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Abstract
Early exit mechanism aims to accelerate the
inference speed of large-scale pre-trained lan-
guage models. The essential idea is to exit
early without passing through all the inference
layers at the inference stage. To make accu-
rate predictions for downstream tasks, the hi-
erarchical linguistic information embedded in
all layers should be jointly considered. How-
ever, much of the research up to now has been
limited to use local representations of the exit
layer. Such treatment inevitably loses infor-
mation of the unused past layers as well as
the high-level features embedded in future lay-
ers, leading to sub-optimal performance. To
address this issue, we propose a novel Past-
Future method to make comprehensive pre-
dictions from a global perspective. We first
take into consideration all the linguistic infor-
mation embedded in the past layers and fur-
ther engage the future information which is
originally inaccessible for predictions. Exten-
sive experiments demonstrate that our method
outperforms previous early exit methods by a
large margin, yielding better and robust perfor-
mance1.

1 Introduction

Pre-trained language models (PLMs), e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019), have
obtained remarkable success in a wide range of
NLP tasks. Despite their impressive performance,
PLMs are usually associated with large memory
requirement and high computational cost. Such
drawbacks slow down the inference and further
encumber the application of PLMs in the scenarios
where inference time and computation budget are
restricted.

To address this issue, a growing number of stud-
ies focusing on improving model efficiency have

∗Equal contribution
1The code is available at https://github.com/

lancopku/Early-Exit

emerged recently. Particularly, Kaya et al. (2019)
point out that the current over-parameterized mod-
els conduct excessive computation for simple in-
stances, which is actually undesirable and compu-
tationally wasteful. In light of this observation, an
increasing amount of work seeks various early exit
methods, of which the basic idea is to exit early
without passing through the entire model during
inference. Concretely, for NLP tasks, they couple
branch classifiers with each layer of the pre-trained
language models and stop forward propagation at
an intermediate layer. Then the current branch
classifier makes a prediction based on the represen-
tation of the token that is used as the aggregated
sequence representation for classification tasks and
is referred to as the state of the layer in this work.

However, existing work on early exit has two
major drawbacks. First, existing work (Xin et al.,
2020; Zhou et al., 2020) uses only local states in the
early exit framework. They inevitably lose valu-
able features that are captured by passed layers
but are ignored for prediction, leading to less reli-
able prediction results. Moreover, these methods
abandon the potentially useful features captured by
the future layers that have not been passed, which
may hurt the performance of the instances requir-
ing high-level features embedded in the deep layers.
Consequently, their performance dramatically de-
clines when the inference exits earlier for a higher
speed-up ratio.

These two major drawbacks hinder the progress
of early exit research and motivate us to develop
a new mechanism using the hierarchical linguis-
tic information embedded in all layers (Jawahar
et al., 2019) from a global perspective. However,
up to now, a global early exit mechanism remains
a under-explored challenging problem. We extend
the existing methods to their corresponding global
versions and find that naive global strategies only
result in poor performance. Meanwhile, the future
states are originally inaccessible in the early exit

https://github.com/lancopku/Early-Exit
https://github.com/lancopku/Early-Exit
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(c) The Global Past-Future version of
our early exit method

Figure 1: Comparison of the local early exit method and our proposed method. The red rectangles highlight the
states that the models rely on to make predictions.

framework, which also remains a bottleneck for a
global prediction considering both past and future
states.

In this paper, we focus on the aforementioned
problems and first put into practice a global Past-
Future early exit mechanism. The term global is
two-fold: (1) instead of using one or several lo-
cal state(s) for prediction in previous work, all the
available past states are effectively incorporated in
our method; (2) furthermore, to grasp the features
embedded in the deep layers, the originally inacces-
sible future states are approximated by imitation
learning and are also engaged for prediction. The
comparison of the previous method and our method
is illustrated in Figure 1. By combining both past
and future states, our model is able to make more
accurate predictions for downstream tasks.

Extensive experiments reveal that the proposal
significantly outperforms previous early exit meth-
ods. Particularly, it surpasses the previous methods
by a large margin when the speed-up ratio is rel-
atively high. In addition, extensive experiments
with different pre-trained language models as back-
bones demonstrate consistent improvement over
the baseline methods, which verifies the generality
of our method.

To summarize, our contributions are as follows:

• We propose a set of global strategies which
effectively incorporate all available states and
they achieve better performance compared to
the existing naive global strategies.

