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Abstract

When scaled to hundreds of billions of pa-
rameters, pretrained language models such as
GPT-3 (Brown et al., 2020) achieve remark-
able few-shot performance. However, enor-
mous amounts of compute are required for
training and applying such big models, result-
ing in a large carbon footprint and making
it difficult for researchers and practitioners to
use them. We show that performance similar
to GPT-3 can be obtained with language mod-
els that are much “greener” in that their pa-
rameter count is several orders of magnitude
smaller. This is achieved by converting textual
inputs into cloze questions that contain a task
description, combined with gradient-based op-
timization; exploiting unlabeled data gives fur-
ther improvements. We identify key factors re-
quired for successful natural language under-
standing with small language models.1

1 Introduction

Pretraining ever-larger language models (LMs) on
massive corpora has led to large improvements in
NLP (Radford et al., 2018; Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2020, i.a.). A standard
approach is to replace the pretrained model’s out-
put layer with a task-specific head and finetune
the entire model on a set of labeled training data.
However, language modeling is not only a pow-
erful pretraining objective, but many tasks can be
reformulated as cloze questions (e.g., by append-
ing phrases such as “the correct answer is __”),
allowing pretrained LMs to solve them without any
or with only very few labeled examples (Radford
et al., 2019; Schick and Schütze, 2021).

Recently, Brown et al. (2020) introduced GPT-3,
a pretrained LM with an enormous 175 billion pa-
rameters, and showed that it has amazing few-shot
abilities: By reformulating tasks as LM problems,

1Our implementation is publicly available at https://
github.com/timoschick/pet.
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Figure 1: Performance on SuperGLUE with 32 train-
ing examples. ALBERT with PET/iPET outperforms
GPT-3 although it is much “greener” in that it has
three orders of magnitude fewer parameters.

GPT-3 achieves near state-of-the-art results for
some SuperGLUE (Wang et al., 2019) tasks given
just 32 labeled examples. This is achieved through
priming: GPT-3 is given a few demonstrations of
inputs and corresponding outputs as context for its
predictions, but no gradient updates are performed.
While being straightforward to use, this method
has two major drawbacks:

• It requires a gigantic LM to work well, mak-
ing it unusable in many real-world scenar-
ios and resulting in a large carbon footprint
(Strubell et al., 2019).

• It does not scale to more than a few exam-
ples as the context window of most LMs is
limited to a few hundred tokens.2

An alternative to priming is pattern-exploiting
training (PET) (Schick and Schütze, 2021), which
combines the idea of reformulating tasks as cloze
questions with regular gradient-based finetuning.
While PET additionally requires unlabeled data, un-
labeled data is much easier to obtain than labeled

2While GPT-3 can process up to 2,048 tokens, this is still
not enough to fit ≥32 examples for some SuperGLUE tasks.

https://github.com/timoschick/pet
https://github.com/timoschick/pet
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examples for many real-world applications. Cru-
cially, PET only works when the answers to be
predicted by the LM correspond to a single token
in its vocabulary; this is a severe limitation as many
tasks cannot easily be worded that way.

In this work, we adapt PET for tasks that require
predicting multiple tokens. We then show that in
combination with ALBERT (Lan et al., 2020), PET

and its iterative variant (iPET) both outperform
GPT-3 on SuperGLUE with 32 training examples,
while requiring only 0.1% of its parameters (Fig-
ure 1). Moreover, training with PET can be per-
formed in several hours on a single GPU without
requiring expensive hyperparameter optimization.
Finally, we show that similar performance can also
be achieved without unlabeled data and provide
a detailed analysis of the factors contributing to
PET’s strong performance: its ability to combine
multiple task formulations, its resilience to word-
ings that are hard to understand, its usage of la-
beled data, and characteristics of the underlying
LM. Given PET’s “green” properties, we see our
work as an important contribution to an environ-
mentally sound NLP.

2 Related Work

Enabling LMs to perform zero-shot learning by pro-
viding task descriptions was proposed by Radford
et al. (2019) and has been applied to text classifi-
cation (Puri and Catanzaro, 2019), commonsense
knowledge mining (Davison et al., 2019) and ar-
gumentative relation classification (Opitz, 2019).
It is also commonly used for probing the knowl-
edge contained within LMs (Trinh and Le, 2018;
Petroni et al., 2019; Talmor et al., 2020; Schick and
Schütze, 2020; Ettinger, 2020, i.a.).

As finding ways to reformulate tasks as cloze
questions that are understood well by LMs is diffi-
cult (Jiang et al., 2020), Schick and Schütze (2021)
propose PET, a method that uses knowledge distil-
lation (Hinton et al., 2015) and self-training (e.g.,
Scudder, 1965; Yarowsky, 1995; Brin, 1999; Mc-
Closky et al., 2006) to easily combine several re-
formulations. Our modified version of PET uses
masked language models (Devlin et al., 2019) to
assign probabilities to sequences of text; this is sim-
ilar to using them in a generative fashion (Wang
and Cho, 2019) and has previously been inves-
tigated by Salazar et al. (2020) and Ghazvinine-
jad et al. (2019). In contrast to PET, which uses
gradient-based optimization, Radford et al. (2019)

P (x)

Oil prices rise ? __ , Oil prices fall back .
x2 x1

Yes

No

entailment

not_entailment

y v(y)

qp(y | x)

Figure 2: Application of a PVP p = (P, v) for recog-
nizing textual entailment: An input x = (x1, x2) is con-
verted into a cloze question P (x); qp(y | x) for each y
is derived from the probability of v(y) being a plausible
choice for the masked position.

and Brown et al. (2020) investigate priming, where
examples are given as context but no parameter
updates are performed.

