investigate whether en-
forcing diversity in the sampled batches, us-
ing determinantal point processes (DPPs), can
improve over their diversity-agnostic counter-
parts. Simulation experiments on an English
newswire corpus show that selecting diverse
batches with DPPs is superior to strong selec-
tion strategies that do not enforce batch diver-
sity, especially during the initial stages of the
learning process. Additionally, our diversity-
aware strategy is robust under a corpus duplica-
tion setting, where diversity-agnostic sampling
strategies exhibit significant degradation.

1 Introduction
Though critical to parser training, data annotations
for dependency parsing are both expensive and
time-consuming to obtain. Syntactic analysis re-
quires linguistic expertise and even after extensive
training, data annotation can still be burdensome.
The Penn Treebank project (Marcus et al., 1993)
reports that after two months of training, the annota-
tors average 750 tokens per hour on the bracketing
task; the Prague Dependency Treebank (Böhmová
et al., 2003) cost over $600,000 and required 5
years to annotate roughly 90,000 sentences (over
$5 per sentence). These high annotation costs
present a significant challenge to developing ac-
curate dependency parsers for under-resourced lan-
guages and domains.

Active learning (AL; Settles, 2009) is a promis-
ing technique to reduce the annotation effort re-
quired to train a strong dependency parser by intel-
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ligently selecting samples to annotate such that the
return of each annotator hour is as high as possible.
Popular selection strategies, such as uncertainty
sampling, associate each instance with a quality
measure based on the uncertainty or confidence
level of the current parser, and higher-quality in-
stances are selected for annotation.

We focus on batch mode AL, since it is gen-
erally more efficient for annotators to label in
bulk. While early work in AL for parsing (Tang
et al., 2002; Hwa, 2000, 2004) cautions against
using individually-computed quality measures in
the batch setting, more recent work demonstrates
empirical success (e.g., Li et al., 2016) without ex-
plicitly handling intra-batch diversity. In this paper,
we explore whether a diversity-aware approach can
improve the state of the art in AL for dependency
parsing. Specifically, we consider samples drawn
from determinantal point processes (DPPs) as a
query strategy to select batches of high-quality, yet
dissimilar instances (Kulesza and Taskar, 2012).

In this paper, we (1) propose a diversity-aware
batch AL query strategy for dependency parsing
compatible with existing selection strategies, (2)
empirically study three AL strategies with and with-
out diversity factors, and (3) find that diversity-
aware selection strategies are superior to their
diversity-agnostic counterparts, especially during
the early stages of the learning process, in simula-
tion experiments on an English newswire corpus.
This is critical in low-budget AL settings, which
we further confirm in a corpus duplication setting.1

2 Active Learning for Dependency
Parsing

2.1 Dependency Parsing

Dependency parsing (Kübler et al., 2008) aims to
find the syntactic dependency structure, y, given a
length-n input sentence x = x1, x2, . . . , xn, where

1Our code is publicly available at https://github.com/
tzshi/dpp-al-parsing-naacl21.

https://github.com/tzshi/dpp-al-parsing-naacl21
https://github.com/tzshi/dpp-al-parsing-naacl21


2617

y is a set of n arcs over the tokens and the dummy
root symbol x0, and each arc (h,m) ∈ y specifies
the head, h, and modifier word, m.2 In this work,
we adopt the conceptually-simple edge-factored
deep biaffine dependency parser (Dozat and Man-
ning, 2017), which is competitive with the state
of the art in terms of accuracy, The parser as-
signs a locally-normalized attachment probability
Patt(head(m) = h | x) to each attachment candi-
date pair (h,m) based on a biaffine scoring func-
tion. Refer to Appendix A for architecture details.

We define the score of the candidate parse tree
s(y | x) as

∑
(h,m)∈y logPatt(head(m) = h | x).

The decoder finds the best scoring ŷ among all
valid trees Y(x): ŷ = argmaxy∈Y(x) s(y | x).

2.2 Active Learning (AL)

We consider the pool-based batch AL scenario
where we assume a large collection of unlabeled
instances U from which we sample a small subset
at a time to annotate after each round to form an
expanding labeled training set L (Lewis and Gale,
1994). We use the superscript i to denote the pool
of instances U i and Li after the i-th round. L0
is a small set of seed labeled instances to initiate
the process. Each iteration starts with training a
modelMi based on Li. Next, all unlabeled data
instances in U i are parsed by Mi and we select
a batch U ′ to annotate based on some criterion
U ′ = C(Mi,U i). The resulting labeled subset L′
is added to Li+1 = Li

⋃
L′ and U i+1 = U i − U ′.

The definition of the selection criterion C is crit-
ical. A typical strategy associates each unlabeled
instance Ui with a quality measure qi based on, for
example, the model uncertainty level when parsing
Ui. A diversity-agnostic criterion sorts all unla-
beled instances by their quality measures and takes
the top-k as U ′ for a budget k.

2.3 Quality Measures

We consider three commonly-used quality mea-
sures adapted to the task of dependency parsing,
including uncertainty sampling, Bayesian active
learning, and a representativeness-based strategy.