• Our early exit method first utilizes the future
states which are originally inaccessible at the
inference stage, enabling more comprehensive
global predictions.

• Experiments show that our proposal achieves
better performance compared to the previous
state-of-the-art early exit methods.

2 Related Work

Large-scale pre-trained language models (Devlin
et al., 2019; Liu et al., 2019) based on the Trans-
former (Vaswani et al., 2017) architecture demon-
strate superior performance in various NLP tasks.
However, the impressive performance is on the
basis of massive parameters, leading to large mem-
ory requirement and computational cost during in-
ference. To overcome this bottleneck, increasing
studies work on improving the efficiency of over-
parameterized pre-trained language models.

Knowledge distillation (Hinton et al., 2015; Turc
et al., 2019; Jiao et al., 2019; Li et al., 2020a) com-
pacts the model architecture to obtain a smaller
model that remains static for all instances at the
inference stage. Sanh et al. (2019) focus on reduc-
ing the number of layers since their investigation
reveals variations on hidden size dimension have
a smaller impact on computation efficiency. Sun
et al. (2019) learn from multiple intermediate lay-
ers of the teacher model for incremental knowledge
extraction instead of only learning from the last hid-
den representations. Further, Wang et al. (2020) de-
sign elaborate techniques to drive the student model
to mimic the self-attention module of teacher mod-
els. Xu et al. (2020) compress model by progres-
sive module replacing, showing a new perspective
of model compression. However, these static model
compression methods treat the instances requiring
different computational cost without distinction.
Moreover, they have to distill a model from scratch
to meet the varying speed-up ratio requirements.
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To meet different constraints for acceleration, an-
other line of work studies instance-adaptive meth-
ods to adjust the number of executed layers for
different instances. Li et al. (2020b) select mod-
els in different sizes depending on the difficulty
of input instance. Besides, early exit is a practi-
cal method to adaptively accelerate inference and
is first proposed for computer vision tasks (Kaya
et al., 2019; Teerapittayanon et al., 2016). El-
bayad et al. (2020); Xin et al. (2020); Schwartz
et al. (2020) follow the essential idea and leverage
the method in NLP tasks. To prevent the error from
one single classifier, Zhou et al. (2020) make the
model stop inference when a cross-layer consistent
prediction is achieved. However, researches on the
subject has been mostly restricted to only use the
local states around the exit layer.

3 Method

We first introduce the strategies to incorporate mul-
tiple states and the imitation learning method for
generating approximations of future states. Then
we introduce the merging gate to adaptively fuse
past and future states. At last, we show the training
process and the exit condition during inference.

3.1 Incorporation of Past States

Existing work (Xin et al., 2020) focuses on making
exit decision based on a single branch classifier.
The consequent unreliable result motivates the re-
cent advance (Zhou et al., 2020) that uses consecu-
tive states to improve the accuracy and robustness.
However, the model prediction is still limited to
use several local states. In contrast, we investigate
how to incorporate all the past states from a global
perspective. The existing strategy using consecu-
tive consistent prediction labels can be easily ex-
tended to a global version that counts the majority
of the predicted labels which is regarded as a voting
strategy. Another alternative is the commonly-used
ensemble strategy that averages the output probabil-
ities for prediction. Besides these naive solutions,
we explore the following strategies to integrate mul-
tiple states into a single one:

• Max-Pooling: The max-pooling operation is
performed on all available states, resulting in
the integrated state.

• Avg-Pooling: The average-pooling operation
is performed on all available states, resulting
in the integrated state.

• Attn-Pooling: The attentive-pooling takes the
weighted summation of all available states as
the integrated state. The attention weights are
computed with the last state as the query.

• Concatenation: All available states are con-
catenated and then fed into a linear transfor-
mation layer to obtain the compressed state.

• Sequential Neural Network: All available
states are sequentially fed into an LSTM and
the hidden output of the last time-step is re-
garded as the integrated state.

Formally, the state of the i-th layer is denoted
as si. When forward propagation proceeds to the
i-th intermediate layer, all the past states s1:i are
incorporated into a global past state sp:

sp = G(s1:i) (1)

where G(·) refers to one of the state incorporation
strategies.

