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Abstract

Supervised learning assumes that a ground
truth label exists. However, the reliability
of this ground truth depends on human anno-
tators, who often disagree. Prior work has
shown that this disagreement can be helpful in
training models. We propose a novel method
to incorporate this disagreement as informa-
tion: in addition to the standard error com-
putation, we use soft labels (i.e., probability
distributions over the annotator labels) as an
auxiliary task in a multi-task neural network.
We measure the divergence between the pre-
dictions and the target soft labels with several
loss-functions and evaluate the models on vari-
ous NLP tasks. We find that the soft-label pre-
diction auxiliary task reduces the penalty for
errors on ambiguous entities and thereby miti-
gates overfitting. It significantly improves per-
formance across tasks beyond the standard ap-
proach and prior work.

1 Introduction
Usually, the labels used in NLP classification tasks
are produced by sets of human annotators. As dis-
agreement between annotators is common, many
methods aggregate the different answers into a
supposedly correct one (Dawid and Skene, 1979;
Carpenter, 2008; Hovy et al., 2013; Raykar et al.,
2010; Paun et al., 2018; Ruiz et al., 2019). How-
ever, the aggregated labels obtained in this way
mask the world’s real complexity: instances can
be intrinsically ambiguous (Poesio and Artstein,
2005; Zeman, 2010; Plank et al., 2014; Pavlick and
Kwiatkowski, 2019), or so challenging to evaluate
that considerable disagreement between different
annotators is unavoidable. In those cases, it is rea-
sonable to wonder whether the ambiguity is indeed
harmful to the models or whether it carries valuable
information about the relative difficulty of each in-
stance (Aroyo and Welty, 2015). Several authors
followed that intuition, trying ways to incorporate
the information about the level of annotator agree-

ment in their models (Sheng et al., 2008; Plank
et al., 2014, 2016; Jamison and Gurevych, 2015;
Rodrigues and Pereira, 2018; Lalor et al., 2017).

Usually, Deep Learning models compute the er-
ror as the divergence between the predicted label
distribution and a one-hot encoded gold distribution
(i.e., nothing but the gold label has any probability
mass). However, for complex tasks, this binary
black-and-white notion of truth is not plausible and
can lead to overfitting. Instead, we can use a more
nuanced notion of truth by comparing against soft
labels: we collect the probability distributions over
the labels given by the annotators, rather than using
one-hot encodings with a single correct label. To
measure the divergence between probability distri-
butions, we can use well-known measures like the
Kullback-Leibler divergence (Kullback and Leibler,
1951), the Jensen-Shannon divergence (Lin, 1991),
and the Cross-Entropy, which is also used to quan-
tify the error with one-hot encoded labels. The
main impediment to the direct use of soft labels as
targets, though, is the lack of universally accepted
performance metrics to evaluate the divergence be-
tween probability distributions. (Most metrics lack
an upper bound, making it difficult to assess predic-
tion quality). Usually, annotations are incorporated
into the models without soft labels (Plank et al.,
2014; Rodrigues and Pereira, 2018). Where soft la-
bels are used, they are variously filtered according
to their distance from the correct labels and then
used to weight the training instances rather than as
prediction targets. These models still predict only
true labels (Jamison and Gurevych, 2015).

In contrast to previous approaches, we use Multi-
Task Learning (MTL) to predict a probability distri-
bution over the soft labels as additional output. We
jointly model the main task of predicting standard
gold labels and the novel auxiliary task of predict-
ing the soft label distributions. Due to the difficulty
of interpreting its performance, we do not directly
evaluate the distance between the target and the
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predicted probability distributions. However, the
MTL framework allows us to indirectly evaluate
its effect on the main task. Exploiting the standard
metrics for gold labels, we can also compare the
effect of different loss functions for the soft label
task. In particular, we propose a standard and an
inverse version of the KL-divergence and Cross-
Entropy. In previous work (Jamison and Gurevych,
2015), filtering and weighting the training instances
according to soft labels did not lead to consistent
performance improvements. In contrast, we find
that the information carried by MTL soft labels
does significantly improve model performance on
several NLP tasks.

Contributions 1) We show that MTL models,
trained with soft labels, consistently outperform
the corresponding Single-Task Learning (STL) net-
works, and 2) we evaluate the use of different loss
functions for soft labels.

2 MTL with three loss functions
For the experiments, we use different types of neu-
ral networks, depending on the type of task. How-
ever, we create two versions of each model archi-
tecture: an STL model and an MTL model. In STL,
we predict the one-hot encoded labels. In MTL, we
add the auxiliary task of predicting the soft label
distributions to the previous main task.