Average Marginal Probability (AMP) mea-
sures parser uncertainty (Li et al., 2016):

AMP = 1− 1
n

∑
(ĥ,m)∈ŷ Pmar(head(m) = ĥ | x),

where Pmar is the marginal attachment probability

2For clarity, here we describe unlabeled parsing. In our
experiments, we train labeled dependency parsers, which ad-
ditionally predict a dependency relation label l for each arc.

Pmar(head(m) = h | x) =
∑

(h,m)∈y P (y | x),

and P (y | x) = exp(s(y|x))∑
y′∈Y(x) exp(s(y

′|x)) . The marginal
probabilities can be derived efficiently using Kirch-
hoff’s theorem (Tutte, 1984; Koo et al., 2007).

Bayesian Active Learning by Disagreement
(BALD) measures the mutual information be-
tween the model parameters and the predictions.
We adopt the Monte Carlo dropout-based variant
(Gal et al., 2017; Siddhant and Lipton, 2018) and
measure the disagreement among predictions from
a neural model with K different dropout masks,
which has been applied to active learning in NLP.
We adapt BALD to dependency parsing by aggre-
gating disagreement at a token level:

BALD = 1− 1
n

∑
m

count(mode(h1
m,...,hK

m))
K ,

where hkm denotes that (hkm,m) appears in the pre-
diction given by the k-th model.

Information Density (ID) mitigates the ten-
dency of uncertainty sampling to favor outliers by
weighing examples by how representative they are
of the entire dataset (Settles and Craven, 2008):

ID = AMP×
(

1
|U|
∑

x′∈U simcos(x, x
′)
)
,

where cosine similarity is computed from the aver-
aged contextualized features (§3.2).

2.4 Learning from Partial Annotations

We follow Li et al. (2016) and select tokens to anno-
tate their heads instead of annotating full sentences.
We first pick the most informative sentences and
then choose p% tokens from them based on the
token-level versions of the quality measures (e.g.,
marginal probability instead of AMP).

3 Selecting Diverse Samples
Near-duplicate examples are common in real-world
data (Broder et al., 1997; Manku et al., 2007), but
they provide overlapping utility to model training.
In the extreme case, with a diversity-agnostic strat-
egy for active learning, identical examples will be
selected/excluded at the same time (Hwa, 2004).
To address this issue and to best utilize the anno-
tation budget, it is important to consider diversity.
We adapt Bıyık et al. (2019) to explicitly model di-
versity using determinantal point processes (DPPs).

3.1 Determinantal Point Processes

A DPP defines a probability distribution over sub-
sets of some ground set of elements (Kulesza,
2012). In AL, the ground set is the unlabeled
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pool U and a subset corresponds to a batch of
instances U ′ drawn from U . DPPs provide an
explicit mechanism to ensure high-quality yet di-
verse sample selection by modeling both the qual-
ity measures and the similarities among exam-
ples. We adopt the L-ensemble representation
of DPPs using the quality-diversity decomposi-
tion (Kulesza and Taskar, 2012) and parameter-
ize the matrix L as Lij = qiφiφ

T
j qj , where each

qi ∈ R is the quality measure for Ui and each
φi ∈ R1×d is a d-dimensional vector representa-
tion of Ui, which we refer to as Ui’s diversity fea-
tures.3 The probability of selecting a batch B is
given by P (B ⊆ U) ∝ det(LB), where det(·) cal-
culates the determinant and LB is the submatrix of
L indexed by elements in B.

DPPs place high probability on diverse subsets
of high-quality items. Intuitively, the determinant
of LB corresponds to the volume spanned by the
set of vectors {qiφi | i ∈ B}, and subsets with
larger q values and orthogonal φ vectors span larger
volumes than those with smaller q values or similar
φ vectors. We follow Kulesza (2012) and adapt
their greedy algorithm for finding the approximate
mode argmaxB P (B ⊆ U). This algorithm is
reproduced in Algorithm E1 in the appendix.

3.2 Diversity Features

We consider two possibilities for the diversity fea-
tures φ. Each feature vector is unit-normalized.

Averaged Contextualized Features are defined
as 1

n

∑
i xi, where xi is a contextualized vector of

xi from the feature extractor used by the parser. By
this definition, we consider the instances to be sim-
ilar to each other when the neural feature extractor
returns similar features such that the parser is likely
to predict similar structures for these instances.

Predicted Subgraph Counts explicitly repre-
sent the predicted tree structure. To balance rich-
ness and sparsity, we count the labeled but unlex-
icalized subgraph formed by the grandparent, the
parent and the token itself. Specifically, for each
token m, we can extract a subgraph denoted by
(r1, r2), assuming the predicted dependency rela-
tion between its grandparent g and its parent h is
r1, and the relation between h and m is r2. The
parse tree for a length-n sentence contains n such
subgraphs. We apply tf-idf weighting to discount

3Although certain applications of DPPs may learn q and φ
representations from supervision, we define q and φ a priori,
since acquiring supervision in AL is, by definition, expensive.