Finally, our focus on reducing the amount of
compute required for few-shot learning is closely
related to other efforts in Green AI (Schwartz et al.,
2020a) that aim to improve model efficiency, in-
cluding techniques for knowledge distillation (e.g.,
Hinton et al., 2015; Sanh et al., 2019; Jiao et al.,
2020; Mao et al., 2020; Anderson and Gómez-
Rodríguez, 2020), pruning (Han et al., 2015, 2016;
Sanh et al., 2020) and quantization (Gong et al.,
2014; Zafrir et al., 2019; Stock et al., 2021) as
well as early exit strategies for inference (Liu et al.,
2020; Schwartz et al., 2020b; Xin et al., 2020).

3 Pattern-Exploiting Training

Let M be a masked language model (MLM), T its
vocabulary and __ ∈ T the mask token; we denote
the set of all token sequences as T ∗. For some
z ∈ T ∗ containing at least k masks and t ∈ T ,
we denote with qkM (t | z) the probability that M
assigns to t at the kth masked position in z; the
model’s logits before applying softmax are denoted
with skM (t | z). We consider the task of mapping
inputs x ∈ X to outputs y ∈ Y , for which PET

requires a set of pattern-verbalizer pairs (PVPs).
Each PVP p = (P, v) consists of

• a pattern P : X → T ∗ that maps inputs to
cloze questions containing a single mask;

• a verbalizer v : Y → T that maps each output
to a single token representing its task-specific
meaning in the pattern.

As illustrated in Figure 2, the core idea of PET

is to derive the probability of y being the correct
output for x from the probability of v(y) being
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the “correct” token at the masked position in P (x).
Based on this intuition, a conditional probability
distribution qp of y given x is defined as

qp(y | x) =
exp sp(y | x)∑

y′∈Y exp sp(y′ | x)
(1)

where sp(y | x) = s1M (v(y) | P (x)) is the raw
score of v(y) at the masked position in P (x).

For a given task, identifying PVPs that perform
well is challenging in the absence of a large devel-
opment set. Therefore, PET enables a combination
of multiple PVPs P = {p1, . . . ,pn} as follows:

1. For each PVP p, a MLM is finetuned on train-
ing examples (x, y) by minimizing the cross
entropy between y and qp(y | x). In prac-
tice, Schick and Schütze (2021) train three
MLMs per pattern as performance can vary
substantially between runs.

2. The ensemble of finetuned MLMs is used to
annotate a set of unlabeled examples; each un-
labeled example x ∈ X is annotated with soft
labels based on the probability distribution

qP(y | x) ∝ exp
∑
p∈P

wp · sp(y | x) (2)

similar to Eq. 1 where wp is a weighting term
that is proportional to the accuracy achieved
with p on the training set before training.

3. The resulting soft-labeled dataset is used to
train a regular sequence classifier by minimiz-
ing cross entropy between its output and qP.

As steps (2) and (3) above closely resemble knowl-
edge distillation (Hinton et al., 2015), we also refer
to them simply as distillation. Importantly, this
process does not require holding the entire ensem-
ble of MLMs in memory at the same time as each
model’s predictions can be computed sequentially;
therefore, it is not more memory expensive than
using a single model.

To give MLMs trained on different patterns fur-
ther opportunity to learn from one another, Schick
and Schütze (2021) also propose iPET, an itera-
tive variant of PET in which several generations of
models are trained on datasets of increasing size
that are labeled by previous generations. This is
achieved as follows: First, an ensemble of MLMs
is trained as in regular PET. For each model Mi, a
random subset of other models is used to generate

P 2(x)

Awful pizza! It was __ __ .
x

q1M (terri | z) <<< q2M (•ble | z)

(a) z =

Awful pizza! It was __ •ble .
x

q1M (terri | z′)

(b) z′=

Figure 3: Inference for a verbalization consisting of the
two tokens terri and •ble. (a) We first compute the prob-
ability of each token at its position in the cloze question
P 2(x) and identify the token with the highest probabil-
ity. (b) We insert this token into the cloze question and
compute the probability of the remaining token.

a new training set Ti by assigning labels to those
unlabeled examples for which the selected subset
of models is most confident in its prediction. Each
Mi is then retrained on Ti; this process is repeated
several times, each time increasing the number of
examples in Ti by a constant factor. For further
details, we refer to Schick and Schütze (2021).

3.1 PET with Multiple Masks

An important limitation of PET is that the verbalizer
v must map each output to a single token, which
is impossible for many tasks. We thus generalize
verbalizers to functions v : Y → T ∗; this requires
some modifications to inference and training.3 We
further generalize PET in that we do not assume
the output space to be identical for each input: for
each x ∈ X , we denote with Yx ⊆ Y the set of
possible outputs given x as input. Given a PVP p =
(P, v), we define l(x) = maxy∈Yx |v(y)| to be the
maximum number of tokens required to express
any output in Yx and P k(x) to be P (x) with the
mask token replaced by k masks.