In both cases, we use Adam optimization
(Kingma and Ba, 2014). The loss function for
the main task is standard cross-entropy. For the
auxiliary task, we have different options. The KL-
divergence is a natural choice to measure the differ-
ence between the prediction distribution Q and the
distribution of soft labels P . However, there are
two ways we can do that, depending on what we
want to capture.The standard KL-divergence is:

DKL(P ||Q) =
∑
i

P (i) log2

(
P (i)

Q(i)

)
, (1)

This measures the divergence from Q to P and
encourages a wide Q, because if the model overes-
timates the regions of small mass from P it will be
heavily penalised. The inverse KL-divergence is:

DKL(Q||P ) =
∑
i

Q(i) log2

(
Q(i)

P (i)

)
(2)

This measures the divergence from P to Q and
encourages a narrow Q distribution because the
model will try to allocate mass to Q in all the places

where P has mass; otherwise, it will get a strong
penalty.

Considering that we use the auxiliary task to re-
duce overfitting on the main task, we expect equa-
tion 2 to be more effective because it encourages
the model to learn a distribution that pays attention
to the classes where the annotations possibly agree.

A third option is to directly apply Cross-Entropy.
This is actually derived from KL-divergence, the
entropy of P added to the KL-divergence:

H(P ||Q) = H(P ) +
∑
i

P (i) log2

(
P (i)

Q(i)

)
(3)

=
∑
i

P (i) log2(Q(i)). (4)

Therefore, regular KL-divergence and Cross-
Entropy tend to lead to the same performance.
For completeness, we report the results of Cross-
Entropy as well.

As overall loss of the main and of the auxiliary
task, we compute the two’s sum. We do not apply
any normalization method to the two losses, as un-
necessary. We use LogSoftmax activation function
for the main task, which is a standard choice for
one-hot encoded labels, and standard Softmax for
the auxiliary task. Against the distributions of gold
(one-hot encoded) and soft labels, both summing
up to one, the errors are on the same scale.

We also derive the soft labels using the Softmax
function, which prevents the probability of the sin-
gle labels from falling to zero.

3 Methods
We evaluate our approach on two NLP tasks: POS
tagging and morphological stemming. We use the
respective data sets from Plank et al. (2014) and
Jamison and Gurevych (2015) (where data sets are
sufficiently large to train a neural model). In both
cases, we use data sets where both one-hot (gold)
and probabilistic (soft) labels (i.e., distributions
over labels annotations) are available. The code
for all models in this paper will be available on
github.com/fornaciari.

3.1 POS tagging

Data set For this task, we use the data set re-
leased by Gimpel et al. (2010) with the crowd-
sourced labels provided by Hovy et al. (2014). The
same data set was used by Jamison and Gurevych
(2015). Similarly, we use the CONLL Universal

https://github.com/fornaciari
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POS tags (Petrov et al., 2012) and 5-fold cross-
validation. The soft labels come from the annota-
tion of 177 annotators, with at least five annotations
for each instance. Differently from Jamison and
Gurevych (2015), however, we also test the model
on a completely independent test set, released by
Plank et al. (2014). This data set does not contain
soft labels. However, they are not necessary to test
our models.

Model We use a tagging model that takes two
kinds of input representations, at the character and
the word level (Plank et al., 2016). At the charac-
ter level, we use character embeddings trained on
the same data set; at the word level, we use Glove
embeddings (Pennington et al., 2014). We feed
the word representation into a ‘context bi-RNN’,
selecting the hidden state of the RNN at the target
word’s position in the sentence. The character rep-
resentation is then fed into a ‘sequence bi-RNN’,
whose output is its final state. The two outputs
are concatenated and passed to an attention mech-
anism, as proposed by Vaswani et al. (2017). In
the STL models, the attention mechanisms’ output
is passed to a last attention mechanism and to a
fully connected layer that gives the output. In the
MTL models, the last two components of the STL
network (attention + fully connected layer) are du-
plicated and used for the auxiliary task, providing
softmax predictions.

3.2 Morphological stemming

Data set We use the data set used in Jamison and
Gurevych (2015), which was originally created by
Carpenter et al. (2009). It consists of (word, stem)-
pairs, and the task is a binary classification task of
whether the stem belongs to the word. The soft
labels come from 26 unique annotators, and each
instance received at least four labels.

Model We represent each (word, stem)-pair with
the same character embeddings trained for the pre-
vious task. Each representation passes to two
convolutional/max-pooling layers. We use two con-
volutional layers with 64 and 128 channels and
three windows of 3, 4, and 5 characters size. Their
outputs are connected with two independent at-
tention mechanisms (Vaswani et al., 2017). Their
output is concatenated and passed directly to the
fully connected layers - one for each task -, which
provide the prediction. In the MTL models, the con-
catenation of the attention mechanisms is passed to
another fully connected layer, which predicts the

soft labels.