Batch 5 10

Strategy w/o DPP w/ DPP w/o DPP w/ DPP

Random 85.68±.26 86.61±.28 87.84±.26 88.55±.23

AMP 85.98±.22 86.77±.43 88.80±.18 89.23±.29

BALD 86.24±.40 86.86±.31 88.66±.36 89.03±.10

ID 86.68±.26 86.56±.24 88.96±.20 89.06±.16

Table 1: LAS after 5 and 10 rounds of annotation for strategies
with and without modeling diversity through DPP.

the influence from frequent subgraphs.

4 Experiments and Results
Dataset We use the Revised English News Text
Treebank4 (Bies et al., 2015) converted to Univer-
sal Dependencies 2.0 using the conversion tool in-
cluded in Stanford Parser (Manning et al., 2014)
version 4.0.0. We use sections 02-21 for training,
22 for development and 23 for test.

Setting We perform experiments by simulating
the annotation process using treebank data. We
sample 128 sentences uniformly for the initial la-
beled pool and each following round selects 500
tokens for partial annotation. We run each setting
five times using different random initializations and
report the means and standard deviations of the la-
beled attachment scores (LAS). Appendix B has
unlabeled attachment score (UAS) results.

Baselines While we construct our own base-
lines for self-contained comparisons, the diversity-
agnostic AMP (w/o DPP) largely replicates the
state-of-the-art selection strategy of Li et al. (2016).

Implementation We finetune a pretrained mul-
tilingual XLM-RoBERTa base model (Conneau
et al., 2020) as our feature extractor.5 See Ap-
pendix E for implementation details.

Main Results Table 1 compares LAS after 5 and
10 rounds of annotation. Our dependency parser
reaches 95.64 UAS and 94.06 LAS, when trained
with the full dataset (more than one million tokens).
Training data collected from 30 annotation rounds
(≈ 17,500 tokens) correspond to roughly 2% of
the full dataset, but already support an LAS of up
to 92 through AL. We find that diversity-aware
strategies generally improve over their diversity-
agnostic counterparts. Even for a random selection
strategy, ensuring diversity with a DPP is superior

4https://catalog.ldc.upenn.edu/LDC2015T13
5To construct the averaged contextualized features, we

also use the fine-tuned feature extractor. In our preliminary
experiments, we have tried freezing the feature extractors, but
this variant did not perform as well.

https://catalog.ldc.upenn.edu/LDC2015T13
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Figure 1: Learning curves for our DPP-based diversity-aware
selection strategies, comparing predicted subgraph counts
versus averaged contextualized features as diversity features.
Both use AMP as their quality measures.

to simple random selection. With AMP and BALD,
our diversity-aware strategy sees a larger improve-
ment earlier in the learning process. ID models
representativeness of instances, and our diversity-
aware strategy adds less utility compared with other
quality measures, although we do notice a large im-
provement after the first annotation round for ID:
82.40±.48 vs. 83.36±.54 (w/ DPP) – a similar trend
to AMP and BALD, but at an earlier stage of AL.

Experiments with Different Diversity Features
Figure 1 compares our two definitions of diver-
sity features, and we find that predicted subgraph
counts provide stronger performance than that of
averaged contextualized features. We hypothesize
this is due to the fact that the subgraph counts repre-
sent structures more explicitly, thus they are more
useful in maintaining structural diversity in AL.

Intra-Batch Diversity To quantify intra-batch
diversity among the set of sentences B picked by
the selection strategies, we adapt the measures used
by Chen et al. (2018) and define intra-batch average
distance (IBAD) and intra-batch minimal distance
(IBMD) as follows:

IBAD = mean
i,j∈B,i 6=j

(1− simcos(i, j)),

IBMD = mean
i∈B

min
j∈B,i 6=j

(1− simcos(i, j)).

A higher value on these measures indicates better
intra-batch diversity. Figure 2 compares diversity-
agnostic and diversity-aware sampling strategies
using the two different diversity features. We con-
firm that DPPs indeed promote diverse samples
in the selected batches, while intra-batch diversity
naturally increases even for the diversity-agnostic
strategies. Additionally, we observe that the bene-
fits of DPPs are more prominent when using pre-
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Figure 2: Intra-batch average distance (IBAD) and intra-
batch minimal distance (IBMD) measures comparing diversity-
agnostic and diversity-aware AMP-based sample selection
strategies. The distances are derived from averaged contextu-
alized features (top) and predicted subgraph counts (bottom).
A higher value indicates better intra-batch diversity.

dicted subgraph counts compared with averaged
contextualized features. This can help explain the
relative success of the former diversity features.

Corpus Duplication Setting In our qualitative
analysis (Appendix C), we find that diversity-
agnostic selection strategies tend to select near-
duplicate sentences. To examine this phenomenon
in isolation, we repeat the training corpus twice and
observe the effect of diversity-aware strategies. The
corpus duplication technique has been previously
used to probe semantic models (Schofield et al.,
2017). Figure 3 shows learning curves for strate-
gies under the original and corpus duplication set-
tings. As expected, diversity-aware strategies con-
sistently outperform their diversity-agnostic coun-
terparts across both settings, while some diversity-
agnostic strategies (e.g., AMP) even underperform
uniform random selection in the duplicated setting.