As a running example, we consider the task of bi-
nary sentiment classification for restaurant reviews
with labels Y = {+1,−1}. We use the pattern
P (x) = x. It was __ . and a verbalizer v that maps
+1 to the single token great and −1 to the sequence
terri •ble, i.e., we assume that the MLM’s tokenizer
splits the word “terrible” into the two tokens terri
and •ble. For this example, l(x) = 2 for all x;
P 2(x) is illustrated in Figure 3 (a).

3While PET can easily be adapted to generative MLMs
(e.g., Lewis et al., 2020; Raffel et al., 2020), we stick with
regular MLMs as they are more lightweight and performed
better on simple cloze tasks in preliminary experiments.
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Inference For x ∈ X , y ∈ Yx and |v(y)| = k,
we redefine qp(y | x) in an autoregressive fashion:
Starting from P k(x), we perform k consecutive
predictions, where we always select the next token
to predict based on the MLM’s confidence. That is,
we set qp(y | x) = q(v(y) | P k(x)) where

q(t1 ... tk|z) =

{
1 if k = 0

qjM (tj |z) · q(t′|z′) if k≥ 1
(3)

with j = arg maxk
i=1 q

i
M (ti | z), z′ is z except

z′j = tj and t′ = t1 ... tj−1tj+1 ... tk. Note that un-
like in original PET (Eq. 1), qp is not a probability
distribution as its values do not sum to one.

For our sentiment classification example, Fig-
ure 3 illustrates how qp(−1 | x) is computed: As
|v(y)| = |{terri, •ble}| = 2, we first use z = P 2(x)
to compute the probability of each token in v(y)
(Figure 3a). We then choose the token with the
highest probability, put it in place of the corre-
sponding mask token, and use the resulting cloze
question z′ to compute the probability of the re-
maining token (Figure 3b). The overall score for
y = −1 is then computed as

qp(−1 | x) = q2M (•ble | z) · q1M (terri | z′)

Training Computing qp(y | x) as in Eq. 3 for
each training example (x, y) would be prohibitively
expensive. To enable computation of all required
probabilities in a single forward pass, we approx-
imate qp(y | x) by (i) always inserting the maxi-
mum number of mask tokens required to express
any output and (ii) for each y′ ∈ Yx, predicting
all tokens in v(y′) = t1 . . . tk in parallel, where
we simply ignore the model’s predictions for all
l(x)− k superfluous mask tokens:

q̃p(y′ | x) =
k∏

i=1

qiM (ti | P l(x)(x)) (4)

For our running example, this means we approxi-
mate the scores qp(y | x) by computing

q̃p(+1 | x) = q1M (great | z)

q̃p(−1 | x) = q1M (terri | z) · q2M (•ble | z)

which can be done in a single forward pass as it
only requires processing the cloze question z =
P 2(x) shown in Figure 3 (a) once.

As q̃p is not a probability distribution over Yx,
cross entropy is not an ideal training objective as it

can also be minimized by reducing the probability
assigned to sequences z /∈ v(Yx) that are not part
of the output space, despite this having no effect on
the model’s prediction. We instead opt for multi-
class hinge loss (Weston and Watkins, 1999; Dogan
et al., 2016) and minimize:∑
y′∈Yx

max
(
0; 1− log q̃p(y|x)+ log q̃p(y′|x)

)
(5)

That is, we require the difference between the log
probability of y and the log probability of any out-
put y′ ∈ Yx \ {y} to be at least 1.

4 Experiments

We compare PET and GPT-3 on SuperGLUE
(Wang et al., 2019), a natural language under-
standing benchmark consisting of eight challeng-
ing tasks. We cannot evaluate PET using the exact
same training data as GPT-3 because for most tasks,
GPT-3 uses a different set of training examples for
each test example and for the other tasks, train-
ing sets were not available upon request; however,
the exact choice of examples has little impact on
GPT-3’s performance.4 We thus create new train-
ing sets by randomly selecting 32 examples for
each task using a fixed random seed.

We additionally create sets of up to 20,000 un-
labeled examples for each task; this is done by
removing all labels from the original training sets.
We refer to the resulting sets of training examples
and unlabeled examples as FewGLUE.5

4.1 Tasks

Below, we describe each of the SuperGLUE tasks
and our corresponding PVPs. We use a vertical
bar (|) to mark boundaries between text segments.
Of the eight tasks considered, only COPA, WSC
and ReCoRD require the use of PET with multiple
masks as introduced in Section 3.1.

BoolQ (Clark et al., 2019) is a QA task where
each example consists of a passage p and a yes/no
question q. We use the following patterns:

• p. Question: q? Answer: __.

• p. Based on the previous passage, q? __.

• Based on the following passage, q? __. p

4Based on personal correspondence with the authors.
5FewGLUE is publicly available at https://github.

com/timoschick/fewglue.

https://github.com/timoschick/fewglue
https://github.com/timoschick/fewglue
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We define two verbalizers mapping questions
containing a true statement to yes/true and others
to no/false, respectively, for a total of 6 PVPs.

CB (De Marneffe et al., 2019) and RTE (Dagan
et al., 2006) are textual entailment tasks like MNLI,
so we use PVPs similar to Schick and Schütze
(2021). For a premise p and hypothesis h, we use

h? | __, p , “h”? | __, “p” , h? | __. p , “h”? | __. “p”

and a verbalizer that maps entailment to yes,
disagreement to no and neutral to maybe.