4 Experiments and results
4.1 Gold standard and soft labels

To account for the effects of random initializations,
we run ten experiments for each experimental con-
dition. During the training, we select the models
relying on the F-measure observed on the devel-
opment set. We report the averaged results for
accuracy and F-measure, the metrics used by the
studies we compare to. For each task, we compare
the STL and MTL models. Where possible, we
compare model performance with previous work.
Table 1 shows the results. The MTL models sig-
nificantly outperform the STL ones, and in most
cases, the previous state-of-the-art as well. We
evaluate STL and MTL’s significance via bootstrap
sampling, following Berg-Kirkpatrick et al. (2012);
Søgaard et al. (2014).

Model Acc. F1

POS tag, 5-fold CV
Jamison and Gurevych 78.9% -
STL 85.73% 85.00
MTL + KL regular 86.62%** 85.90**
MTL + KL inverse 86.55%** 85.88**
MTL + Cross-Entropy 86.76%** 85.98**

POS tag, separate test set
Plank et al. 83.6% -
STL 85.84% 74.56
MTL + KL regular 85.93% 75.04
MTL + KL inverse 86.29%* 75.04
MTL + Cross-Entropy 86.27%* 75.13

Stemming
Jamison and Gurevych 76.6% -
STL 73.59% 57.57
MTL + KL regular 75.63%** 55.58
MTL + KL inverse 77.09%** 58.41*
MTL + Cross-Entropy 75.26%** 55.92

Table 1: STL and MTL models with gold and soft la-
bels. Significance: ∗∗ : p ≤ 0.01; ∗ : p ≤ 0.05

4.2 Silver standard and soft labels

Since we did not create the corpora that we use
in our experiments, we do not know the details
of the gold labels’ creation process. However, we
verified that the gold labels do not correspond to
the classes resulting from the majority voting of the
annotations used for the soft labels. Consequently,
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the MTL models exploit an additional source of
information that is not provided to the STL ones.
To validate our hypothesis, we need to exclude
that the reason for the MTL’s success is not simply
that the soft labels inject more information into the
models, We ran a set of experiments where the main
task was trained on the majority voting (silver)
labels from the annotations, rather than on the gold
labels. We still performed the tests on the gold
labels. In these conditions, both tasks rely on the
same source of (imperfect) information, so MTL
has no potential advantage over STL. While overall
performance drops compared to the results of Table
1, Table 2 shows that the MTL models still maintain
a significant advantage over the STL ones. As
before, results are averaged over ten independent
runs for each condition.

Model Acc. F1

POS tagging, 5-fold CV
STL 75.22% 67.01
MTL + KL regular 75.82%** 67.66**
MTL + KL inverse 76.00%** 67.76**
MTL + Cross-Entropy 75.99%** 67.80**

POS tagging, separate test set
STL 77.81% 60.59
MTL + KL regular 78.61%** 61.68**
MTL + KL inverse 79.16%** 61.94**
MTL + Cross-Entropy 78.49%** 61.53**

Stemming
STL 71.34% 58.85
MTL + KL regular 73.17%** 57.75
MTL + KL inverse 77.47%** 57.85
MTL + Cross-Entropy 74.41%** 57.06

Table 2: STL and MTL models with silver and soft
labels. Significance: ∗∗ : p ≤ 0.01; ∗ : p ≤ 0.05

5 Error analysis
To gain further insights about their contributions,
we inspect the soft labels’ probability distributions,
comparing the predictions of STL and MTL mod-
els.

We perform the following analysis for the POS
and the stemming tasks, and for each kind of loss
function in the MTL models. In particular, we con-
sider four-conditions of the predictions: 1) where
both STL and MTL gave the correct answer, 2)
where both gave the wrong answer, 3) where STL
was correct and MTL incorrect, and 4) where MTL

was correct and STL incorrect (see confusion ma-
trix in Table 3)

For each of these categories, we compute the
relative kurtosis of the soft labels. We choose this
measure as it describes how uniform the probability
distribution is: whether the annotators agree on a
single class, or whether they disperse their votes
among different classes.

Not surprisingly, we find the highest average
kurtosis where both STL and MTL models give
the correct prediction. Both kinds of models find
it easier to predict the instances that are also un-
ambiguous for the annotators. The opposite holds
as well: the instances where both MTL and STL
models are wrong show the lowest mean kurtosis.