Interpreting the Effectiveness of Diversity-Ag-
nostic Models Figure 4 visualizes the density
distributions of the top 200 data instances by AMP
over the diversity feature space reduced to two di-
mensions through t-SNE (van der Maaten and Hin-
ton, 2008). During the initial stage of active learn-
ing, data with the highest quality measures are con-
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Figure 3: Learning curves of different sampling strategies based on AMP (left), BALD (middle) and ID (right), comparing
diversity-aware (w/ DPP) and diversity-agnostic variants using the original and duplicated corpus (dup). The x-axis shows the
number of rounds for annotation. Random (dup) curves overlap with those of Random and are omitted for readability.
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Figure 4: t-SNE visualization of the distributions of the 200
highest-quality unlabeled sentences over the diversity feature
space after the 1st (left) and the 10th (right) annotation rounds
using AMP without DPPs. Darker region indicates more data
points residing in that diversity feature neighborhood. The
left figure contains a dense region, while the data in the right
figure are spread out in the feature space.

centrated within a small neighborhood. A diversity-
agnostic strategy will sample similar examples for
annotation. After a few rounds of annotation and
model training, the distribution of high quality ex-
amples spreads out, and an AMP selection strategy
is likely to sample a diverse set of examples without
explicitly modeling diversity. Our analysis corrob-
orates previous findings (Thompson et al., 1999)
that small annotation batches are effective early
in uncertainty sampling, avoiding selecting many
near-duplicate examples when intra-batch diversity
is low, but a larger batch size is more efficient later
in training once intra-batch diversity increases.

5 Related Work

Modeling diversity in batch-mode AL (Brinker,
2003) has recently attracted attention in the ma-
chine learning community. Kirsch et al. (2019)
introduce a Bayesian batch-mode selection strat-
egy by estimating the mutual information between
a set of samples and the model parameters. Ash
et al. (2020) present a diversity-inducing sampling
method using gradient embeddings. Most related
to our work, Bıyık et al. (2019) first apply DPPs

to batch-mode AL. Building on their approach, we
flesh out a DPP treatment for AL for a structured
prediction task, dependency parsing. Previously,
Shen et al. (2018) consider named entity recogni-
tion but they report negative results for a diversity-
inducing variant of their sampling method.

Due to the high annotation cost, AL is a popular
technique for parsing and parse selection (Osborne
and Baldridge, 2004). Recent advances focus on
reducing full-sentence annotations to a subset of
tokens within a sentence (Sassano and Kurohashi,
2010; Mirroshandel and Nasr, 2011; Majidi and
Crane, 2013; Flannery and Mori, 2015; Li et al.,
2016). We show that AL for parsing can further
benefit from diversity-aware sampling strategies.

DPPs have previously been successfully applied
to the tasks of extractive text summarization (Cho
et al., 2019a,b) and modeling phoneme inventories
(Cotterell and Eisner, 2017). In this work, we show
that DPPs also provide a useful framework for un-
derstanding and modeling quality and diversity in
active learning for NLP tasks.

6 Conclusion
We show that compared with their diversity-
agnostic counterparts, diversity-aware sampling
strategies not only lead to higher data efficiency, but
are also more robust under corpus duplication set-
tings. Our work invites future research into meth-
ods, utility and success conditions for modeling
diversity in active learning for NLP tasks.

Acknowledgements
We thank the anonymous reviewers for their in-
sightful reviews, and Prabhanjan Kambadur, Chen-
Tse Tsai, and Minjie Xu for discussion and com-
ments. Tianze Shi acknowledges support from
Bloomberg’s Data Science Ph.D. Fellowship.



2621

References
Jordan T. Ash, Chicheng Zhang, Akshay Krishna-

murthy, John Langford, and Alekh Agarwal. 2020.
Deep batch active learning by diverse, uncertain gra-
dient lower bounds. In International Conference on
Learning Representations, Online. OpenReview.net.

Ann Bies, Justin Mott, and Colin Warner. 2015. En-
glish news text treebank: Penn Treebank revised
(LDC2015T13).

Erdem Bıyık, Kenneth Wang, Nima Anari, and
Dorsa Sadigh. 2019. Batch active learning us-
ing determinantal point processes. arXiv preprint
arXiv:1906.07975.
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Appendix A Dependency Parser

We adopt the deep biaffine dependency parser pro-
posed by Dozat and Manning (2017). The parser is
conceptually simple and yet competitive with state-
of-the-art dependency parsers. The parser has three
components: feature extraction, unlabeled parsing
and relation labeler.