Given a premise p, the task in COPA (Gordon
et al., 2012) is to determine the cause or effect of
the premise given two options c1 and c2. For deter-
mining the effect, we use the following patterns:

“c1” or “c2”? p, so __. , c1 or c2? p, so __.

For determining the cause, we use the same pat-
terns but replace so with because. The verbalizer
for c1 and c2 is the identity function.

For WiC (Pilehvar and Camacho-Collados, 2019),
given a word w and two sentences s1 and s2 in
which it occurs, the task is to decide if w is used
with the same sense in both sentences. We use:

• “s1” / “s2”. Similar sense of “w”? __.

• s1 s2 Does w have the same meaning in both
sentences? __

• w. Sense (1) (a) “s1” (__) “s2”

For the first two patterns, we use yes as verbaliza-
tion for words used in the same sense and no for
other words; for the third pattern, we use b and 2.

For WSC (Levesque et al., 2011), each example
consists of a sentence s with a marked pronoun p
and noun n, and the task is to determine whether p
refers to n. We follow (Raffel et al., 2020; Brown
et al., 2020) and treat WSC as a generative task.
We highlight p in s by putting it in asterisks and
use the following patterns:

• s The pronoun ‘∗p∗’ refers to __.

• s In the previous sentence, the pronoun ‘∗p∗’
refers to __.

•
s In the passage above, what does the pronoun
‘∗p∗’ refer to? Answer: __.

We use the identity function as verbalizer for
n. Note that WSC is different from other tasks
in that it requires free-form completion. This in

turn requires some modifications during train-
ing and inference that are discussed in Appendix A.

MultiRC (Khashabi et al., 2018) is a QA task.
Given a passage p, a question q and an answer
candidate a, the task is to decide whether a is a
correct answer for q. We use the same verbalizer
as for BoolQ and similar patterns:

• p. Question: q? Is it a? __.

• p. Question: q? Is the correct answer “a”? __.

• p. Based on the previous passage, q? Is “a” a
correct answer? __.

For ReCoRD (Zhang et al., 2018), given a passage
p and a cloze question q, the task is to decide which
of a given set of answer candidates is the correct re-
placement for the placeholder in the cloze question.
As this task is already presented in the form of a
cloze question, there is little room for designing
PVPs, so we only use a trivial one: the concatena-
tion of p and q as pattern and the identity function
as verbalizer. With only one PVP, there is no need
to perform knowledge distillation so we directly
use the resulting model as our final classifier.

4.2 Setup

As underlying LM for PET we choose ALBERT-
xxlarge-v2 (Lan et al., 2020), the best-performing
MLM on SuperGLUE when training is performed
on the regular, full size training sets. We use the
same model, supplemented by a sequence classi-
fication head, as our final classifier. We run PET

on the FewGLUE training sets for all SuperGLUE
tasks. We do not use any development set to op-
timize hyperparameters; instead we use the exact
same setup and hyperparameters as Schick and
Schütze (2021). For COPA, WSC and ReCoRD,
we use our proposed modification of PET to sup-
port verbalizers mapping labels to multiple tokens;
for all other tasks, we use regular PET. We train
iPET on all tasks except COPA and WSC, as their
unlabeled sets contain well below 1,000 examples,
as well as ReCoRD, for which iPET makes no sense
as we only use a single PVP. For these three tasks,
we simply reuse the results of regular PET.

4.3 Results

Our main results are shown in Table 1. As can be
seen, ALBERT with PET performs similar to the
largest GPT-3 model, which is larger by a factor



2344

Params BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD Avg
Model (M) Acc. Acc. / F1 Acc. Acc. Acc. Acc. EM / F1a Acc. / F1 –

de
v

GPT-3 Small 125 43.1 42.9 / 26.1 67.0 52.3 49.8 58.7 6.1 / 45.0 69.8 / 70.7 50.1
GPT-3 Med 350 60.6 58.9 / 40.4 64.0 48.4 55.0 60.6 11.8 / 55.9 77.2 / 77.9 56.2
GPT-3 Large 760 62.0 53.6 / 32.6 72.0 46.9 53.0 54.8 16.8 / 64.2 81.3 / 82.1 56.8
GPT-3 XL 1,300 64.1 69.6 / 48.3 77.0 50.9 53.0 49.0 20.8 / 65.4 83.1 / 84.0 60.0
GPT-3 2.7B 2,700 70.3 67.9 / 45.7 83.0 56.3 51.6 62.5 24.7 / 69.5 86.6 / 87.5 64.3
GPT-3 6.7B 6,700 70.0 60.7 / 44.6 83.0 49.5 53.1 67.3 23.8 / 66.4 87.9 / 88.8 63.6
GPT-3 13B 13,000 70.2 66.1 / 46.0 86.0 60.6 51.1 75.0 25.0 / 69.3 88.9 / 89.8 66.9
GPT-3 175,000 77.5 82.1 / 57.2 92.0 72.9 55.3 75.0 32.5 / 74.8 89.0 / 90.1 73.2
PET 223 79.4 85.1 / 59.4 95.0 69.8 52.4 80.1 37.9 / 77.3 86.0 / 86.5 74.1
iPET 223 80.6 92.9 / 92.4 95.0 74.0 52.2 80.1 33.0 / 74.0 86.0 / 86.5 76.8

te
st

GPT-3 175,000 76.4 75.6 / 52.0 92.0 69.0 49.4 80.1 30.5 / 75.4 90.2 / 91.1 71.8
PET 223 79.1 87.2 / 60.2 90.8 67.2 50.7 88.4 36.4 / 76.6 85.4 / 85.9 74.0
iPET 223 81.2 88.8 / 79.9 90.8 70.8 49.3 88.4 31.7 / 74.1 85.4 / 85.9 75.4
SotA 11,000 91.2 93.9 / 96.8 94.8 92.5 76.9 93.8 88.1 / 63.3 94.1 / 93.4 89.3