3.2 Imitation of Future States

Existing work for early exit stops inference at
an intermediate layer and ignores the underlying
valuable features captured by the future layers.
Such treatment is partly rationalized by the recent
claim (Kaya et al., 2019) that shallow layers are
adequate to make a correct prediction. However,
Jawahar et al. (2019) reveal that the pre-trained
language models capture a hierarchy of linguis-
tic information from the lower to the upper layers,
e.g., the lower layers learn the surface or syntactic
features while the upper layers capture high-level
information like the semantic features. We hypoth-
esize that some instances not only rely on syntactic
features but also require semantic features. It is
actually undesirable to only consider features cap-
tured by shallow layers. Therefore, we propose to
take advantage of both past and future states.

Normally, we can directly fetch the past states,
while using future information is intractable how
since the future states are inaccessible before pass-
ing through the future layers. To bridge this gap,
we propose a simple method to approximate the fu-
ture states in light of imitation learning (Ross et al.,
2011; Nguyen, 2016; Ho and Ermon, 2016). We
couple each layer with an imitation learner. Dur-
ing training, the imitation learner is encouraged to
mimic the representation of the real state of that
layer. Through this layer-wise imitation, we can
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Figure 2: The illustration of the future imitation learn-
ing. m is the exit layer and the dashed line denotes the
unused modules at inference stage.

obtain approximations of the future states with min-
imum cost. The illustration of the future imitation
learning during inference is shown in Figure 2.

To be precise, we intend to obtain a state approx-
imation of the j-th layer if the forward pass exits
at the intermediate i-th layer for any j > i. During
training, we pass through the entire n-layer model
but we simulate the situation that the forward pass
ends up at the i-th layer for any i < n. The j-th
learner corresponding to the j-th layer takes si as
input and outputs an approximation ŝij of the real
state sj . Then sj serves as a teacher to guide the j-
th imitation learner. We adopt cosine similarity as
the distance measurement and penalize the discrep-
ancy between the real state sj and the learned state
ŝij . Let Licos denotes the imitation loss of the situa-
tion that the forward pass exits at the i-th layer, it is
computed as the average of the similarity loss for
any j > i. Since the exit layer i can be any number
between 2 to n during inference, we go through all
possible number i and average the corresponding
Licos, resulting the overall loss Lcos:

ŝij = Learnerj(si) (2)

li,jcos(sj , ŝ
i
j) = 1−

ŝij · sj
‖ŝij‖‖sj‖

(3)

Licos =
1

n− i
∑n

j=i+1
li,jcos(sj , ŝ

i
j) (4)

Lcos =
1

n− 1

∑n

i=2
Licos (5)

where ‖ · ‖ denotes the L2 norm. Learnerj(·) is a

simple feed-forward layer with learnable parame-
ters W i and bi.

During training, the forward propagation is com-
puted on all layers and all imitation learners are
encouraged to generate representations close to the
real states. During inference, the forward propaga-
tion proceeds to the i-th intermediate layer and the
subsequent imitation learners take the i-th real state
as input to generate the approximations of future
states. Then the approximations are incorporated
into a comprehensive future state sf with one of
the global strategies introduced before:

sf = G(ŝii+1:n) (6)

where ŝii+1:n denotes the approximations of the
states from the (i+1)-th layer to the n-th layer.

3.3 Adaptive Merging Gate

We then explore how to adaptively merge the past
information and future information. Intuitively, the
past state sp and the future state sf are of different
importance since the authentic past states are more
reliable than our imitated future states. In addition,
different instances depend differently on high-level
features learned by future layers. Therefore, it is
indispensable to develop an adaptive method to au-
tomatically combine the past state sp and the future
state sf . In our work, we design an adaptive merg-
ing gate to automatically fuse the past state sp and
the future state sf . As the forward propagation pro-
ceeds to the i-th layer, we compute the reliability
of the past state sp, and the final merged represen-
tation is a trade-off between these two states:

α = sigmoid(FFN(sp)) (7)

zi = αsp + (1− α)sf (8)

where zi is the merged final state and FFN(·) is a
linear feed forward layer of the merging gate.