Feature Extraction For a length-n sentence x =
x0, x1, x2, . . . , xn, where x0 is the dummy root
symbol, we extract contextualized features at each
word position. In our experiments, we use a pre-
trained multilingual XLM-RoBERTa base model
(Conneau et al., 2020), and fine-tune the feature
extractor along with the rest of our parser:

[x0,x1, . . . ,xn] = XLM-R(x0, x1, . . . , xn).

Each word input to the XLM-RoBERTa model is
processed with the SentencePiece tokenizer (Kudo
and Richardson, 2018), and we follow Kitaev et al.
(2019) and retain the vectors corresponding to the
last sub-word units as their representations. For x0,
we use the vector of the [CLS] token, which is
appended by XLM-RoBERTa to the beginning of
each sentence.

Unlabeled Parser The parser uses a deep bi-
affine attention mechanism to derive locally-
normalized attachment probabilities for all poten-
tial head-dependent pairs:

harc-head
i = MLParc-head(xi)

h
arc-dep
j = MLParc-dep(xj)

si,j = [harc-head
i ; 1]>U arc[h

arc-dep
j ; 1]

Patt(head(j) = i | x) = softmaxi(s:,j),

where MLParc-head and MLParc-dep are two multi-
layer perceptrons (MLPs) projecting x vectors into
darc-dimensional h vectors, [; 1] appends an ele-
ment of 1 at the end of the vectors, and U arc ∈
R(darc+1)×(darc+1) is a bilinear scoring matrix. This
component is trained with cross-entropy loss of
the gold-standard attachments. During inference,
we use the Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967) to find the spanning
tree with the highest product of locally-normalized
attachment probabilities.

Relation Labeler The relation labeling compo-
nent employs a similar deep biaffine scoring func-

Round # 5 10

Strategy w/o DPP w/ DPP w/o DPP w/ DPP

Random 89.01±.28 89.67±.30 90.78±.27 91.22±.22

AMP 89.67±.29 90.24±.39 92.03±.10 92.17±.22

BALD 89.82±.36 90.29±.20 91.87±.36 92.00±.08

ID 90.24±.20 90.03±.18 92.16±.17 92.06±.16

Table B1: UAS after 5 and 10 rounds of annotation (roughly
5,000 and 7,000 training tokens respectively), comparing
strategies with and without modeling diversity through DPP.

tion as the unlabeled parsing component:

hrel-head
i = MLPrel-head(xi)

h
rel-dep
j = MLPrel-dep(xj)

ti,j,r = [hrel-head
i ; 1]>U rel

r [h
rel-dep
j ; 1]

P (rel(i, j) = r) = softmaxr(ti,j,:),

where each U rel
r ∈ R(drel+1)×(drel+1), and there are

as many such matrices as the size of the dependency
relation label set |R|. The relation labeler is trained
using cross entropy loss on the gold-standard head-
dependent pairs. During inference, the labeling
decision for each arc is made independently given
the predicted unlabeled parse tree.

Appendix B Results with UAS
Evaluation

We also evaluate different learning strategies based
on unlabeled attachment scores (UAS), and the
results are shown in Table B1. In line with LAS-
based experiments, we find that modeling diversity
is more helpful during initial stages of learning.
For ID, we observe this effect even earlier than the
fifth round of annotation: 86.57±.44 vs. 87.40±.51
after the first annotation round.

Appendix C Sentence Selection
Examples

In Table C2 we compare batches sampled by a
diversity-aware selection strategy with a diversity-
agnostic one. We observe that by modeling diver-
sity in the sample selection process, DPPs avoid
selecting duplicate or near-duplicate sentences and
thus the annotation budget can be maximally uti-
lized.

Appendix D BALD under High
Duplication Setting

Figure D1 shows the learning curves for BALD-
based selection strategies under a high corpus
duplication setting where the corpus is repeated
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Sentences selected by AMP (highest-quality ones first):
Downgraded by Moody ’s were Houston Lighting ’s first - mortgage bonds and secured pollution - control bonds to single - A - 3 from single - A - 2 ; unsecured pollution -
control bonds to Baa - 1 from single - A - 3 ; preferred stock to single - A - 3 from single - A - 2 ; a shelf registration for preferred stock to a preliminary rating of single - A - 3
from a preliminary rating of single - A - 2 ; two shelf registrations for collateralized debt securities to a preliminary rating of single - A - 3 from a preliminary rating of single -
A - 2 , and the unit ’s rating for commercial paper to Prime - 2 from Prime - 1 .
For a while in the 1970s it seemed Mr. Moon was on a spending spree , with such purchases as the former New Yorker Hotel and its adjacent Manhattan Center ; a fishing
/ processing conglomerate with branches in Alaska , Massachusetts , Virginia and Louisiana ; a former Christian Brothers monastery and the Seagram family mansion ( both
picturesquely situated on the Hudson River ) ; shares in banks from Washington to Uruguay ; a motion picture production company , and newspapers , such as the Washington
Times , the New York City Tribune ( originally the News World ) , and the successful Spanish - language Noticias del Mundo .