Table 1: Results on SuperGLUE for GPT-3 primed with 32 randomly selected examples and for PET / iPET with
ALBERT-xxlarge-v2 after training on FewGLUE. State-of-the-art results when using the regular, full size training
sets for all tasks (Raffel et al., 2020) are shown in italics.

of 785. On average, PET performs 18 points bet-
ter compared to GPT-3 Med, a model of similar
size. iPET brings further improvements for 3 out
of the 5 tasks that we use iPET for, most notably
for CB, but results in a slight performance drop
for MultiRC. Despite PET’s strong performance, it
still clearly performs worse than a state-of-the-art
model trained on the regular, full size SuperGLUE
training set.

5 Analysis

We investigate the importance of several factors
for few-shot performance: the choice of patterns
and verbalizers, the usage of both unlabeled and
labeled data, and properties of the underlying lan-
guage model. We also look into our proposed mod-
ification for PET to work with multiple masks and
compare it to various baselines. Finally, we mea-
sure how choosing different sets of training exam-
ples affects performance. Our analysis focuses on
PET as GPT-3 is not publicly available.6

5.1 Patterns
The way in which tasks are reformulated as cloze
questions can have a huge impact on performance
(Jiang et al., 2020; Schick and Schütze, 2021).
These reformulations can be arbitrarily complex;
for example, the pattern used by GPT-3 for WSC
contains an introductory section of almost 30
words; it is unclear if and how this formulation
has been optimized.7 To investigate the importance

6We could not obtain access to OpenAI’s GPT-3 API.
7While the authors use a different terminology, GPT-3 also

makes use of PVPs (Brown et al., 2020, pp. 50–61).

of patterns and verbalizers, we compare three sets
of PVPs: our initial set as defined in Section 4.1
(denoted pours), the single PVP used by GPT-3
(pGPT-3), and the combination of both (pcomb).

We train ALBERT using PET with all three sets
of patterns; results for selected SuperGLUE tasks
are shown in Table 2 (top). As can be seen, the
PVP used by GPT-3 outperforms our PVPs on
RTE whereas our initial set of patterns performs
much better on MultiRC. These large differences
in performance highlight the importance of find-
ing good ways to express tasks as cloze questions.
As it is difficult to ascertain which patterns per-
form well without trying them on a large set of
examples, a key challenge for few-shot approaches
is to compensate for PVPs that the LM fails to
understand well. As seen in the performance of
the model trained with pcomb, PET is able to do
so: not only does combining all PVPs compensate
for the worse performance of pours on RTE and of
pGPT-3 on MultiRC, it even further improves aver-
age performance across the three tasks compared
to the best-performing set of patterns. This clearly
demonstrates the potential of carefully engineer-
ing a set of suitable patterns as opposed to just
choosing a single formulation without means of
evaluating its effectiveness.

5.2 Unlabeled Data Usage
Unlike GPT-3, PET requires unlabeled data to dis-
till the knowledge of all models based on individual
PVPs into a single classifier; for iPET, unlabeled
data is additionally used to generate training sets
for future generations. The underlying assumption
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CB RTE MultiRC Avg
Model Acc. / F1 Acc. EM / F1a –

PET (pours) 85.1 / 59.4 69.8 37.9 / 77.3 66.6
PET (pGPT-3) 83.3 / 58.1 71.8 25.4 / 68.3 63.1
PET (pcomb) 84.5 / 59.0 74.7 39.1 / 77.7 68.3

PET (pours) ¬dist 83.9 / 76.2 66.4 38.9 / 76.2 68.0
PET (pcomb) ¬dist 83.9 / 76.2 72.9 39.6 / 76.6 70.4

Table 2: Results on selected tasks for various sets of
PVPs for regular PET and for an ensemble of PET mod-
els with no knowledge distillation (“¬dist”)

1 2 3 dist.
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BoolQ CB (Acc)
RTE MultiRC (F1a)

Figure 4: Average performance (± standard devia-
tion) of all MLMs trained on individual patterns for
three generations and of the distilled classifier (“dist.”)
across three individual training runs

is that unlabeled data can easily be obtained, which
may not always be the case in real-world settings.
We thus investigate the importance of unlabeled
data for regular PET. To this end, we compare
the performance of the final classifier in PET to
that of directly using the ensemble of models cor-
responding to individual PVPs. While using this
ensemble entirely removes the need for unlabeled
data, the ensemble for k PVPs is larger than the
distilled model by a factor of 3 · k as we follow the
default setting of PET and train three models per
PVP. However, even for a large number of PVPs
the ensemble is smaller than GPT-3 by two orders
of magnitude.

Results without distillation can be seen in Ta-
ble 2 (bottom). Averaged across the three tasks, the
ensemble performs even better than the distilled
classifier. This shows that if the goal is only to
achieve good performance, then unlabeled data is
not necessary; however, it is required to obtain a
single, lightweight model as final classifier.