During training, each layer can generate the ap-
proximated states of future and obtain a merged
final state which is used for prediction. Then the
model will be updated with the layer-wise cross-
entropy loss against the ground-truth label y. The
merging gate adaptively learns to adjust the balance
under the supervision signal given by ground-truth
labels. However, with the layer-wise optimization
objectives, the shallow layers will be updated more
frequently since they receive more updating signals
from higher layers. To address this issue, we heuris-
tically re-weight the cross entropy loss of each layer
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depending on its depth i and get its weight wi. The
updating procedure is formalized as:

wi =
i∑n
j=1 j

(9)

pi = softmax(zi) (10)

Lice = −
∑

l∈labels
y(l)log(pi(l)) (11)

Lce =
∑n

i=1
wiLice (12)

The overall loss is computed as follows:

L = Lce + Lcos (13)

3.4 Fine-tuning and Inference
Here we introduce the fine-tuning technique and
the exit condition at the inference stage.

Fine-tuning The representations learned by shal-
low layers have a big impact on performance in the
early exit framework since the prediction largely
depends on the states of shallow layers. Most
existing work updates all of the model layers at
each step during fine-tuning to adapt to the data of
downstream tasks. However, we argue that such
an aggressive updating strategy may undermine
the well-generalized features learned in the pre-
training stage. In our work, we try to balance the
requirements of maintaining features learned in
pre-training and adapting to data at the fine-tuning
stage. Specifically, the parameters of a layer will
be frozen with a probability p and the probability
p linearly decreases from the first layer to the L-th
layer in a range of 1 to 0.

Inference Following Xin et al. (2020), we quan-
tify the prediction confidence e with the entropy of
the output distribution pi of i-th layer:

e(pi) = Entropy(pi) (14)

The inference stops once the confidence e(pi) is
lower than a predefined threshold τ . The hyper-
parameter τ is adjusted according to the required
speed-up ratios. If the exit condition is never
reached, our model degrades into the common case
of inference that the complete forward propagation
is accomplished.

4 Experiments

4.1 Experimental Setup
Experimental Settings Following previous
work (Xin et al., 2020), we evaluate our proposed

method on six classification datasets from the
GLUE benchmark (Wang et al., 2019): SST-2,
MRPC, QNLI, RTE, QQP, and MNLI. We perform
a grid search over the sets of learning rate as {1e-5,
2e-5, 3e-5, 5e-5}, batch size as {16, 32, 128} and
number of frozen layers during fine-tuning as
{0,1,2,3}. The maximum sequence length is fixed
to 128. We employ a linear decay learning rate
scheduler and the AdamW optimizer. In addition,
we use the concatenation strategy to incorporate
all available states for its best performance on the
GLUE dev set.

Speed Measurement Since the measurement of
runtime might not be stable, following Xin et al.
(2020); Zhou et al. (2020), we manually adjust the
exit threshold τ and calculate the speed-up ratio by
comparing the actually executed layers in forward
propagation and the required complete layers. For
a n-layer model, the speed-up ratio is:

speed-up ratio =

∑n
i=1 n ∗mi∑n
i=1 i ∗mi

(15)

where mi is the number of examples that exit at the
i-th layer of the model.

4.2 Baselines
The proposed method can be practical for a range of
existing pre-trained language models. Without los-
ing generality, we conduct experiments with several
well-known PLMs as backbones, namely, BERT,
RoBERTa, and ALBERT (Lan et al., 2019). Both
BERT and RoBERTa suffer from the problem of
over-parameterization. ALBERT largely alleviates
this problem and is very efficient in terms of model
size, the results on which verify the effectiveness
on such parameter-efficient models. We mainly
compare our method with other methods targeting
on reducing the depth of models, including the re-
cent early exit methods and the method directly
reducing model depth to m layers which is denoted
as (AL)BERT-mL.

4.3 Overall Comparison
We compare our model performance with the base-
line methods when different backbone models are
adopted and show the result in Table 1 and Ta-
ble 2. Both PABEE (Zhou et al., 2020) and Dee-
BERT (Xin et al., 2020) accelerate inference with
a highest 2× speed-up ratio. To be consistent, we
adjust the exit threshold to obtain a 2× speed-up ra-
tio and report the results in Table 1. As shown, our
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Model MNLI-m MNLI-mm QQP QNLI SST-2 MRPC RTE Macro
Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up

BERT

BERT-base (Devlin et al., 2019) 84.6 1.00× 83.4 1.00× 71.2/ - 1.00× 90.5 1.00× 93.5 1.00× 88.9/ - 1.00× 66.4 1.00× -