→ LONDON LATE EURODOLLARS : 8 11/16 % to 8 9/16 % one month ; 8 5/8 % to 8 1/2 % two months ; 8 5/8 % to 8 1/2 % three months ; 8 9/16 % to 8 7/16 % four months ;
8 1/2 % to 8 3/8 % five months ; 8 1/2 % to 8 3/8 % six months .

→ LONDON LATE EURODOLLARS : 8 3/4 % to 8 5/8 % one month ; 8 3/4 % to 8 5/8 % two months ; 8 11/16 % to 8 9/16 % three months ; 8 9/16 % to 8 7/16 % four months ;
8 1/2 % to 8 3/8 % five months ; 8 7/16 % to 8 5/16 % six months .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.40 % 30 to 44 days ; 8.325 % 45 to 59 days ; 8.10 % 60 to 89 days ; 8 % 90 to 119 days ;
7.85 % 120 to 149 days ; 7.70 % 150 to 179 days ; 7.375 % 180 to 270 days .
4 . When a RICO TRO is being sought , the prosecutor is required , at the earliest appropriate time , to state publicly that the government ’s request for a TRO , and eventual
forfeiture , is made in full recognition of the rights of third parties – that is , in requesting the TRO , the government will not seek to disrupt the normal , legitimate business
activities of the defendant ; will not seek through use of the relation - back doctrine to take from third parties assets legitimately transferred to them ; will not seek to vitiate
legitimate business transactions occurring between the defendant and third parties ; and will , in all other respects , assist the court in ensuring that the rights of third parties are
protected , through proceeding under RICO and otherwise .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.50 % 30 to 44 days ; 8.25 % 45 to 62 days ; 8.375 % 63 to 89 days ; 8 % 90 to 119 days ;
7.90 % 120 to 149 days ; 7.80 % 150 to 179 days ; 7.55 % 180 to 270 days .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.50 % 30 to 44 days ; 8.25 % 45 to 65 days ; 8.375 % 66 to 89 days ; 8 % 90 to 119 days ;
7.875 % 120 to 149 days ; 7.75 % 150 to 179 days ; 7.50 % 180 to 270 days .

→ LONDON LATE EURODOLLARS : 8 11/16 % to 8 9/16 % one month ; 8 5/8 % to 8 1/2 % two months ; 8 5/8 % to 8 1/2 % three months ; 8 9/16 % to 8 7/16 % four months ;
8 1/2 % to 8 3/8 % five months ; 8 7/16 % to 8 5/16 % six months .

→ LONDON LATE EURODOLLARS : 8 11/16 % to 8 9/16 % one month ; 8 9/16 % to 8 7/16 % two months ; 8 5/8 % to 8 1/2 % three months ; 8 1/2 % to 8 3/8 % four months ;
8 7/16 % to 8 5/16 % five months ; 8 7/16 % to 8 5/16 % six months .
The new edition lists the top 10 metropolitan areas as Anaheim - Santa Ana , Calif. ; Boston ; Louisville , Ky. ; Nassau - Suffolk , N.Y. ; New York ; Pittsburgh ; San Diego ;
San Francisco ; Seattle ; and Washington .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.45 % 30 to 44 days ; 8.20 % 45 to 67 days ; 8.325 % 68 to 89 days ; 8 % 90 to 119 days ;
7.875 % 120 to 149 days ; 7.75 % 150 to 179 days ; 7.50 % 180 to 270 days .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.50 % 2 to 44 days ; 8.25 % 45 to 69 days ; 8.40 % 70 to 89 days ; 8.20 % 90 to 119 days ;
8.05 % 120 to 149 days ; 7.90 % 150 to 179 days ; 7.50 % 180 to 270 days .
Five officials of this investment banking firm were elected directors : E. Garrett Bewkes III , a 38 - year - old managing director in the mergers and acquisitions department ;
Michael R. Dabney , 44 , a managing director who directs the principal activities group which provides funding for leveraged acquisitions ; Richard Harriton , 53 , a general
partner who heads the correspondent clearing services ; Michael Minikes , 46 , a general partner who is treasurer ; and William J. Montgoris , 42 , a general partner who is also
senior vice president of finance and chief financial officer .

→ LONDON LATE EURODOLLARS : 8 11/16 % to 8 9/16 % one month ; 8 5/8 % to 8 1/2 % two months ; 8 11/16 % to 8 9/16 % three months ; 8 9/16 % to 8 7/16 % four
months ; 8 1/2 % to 8 3/8 % five months ; 8 7/16 % to 8 5/16 % six months .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.55 % 30 to 44 days ; 8.25 % 45 to 59 days ; 8.40 % 60 to 89 days ; 8 % 90 to 119 days ; 7.90
% 120 to 149 days ; 7.80 % 150 to 179 days ; 7.55 % 180 to 270 days .
They transferred some $ 28 million from the Community Development Block Grant program designated largely for low - and moderate - income projects and funneled it into
such items as : – $ 1.2 million for a performing - arts center in Newark , – $ 1.3 million for “ job retention ” in Hawaiian sugar mills . – $ 400,000 for a collapsing utility tunnel
in Salisbury , – $ 500,000 for “ equipment and landscaping to deter crime and aid police surveillance ” at a Michigan park . – $ 450,000 for “ integrated urban data based in
seven cities . ” No other details . – $ 390,000 for a library and recreation center at Mackinac Island , Mich .