Figure 4 illustrates the benefit of training mul-
tiple generations with iPET. For all tasks except
MultiRC, there are substantial improvements from

CB RTE MultiRC Avg
Model Acc. / F1 Acc. EM / F1a –

PET 85.1 / 59.4 69.8 37.9 / 77.3 66.6
unsupervised 33.5 / 23.1 55.0 3.9 / 60.3 38.5
supervised 60.7 / 42.5 50.2 4.3 / 49.8 43.0

PET (XLNet) 88.7 / 83.0 60.4 21.4 / 66.6 63.4
Priming (XLNet) 56.3 / 37.7 49.5 – / – –

Table 3: Results on selected tasks for various ways of
using the labeled examples available in FewGLUE

the first to the second generation, whereas the third
generation achieves only slight additional improve-
ments. On average, standard deviation is reduced
in later generations, illustrating that the models
learn from each other and their predictions con-
verge. The final distillation step brings further im-
provements for all tasks except MultiRC and re-
duces standard deviation across three training runs
to almost zero, illustrating that PET and iPET are
effective means of reducing finetuning instability
(Dodge et al., 2020).

Of course, there are further ways to lever-
age unlabeled data such as keeping an auxiliary
language modeling objective during finetuning
(Chronopoulou et al., 2019). While we leave in-
vestigating the impact of additionally using such
methods to future work, we note that they can easily
be applied to PET while there is no straightforward
way to combine them with priming.

5.3 Labeled Data Usage

We next investigate the effect of how labeled data is
used, which is one of the key differences between
priming and PET. We first compare PET with reg-
ular supervised training (i.e., without using any
patterns), and with a fully unsupervised model (i.e.,
an ensemble using all PVPs but no labeled train-
ing examples). Given 32 examples, PET clearly
outperforms both baselines (Table 3).

We next compare PET directly to priming. How-
ever, we cannot do so using ALBERT as it is only
able to process sequences of up to 512 tokens,
which is not enough for a set of 32 examples; we
instead use XLNet (Yang et al., 2019) for this com-
parison. As shown in Table 3, XLNet in general
performs worse than ALBERT. More importantly,
XLNet with PET performs much better than prim-
ing. We were not able to obtain results with priming
on MultiRC because the 32 examples in FewGLUE
would require more than 10,000 tokens, so process-
ing them with a standard Transformer (Vaswani
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Figure 5: Accuracy differences between priming with
32 examples and one-shot priming for all GPT-3 mod-
els as well as between ALBERT with PET (without dis-
tillation) and unsupervised ALBERT (bottom row)

et al., 2017) is infeasible due to the quadratic com-
plexity of self-attention. This highlights another
important issue with priming: It does not scale well
to more than a few examples; even GPT-3 is only
able to process sequences of up to 2,048 tokens.
While there are some Transformer variants that can
deal with much longer contexts (e.g., Kitaev et al.,
2020; Beltagy et al., 2020), it has yet to be investi-
gated to what extent such models make good use
of priming examples over long context spans.

We further investigate the effectiveness of prim-
ing by looking at results obtained with GPT-3 more
closely. To this end, Figure 5 shows the perfor-
mance difference between priming GPT-3 with 32
examples and priming it with just a single exam-
ple for each task and model size.8 As can be seen,
priming with 32 examples only slightly improves
performance for most tasks and model sizes. For
some tasks, adding more examples even leads to
worse performance, especially for smaller models.
For ReCoRD, even the largest model’s performance
slightly drops when adding more examples.

The bottom row of Figure 5 shows the perfor-
mance difference between ALBERT trained with
PET (without distillation) and a fully unsupervised
ALBERT model on all tasks. While results are
not directly comparable due to different underlying
models and PVPs, PET results in much stronger
performance improvements compared to priming
and does not worsen results for any task.

8We do not compare priming to zero-shot performance as
for unknown reasons, zero-shot GPT-3 performs well below
random guessing for some tasks (e.g., 0.0% accuracy for WiC).
To not overestimate the benefit of priming, we therefore show
gains from providing 32 examples compared to just one.

CB RTE MultiRC Avg
Model Params Acc. / F1 Acc. EM / F1a –

ALBERT 223M 87.5 / 78.7 74.7 38.9 / 76.2 71.8
RoBERTa 355M 85.7 / 77.5 62.8 23.3 / 70.0 63.7
GPT-2 345M 73.2 / 73.7 47.7 12.4 / 57.4 52.0

Table 4: Results on selected tasks for PET without
knowledge distillation combined with various LMs us-
ing pGPT-3 for CB/RTE and pours for MultiRC

5.4 Model Type

We next look into the impact of the underlying LM
on PET by comparing ALBERT with RoBERTa
large (Liu et al., 2019) and GPT-2 medium (Rad-
ford et al., 2019). As GPT-2 is a unidirectional
model similar to GPT-3, it can only process pat-
terns where the mask token is the very last to-
ken. We therefore use pGPT-3 for CB and RTE;
for MultiRC, we stick with our original set of pat-
terns as they already fulfill this requirement. We
also do not perform distillation and instead report
the ensemble’s performance as there is no estab-
lished way of equipping GPT-2 with a sequence
classification head.