More interesting is the outcome where MTL
models are correct and STL wrong, and vice-versa.
In these cases, the average kurtosis lies between the
two previous extremes. Also, we find a consistent
trend across data sets and MTL loss-functions: the
instances where only the MTL models are correct
show a slightly higher kurtosis than those instances
where only the STL models give the right answer.
To measure the significance of this trend, we apply
the Mann-Whitney rank test (Mann and Whitney,
1947). We use a non-parametric test because the
kurtoses’ distribution is not normal. We find two
significant results: when we use Cross-Entropy as
MTL loss-function in the POS data set, and with
the KL inverse on the Stemming data set. We report
the POS results in table 3. Similarly to the previous
sections 1 and 2, the results refer to 10 runs of each
experimental condition.

This finding suggests that, when dealing with
ambiguous cases, the soft labels tend to provide a
qualified hint. It is training the models to predict
the classes that seem to be the most probable for
the annotators.

MTL
correct incorrect

STL correct 6.614 5.961
incorrect 6.015* 5.727

Table 3: Average soft labels’ kurtosis of cor-
rectly/incorrectly predicted instances by STL and MTL
models (with Cross-Entropy as loss-function) in the
POS data set. The kurtosis where only the MTL models
are correct is significantly higher than that where only
STL models is correct, with ∗ : p ≤ 0.05
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6 Related Work

Several different lines of research use annotation
disagreement. One line focuses on the aggrega-
tion of multiple annotations before model train-
ing. Seminal work includes the proposal by Dawid
and Skene (1979), who proposed an Expectation-
Maximization (EM) based aggregation model. This
model has since influenced a large body of work
on annotation aggregation, and modeling annotator
competence (Carpenter et al., 2009; Hovy et al.,
2013; Raykar et al., 2010; Paun et al., 2018; Ruiz
et al., 2019). In our experiments on POS-tagging,
we evaluated the possibility of testing Dawid-Skene
labels rather than Majority Voting, finding that
the performance of the two against the gold stan-
dard was mostly the same. Some of these methods
also evaluate the annotators’ expertise (Dawid and
Skene, 1979; Raykar et al., 2010; Hovy et al., 2013;
Ruiz et al., 2019). Others just penalize disagree-
ment (Pan et al., 2019). The second line of work
focuses on filtering out presumably low quality data
to train on the remaining data (Beigman Klebanov
and Beigman, 2014; Jamison and Gurevych, 2015).
However, such filtering strategies require an effec-
tive filtering threshold, which is non-trivial; relying
only on high-agreement cases also results in worse
performance (Jamison and Gurevych, 2015). Some
studies (Goldberger and Ben-Reuven, 2016; Han
et al., 2018b,a) treat disagreement as a corruption
of a theoretical gold standard. Since the robustness
of machine learning models is affected by the data
annotation quality, reducing noisy labels generally
improves the models’ performance. The closest to
our work are the studies of Cohn and Specia (2013)
and Rodrigues and Pereira (2018), who both use
MTL. In contrast to our approach, though, each
of their tasks represents an annotator. We instead
propose to learn from both the gold labels and the
distribution over multiple annotators, which we
treat as soft label distributions in a single auxil-
iary task. Compared to treating each annotator as a
task, our approach has the advantage that it requires
fewer output nodes, which reduces the number of
parameters. To our knowledge, the only study that
directly uses soft labels is the one by Lalor et al.
(2017). Different from our study, they assume that
soft labels are available only for a subset of the
data. Therefore they use them to fine-tune STL
networks. Despite this methodological difference,
their findings support this paper’s intuition that soft
labels carry signal rather than noise.

In a broad sense, our study belongs to the re-
search area of regularization methods for neural
networks. Among them, label smoothing (Pereyra
et al., 2017) penalizes the cases of over-confident
network predictions. Both label smoothing and soft
labels reduce overfitting regulating the loss size.
However, label smoothing relies on the gold labels’
distribution, not accounting for the instances’ in-
herent ambiguity, while soft labels selectively train
the models to reduce the confidence when dealing
with unclear cases, not affecting the prediction of
clear cases. Disagreement also relates to the issue
of annotator biases (Shah et al., 2020; Sap et al.,
2019; Hovy and Yang, 2021), and our method can
provide a possible way to address it.

7 Conclusion

We propose a new method for leveraging instance
ambiguity, as expressed by the probability distribu-
tion over label annotations. We set up MTL models
to predict this label distribution as an auxiliary task
in addition to the standard classification task. This
setup allows us to incorporate uncertainty about
the instances’ class membership into the model.
Across two NLP tasks, three data sets, and three
loss functions, we always find that our method
significantly improves over the STL performance.
While the performance difference between the loss
functions is not significant, we find that the inverse
version of KL gives the best results in all the exper-
imental conditions but one. This finding supports
our idea of emphasizing the coders’ disagreement
during training. We conjecture that predicting the
soft labels acts as a regularizer, reducing overfit-
ting. That effect is especially likely for ambiguous
instances, where annotators’ label distributions dif-
fer especially strongly from one-hot encoded gold
labels.
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