→ LONDON LATE EURODOLLARS : 8 3/4 % to 8 5/8 % one month ; 8 13/16 % to 8 11/16 % two months ; 8 11/16 % to 8 9/16 % three months ; 8 9/16 % to 8 7/16 % four
months ; 8 1/2 % to 8 3/8 % five months ; 8 7/16 % to 8 5/16 % six months .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.45 % 30 to 44 days ; 8.25 % 45 to 68 days ; 8.30 % 69 to 89 days ; 8.125 % 90 to 119 days ;
8 % 120 to 149 days ; 7.875 % 150 to 179 days ; 7.50 % 180 to 270 days .

Sentences selected by AMP with diversity-inducing DPP:
Downgraded by Moody ’s were Houston Lighting ’s first - mortgage bonds and secured pollution - control bonds to single - A - 3 from single - A - 2 ; unsecured pollution -
control bonds to Baa - 1 from single - A - 3 ; preferred stock to single - A - 3 from single - A - 2 ; a shelf registration for preferred stock to a preliminary rating of single - A - 3
from a preliminary rating of single - A - 2 ; two shelf registrations for collateralized debt securities to a preliminary rating of single - A - 3 from a preliminary rating of single -
A - 2 , and the unit ’s rating for commercial paper to Prime - 2 from Prime - 1 .
4 . When a RICO TRO is being sought , the prosecutor is required , at the earliest appropriate time , to state publicly that the government ’s request for a TRO , and eventual
forfeiture , is made in full recognition of the rights of third parties – that is , in requesting the TRO , the government will not seek to disrupt the normal , legitimate business
activities of the defendant ; will not seek through use of the relation - back doctrine to take from third parties assets legitimately transferred to them ; will not seek to vitiate
legitimate business transactions occurring between the defendant and third parties ; and will , in all other respects , assist the court in ensuring that the rights of third parties are
protected , through proceeding under RICO and otherwise .

� COMMERCIAL PAPER placed directly by General Motors Acceptance Corp. : 8.40 % 30 to 44 days ; 8.325 % 45 to 59 days ; 8.10 % 60 to 89 days ; 8 % 90 to 119 days ;
7.85 % 120 to 149 days ; 7.70 % 150 to 179 days ; 7.375 % 180 to 270 days .
Moreover , the process is n’t without its headaches .
For a while in the 1970s it seemed Mr. Moon was on a spending spree , with such purchases as the former New Yorker Hotel and its adjacent Manhattan Center ; a fishing
/ processing conglomerate with branches in Alaska , Massachusetts , Virginia and Louisiana ; a former Christian Brothers monastery and the Seagram family mansion ( both
picturesquely situated on the Hudson River ) ; shares in banks from Washington to Uruguay ; a motion picture production company , and newspapers , such as the Washington
Times , the New York City Tribune ( originally the News World ) , and the successful Spanish - language Noticias del Mundo .
Within the paper sector , Mead climbed 2 3/8 to 38 3/4 on 1.3 million shares , Union Camp rose 2 3/4 to 37 3/4 , Federal Paper Board added 1 3/4 to 23 7/8 , Bowater gained 1
1/2 to 27 1/2 , Stone Container rose 1 to 26 1/8 and Temple - Inland jumped 3 3/4 to 62 1/4 .
We finally rendezvoused with our balloon , which had come to rest on a dirt road amid a clutch of Epinalers who watched us disassemble our craft – another half - an - hour of
non-flight activity – that included the precision routine of yanking the balloon to the ground , punching all the air out of it , rolling it up and cramming it and the basket into the
trailer .
These are the 26 states , including the commonwealth of Puerto Rico , that have settled with Drexel : Alaska , Arkansas , Delaware , Georgia , Hawaii , Idaho , Indiana , Iowa ,
Kansas , Kentucky , Maine , Maryland , Minnesota , Mississippi , New Hampshire , New Mexico , North Dakota , Oklahoma , Oregon , South Carolina , South Dakota , Utah ,
Vermont , Washington , Wyoming and Puerto Rico .
It is the stuff of dreams , but also of traumas .
An inquiry into his handling of Lincoln S&L inevitably will drag in Sen. Cranston and the four others , Sens. Dennis DeConcini ( D. , Ariz. ) , John McCain ( R. , Ariz. ) , John
Glenn ( D. , Ohio ) and Donald Riegle ( D. , Mich . ) .
Five officials of this investment banking firm were elected directors : E. Garrett Bewkes III , a 38 - year - old managing director in the mergers and acquisitions department ;
Michael R. Dabney , 44 , a managing director who directs the principal activities group which provides funding for leveraged acquisitions ; Richard Harriton , 53 , a general
partner who heads the correspondent clearing services ; Michael Minikes , 46 , a general partner who is treasurer ; and William J. Montgoris , 42 , a general partner who is also
senior vice president of finance and chief financial officer .
But as they hurl fireballs that smolder rather than burn , and relive old duels in the sun , it ’s clear that most are there to make their fans cheer again or recapture the camaraderie
of seasons past or prove to themselves and their colleagues that they still have it – or something close to it .
They are : “ A Payroll to Meet : A Story of Greed , Corruption and Football at SMU ” ( Macmillan , 221 pages , $ 18.95 ) by David Whitford ; “ Big Red Confidential : Inside
Nebraska Football ” ( Contemporary , 231 pages , $ 17.95 ) by Armen Keteyian ; and “ Never Too Young to Die : The Death of Len Bias ” ( Pantheon , 252 pages , $ 18.95 ) by
Lewis Cole .
He says he told NewsEdge to look for stories containing such words as takeover , acquisition , acquire , LBO , tender , merger , junk and halted .
It is no coincidence that from 1844 to 1914 , when the Bank of England was an independent private bank , the pound was never devalued and payment of gold for pound notes
was never suspended , but with the subsequent nationalization of the Bank of England , the pound was devalued with increasing frequency and its use as an international medium
of exchange declined .
The $ 4 billion in bonds break down as follows : $ 1 billion in five - year bonds with a coupon rate of 8.25 % and a yield to maturity of 8.33 % ; $ 1 billion in 10 - year bonds
with a coupon rate of 8.375 % and a yield to maturity of 8.42 % ; $ 2 billion in 30 - year bonds with five - year call protection , a coupon rate of 8.75 % and a yield to maturity
of 9.06 % .
Hecla Mining rose 5/8 to 14 ; Battle Mountain Gold climbed 3/4 to 16 3/4 ; Homestake Mining rose 1 1/8 to 16 7/8 ; Lac Minerals added 5/8 to 11 ; Placer Dome went up 7/8
to 16 3/4 , and ASA Ltd. jumped 3 5/8 to 49 5/8 .