Results for training all three LMs with PET in
Table 4 show that using ALBERT as underlying
LM is crucial for PET’s strong performance; ex-
changing ALBERT with RoBERTa results in an
average performance drop of 8 points. However,
RoBERTa still clearly outperforms GPT-3 13B,
which is larger by two orders of magnitude. Im-
portantly, PET with GPT-2 performs much worse
than with the two other models. As anticipated by
Brown et al. (2020), a reason for this drop in per-
formance may be that like GPT-3, GPT-2 is unidi-
rectional, making tasks that require comparing two
sequences a challenge. However, it is important
to note that there are also other substantial differ-
ences between GPT-2 and the other two models,
most notably the pretraining dataset. Regardless of
whether unidirectionality is the reason for GPT-2’s
bad performance, bidirectionality of the underlying
LM is important for PET as it removes the need for
the mask token to be at the very end and thus allows
for more flexibility in the creation of patterns.

5.5 PET with Multiple Masks

We modified PET to work for outputs that require
more than a single token. To investigate the impact
of this modification, we look at the three tasks for
which this is required: COPA, WSC and ReCoRD.
We compare our decoding strategy of predicting to-
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COPA WSC ReCoRD Avg
Model Acc. Acc. Acc. / F1 –

PET 95.0 80.1 86.0 / 86.5 87.1
PET ¬dist (max-first) 90.0 80.8 86.0 / 86.5 85.7
PET ¬dist (ltr) 89.0 79.8 84.7 / 85.3 84.6
PET ¬dist (parallel) 77.0 80.8 82.5 / 83.1 80.2
untrained 72.5 59.9 84.7 / 85.4 72.5

Table 5: Results on selected tasks for our proposed vari-
ant of PET as well as other decoding strategies and for
untrained ALBERT

kens in order of the probability assigned to them, to
which we refer as max-first, with two alternatives:
decoding left-to-right (ltr) as is common for many
autoregressive language models, and decoding all
tokens simultaneously (parallel) as is done during
training. Additionally, we compare PET with un-
trained ALBERT to measure the effectiveness of
our proposed training loss.

Results are shown in Table 5. PET clearly out-
performs untrained ALBERT for the three tasks.
Not performing distillation hurts performance for
COPA, but leads to slight improvements on WSC;
for ReCoRD, we did not perform distillation in the
first place as we only use a single PVP. Our decod-
ing strategy is clearly superior to parallel decoding
except for WSC, for which most predictions consist
only of one or two tokens, and performs slightly
better than left-to-right decoding.

5.6 Training Examples
Recall that we conduct our experiments with train-
ing examples from FewGLUE, a randomly selected
subset of the original SuperGLUE training exam-
ples. We used a fixed random seed s0 to generate
FewGLUE. Let Σi be the randomly selected sub-
set of SuperGLUE for random seed si, so Σ0 =
FewGLUE. In this subsection, we create two ad-
ditional subsets of SuperGLUE, Σ1 and Σ2, based
on different seeds. This allows us to investigate
how different sets of training examples affect per-
formance. To this end, we run PET for CB, RTE
and MultiRC using the three Σi. To measure only
the effect of varying the training set while ignoring
unlabeled examples, we do not use distillation.

Table 6 shows that for all tasks, changing the
set of training examples can result in large per-
formance differences for PET. This highlights the
importance of using the same set of examples when
comparing different few-shot approaches, which
is why we make the particular set of examples in
FewGLUE publicly available. However, we note

CB RTE MultiRC Avg
Model Acc. / F1 Acc. EM / F1a –

GPT-3 82.1 / 57.2 72.9 32.5 / 74.8 65.4
PET ¬dist (Σ0) 83.9 / 76.2 66.4 38.9 / 76.2 68.0
PET ¬dist (Σ1) 82.1 / 57.4 61.4 39.2 / 77.9 63.2
PET ¬dist (Σ2) 87.5 / 84.0 61.4 34.7 / 76.3 67.6

Table 6: Results on selected tasks for GPT-3 and for
PET using training sets Σ0, Σ1, Σ2

that the average performance of PET is similar to
that of GPT-3 for all seeds.

While our results may seem contrary to the in-
sight that for GPT-3, the exact choice of examples
does not play a major role, we suspect this to be
due to the fact that priming benefits much less from
training examples than PET (cf. Section 5.3); ac-
cordingly, the influence of the exact set of training
examples on the model’s performance is smaller.

6 Conclusion

We have proposed a simple yet effective modifi-
cation of PET, enabling us to use it for tasks that
require predicting multiple tokens. In extensive
experiments, we have identified several factors re-
sponsible for the strong performance of PET com-
bined with ALBERT: the possibility to concurrently
use multiple patterns for transforming examples
into cloze questions, the ability to compensate for
patterns that are difficult to understand, the usage
of labeled data to perform parameter updates, and
the underlying LM itself.

We have shown that using PET, it is possible to
achieve few-shot text classification performance
similar to GPT-3 on SuperGLUE with LMs that
have three orders of magnitude fewer parameters.
This not only lowers financial cost, but above all
reduces environmental impact immensely and leads
to a much smaller carbon footprint. We see this as
an important contribution to achieving the goal of
an environmentally more friendly NLP. To enable
comparisons with our work, we make our code,
models and datasets publicly available.

For future work, it would be interesting to see
whether PET also works for generative tasks when
combined with generative LMs and whether further
improvements are possible in multi-task settings.
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A Training Details

Our implementation can be found in the supple-
mentary material. It extends the original implemen-
tation of PET by Schick and Schütze (2021) which,
in turn, is based on the Transformers library (Wolf
et al., 2020) and PyTorch (Paszke et al., 2017). All
dependencies are listed in requirements.txt.
Detailed instructions on how our results can be re-
produced using this implementation can be found
in README.md.

Unless explicitly stated differently, we use the
exact same set of hyperparameters as Schick and
Schütze (2021) (Table 7) with the only difference
that for iPET, we only train 3 generations of models
to speed up training. All of our experiments were
conducted using a single GPU with 11GB RAM
(NVIDIA GeForce GTX 1080 Ti). With this GPU,
training a single PET model for 250 steps took ap-
proximately 45 minutes. Depending on the task,
labeling unlabeled examples took 0.2–1.5 hours per
model. Training the final classifier for 5,000 steps
on the soft-labeled dataset took 2.5 hours on aver-
age. Below, we list task-specific implementation
details for all tasks in SuperGLUE.

COPA For COPA, we randomly switch the two
options c1 and c2 during training with a probabil-
ity of 50% to make the input more diverse; for
inference, we always keep the original order. For
distilling the final PET model, we obtain logits for
unlabeled examples x from individual PVPs p as

sp(y | x) = log qp(y | x); we use the input format
proposed by Liu et al. (2019).

WiC Similar to COPA, we randomly switch the
input sentences s1 and s2 during training. Given
a word w and two sentences s1 and s2, we use the
sequence w: s1 | s2 as input for the final sequence
classification model, where | marks the boundary
between two text segments.

WSC Unlike other SuperGLUE tasks, the WSC
formulation of Raffel et al. (2020) and Brown et al.
(2020) requires free-form completion, meaning that
for each sentence s and pronoun p, we only have
a single correct choice n that the model needs to
predict, but we do not provide any alternatives.
During training, we thus use regular cross entropy
loss between n and q̃p(n | s, p) as defined in Eq. 4.
However, in many cases this would allow the LM
to easily identify the correct target based on the
number of masks provided, so we modify each
target by randomly adding up to three additional
mask tokens, for which we require the model to
predict a special <pad> token. For inference, we
always just add a single mask token to ensure con-
sistent results across multiple evaluations and per-
form greedy decoding as described in Section 3.
We then follow Raffel et al. (2020) to map the out-
put produced by the LM to a label y ∈ {true, false}.
For distillation, given an unlabeled example x we
set sp(y | x) = 1 if the model’s output for x was
mapped to y and sp(y | x) = 0 otherwise. We
provide inputs to the final PET model in the for-
mat s | n where | is the boundary between two text
segments and mark p in s with asterisks.

MultiRC Deviating from the hyperparameters
used by Schick and Schütze (2021), we use a maxi-
mum sequence length of 512 tokens for MultiRC
both during training and inference because we
found many passages to be much longer than 256
tokens. Input for the final sequence classification
model is of the form p | q | a where p is the passage,
q is the question, a is the answer candidate and we
use | to mark boundaries between text segments.

ReCoRD For ReCoRD, we again use a maxi-
mum sequence length of 512 because many pas-
sages require more than 256 tokens. For some ques-
tions q, the ReCoRD training set contains a huge
number of answer candidates. To facilitate train-
ing, we split each example into multiple examples
as follows: let C be the set of answer candidates
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Parameter Value

adam_epsilon 1e-8
gradient_accumulation_steps 8
learning_rate 1e-5
max_grad_norm 1.0
max_seq_length 256
pet_max_steps 250
sc_max_steps 5,000
per_gpu_train_batch_size 2
distillation_temperature 2
weight_decay 0.01

Table 7: Hyperparameters for PET from Schick and
Schütze (2021)

Dataset Metrics |Unlabeled| |Dev| |Test|

BoolQ Acc. 9,427 3,270 3,245
CB Acc./F1 20,000 57 250
COPA Acc. 400 100 500
MultiRC F1a/EM 5,100 953 1,800
ReCoRD F1/EM 20,000 10,000 10,000
RTE Acc. 20,000 278 300
WiC Acc. 6,000 638 1,400
WSC Acc. 554 104 146

Table 8: Important statistics for all datasets used

with C+ ⊂ C being the set of correct answers. We
create a training example for each c ∈ C+ by ran-
domly selecting up to 9 negative examples from
C \ C+ for a total of 10 answer candidates.

B Dataset Details

For each task and number of examples t, we create
the FewGLUE training set T by shuffling the en-
tire original training set with a fixed random seed
and collecting the first 32 examples of the shuffled
dataset. Following (Raffel et al., 2020; Brown et al.,
2020), we select only positive examples for WSC;
for both MultiRC and ReCoRD, we follow Brown
et al. (2020) and select a total of 32 questions –
which corresponds to more than 32 training exam-
ples – to enable a fair comparison with GPT-3.

The unlabeled datasets for all tasks are ob-
tained by collecting up to 20, 000 examples from
their training sets and removing the labels. As
the training sets for RTE and CB are very small,
for both tasks we additionally select random un-
labeled examples from the MNLI training set
for a total of 20, 000 examples. For evaluation,
we use the official validation and test sets for
all tasks that are available at https://super.
gluebenchmark.com/tasks. All datasets in-
cluded in SuperGLUE are in English. Additional
details for each dataset are given in Table 8.

Preprocessing We do not perform any prepro-
cessing, except shortening all examples to the max-
imum sequence length. This is done using the
longest first strategy implemented in the Transform-
ers library. All input sequences are truncated before
applying patterns.
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