Table C2: Sentences picked by a diversity-agnostic (top) and a diversity-aware (bottom) selection strategy from the same
unlabeled pool after the intial round of model training on the seed sentences. The diversity-agnostic strategy selects many
near-duplicate sentences (the two near-duplicate clusters are marked by red→ and blue �), effectively wasting the annotation
budget, where DPPs largely alleviate this issue by enforcing diversity.
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Figure D1: Learning curves for BALD-based selection strate-
gies under a five-fold corpus duplication setting.

Algorithm E1: Greedy MAP inference for
DPP with a size budget, adapted from
Kulesza (2012).

Input: candidate item set X (sentences or tokens),
DPP represented by matrix L, size budget b

U ← X;
Y ← ∅;
while U 6= ∅ do

i← argmaxi′∈U det(LY ∪{i′});
if
∑

y∈Y size(y) < b then
Y ← Y ∪ {i};

else
break;

end
end
Output: selected items Y

five times. In this extreme setting, the diversity-
agnostic strategy significantly underperforms the
diversity-aware one. We posit that the relative suc-
cess of BALD compared to AMP in the twice-
duplicated setting is due to the fact that BALD
randomly draws dropout masks to estimate model
uncertainty, so that identical examples could still
have different quality measures.

Appendix E Implementation Details and
Hyperparameters

We do not tune our hyperparameters since in prac-
tice, active learning systems only have a single shot
at success, without tuning. Instead, we follow rec-
ommendations from relevant prior work in setting
our learning details and hyperparameters.

Active Learning Following Li et al. (2016), our
active learning set-up proceeds in two stages for
each annotation round. In the first stage, we select
sentences filling in a budget of 2500 tokens; in the
second stage, we pick 500 tokens out of the subset
of sentences. For a diversity-agnostic strategy, we
choose the top-k highest-quality candidates within
the token budget, while our diversity-aware selec-

tion strategy uses a separate DPP for each stage.
The active learning process is bootstraped with a
seed set of 128 labeled sentences. For the BALD
quality measure, we set K = 5.

Greedy MAP Inference for DPPs Algo-
rithm E1 illustrates the procedure for selecting
items from DPPs under a budget constraint. This
greedy MAP inference algorithm is adapted from
Kulesza (2012). During sentence selection, the
size of a sentence is its number of tokens, and each
token has a size of 1 in the token selection stage.

Dependency Parser We set the hyperparameters
according to Dozat and Manning (2017). All the
MLPs in the deep biaffine attention architecture
have single hidden layers with ReLU activation
functions and a dropout probability of 0.33, and
we set darc and drel to be 500 and 100 respectively.

Training and Optimization Each training batch
contains 16 sentences and gradient norms are
clipped to 5.0. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 10−5

with 640 warmup steps with a linearly-increasing
learning rate starting from 0.

Implementation Our implementation is in Py-
Torch (Paszke et al., 2019), and we use the
transformers package6 to interface with the pre-
trained XLM-RoBERTa model.

6https://github.com/huggingface/transformers

https://github.com/huggingface/transformers