BERT-6L 80.8 2.00× 79.9 2.00× 69.7/88.3 2.00× 86.7 2.00× 91.0 2.00× 85.1/78.6 2.00× 63.9 2.00× 80.5
DeeBERT (Xin et al., 2020) - - - 69.4/ - 1.96× 87.9 1.79× 91.5 1.89× 85.2/ - 1.79× - - -
DeeBERT 74.4 1.87× 73.1 1.88× 70.4/88.8 2.13× 85.6 2.09× 90.2 2.00× 84.4/77.4 2.07× 64.3 1.95× 74.7
PABEE 79.8 2.07× 78.7 2.08× 70.4/88.6 2.09× 88.0 1.87× 89.3 1.95× 84.4/77.4 2.01× 64.0 1.81× 80.0
Ours 83.3 1.96× 82.7 1.96× 71.2/89.4 2.18× 89.8 1.97× 92.8 2.02× 87.0/81.8 1.98× 64.5 2.04× 82.5

RoBERTa

RoBERTa-base (Xin et al., 2020) 87.0 1.00× 86.3 1.00× 71.8/ - 1.00× 92.4 1.00× 94.3 1.00× 90.4/ - 1.00× 67.5 1.00× -

RoBERTa-6L 84.4 2.00× 83.4 2.00× 71.6/89.2 2.00× 90.4 2.00× 93.5 2.00× 89.3/85.5 2.00× 58.0 2.00× 82.5
DeeBERT 64.2 1.87× 64.7 1.87× 72.0/89.3 2.05× 83.8 2.01× 86.9 2.02× 88.7/84.3 1.86× 60.8 1.90× 75.4
Ours 86.6 1.92× 86.2 1.93× 72.0/89.3 2.54× 91.7 2.11× 94.5 1.98× 89.3/85.5 1.95× 58.0 2.11× 83.6

ALBERT

ALBERT-base 85.2 1.00× 84.7 1.00× 70.5/88.7 1.00× 92.0 1.00× 93.3 1.00× 89.0/84.8 1.00× 72.0 1.00× 84.8

ALBERT-6L 82.4 2.00× 81.7 2.00× 69.8/88.3 2.00× 90.0 2.00× 91.8 2.00× 87.0/82.4 2.00× 65.8 2.00× 82.2
PABEE 84.2 1.90× 83.5 1.81× 70.7/88.9 2.11× 90.9 1.98× 92.4 1.80× 87.6/82.6 1.91× 66.8 2.06× 83.2
Ours 84.8 1.94× 84.1 1.95× 70.4/88.6 2.35× 91.9 1.97× 92.8 2.13× 88.3/84.6 1.95× 72.0 1.93× 84.5

Table 1: Model performance on the GLUE test set with different PLMs as backbone. The speed-up ratio (Spd-up)
is approximately 2.00 × and our method significantly outperforms previous early exit methods.

Model MNLI-m MNLI-mm QQP QNLI SST-2 MRPC RTE Macro
Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up

BERT

BERT-base (Devlin et al., 2019) 84.6 1.00× 83.4 1.00× 71.2/ - 1.00× 90.5 1.00× 93.5 1.00× 88.9/ - 1.00× 66.4 1.00× -

BERT-4L 77.6 3.00× 77.2 3.00× 67.7/87.5 3.00× 85.4 3.00× 88.7 3.00× 82.9/74.9 3.00× 63.0 3.00× 78.4
DeeBERT 61.0 2.80× 59.8 2.84× 66.1/86.9 3.19× 80.8 2.88× 84.7 2.71× 83.5/75.5 2.61× 60.5 2.90× 71.8
PABEE 75.9 2.70× 75.3 2.71× 69.5/88.2 2.57× 82.6 3.04× 85.2 3.15× 82.6/73.1 2.72× 60.5 2.38× 76.6
Ours 78.4 2.99× 77.4 3.02× 70.4/89.2 3.16× 87.3 2.78× 91.1 2.97× 84.5/77.7 2.87× 63.0 2.88× 79.7

RoBERTa

RoBERTa-base (Xin et al., 2020) 87.0 1.00× 86.3 1.00× 71.8/ - 1.00× 92.4 1.00× 94.3 1.00× 90.4/ - 1.00× 67.5 1.00× -

RoBERTa-4L 80.3 3.00× 79.6 3.00× 69.8/88.4 3.00× 86.0 3.00× 91.3 3.00× 85.0/78.1 3.00× 53.2 3.00× 80.2
DeeBERT 55.1 2.31× 56.6 2.27× 67.1/88.1 3.24× 76.0 2.82× 72.3 2.67× 85.9/79.4 2.87× - - -
Ours 81.4 2.97× 80.5 3.02× 71.9/89.3 3.12× 89.2 2.83× 93.5 2.67× 87.1/82.2 2.75× 54.1 3.01× 80.6

ALBERT

ALBERT-base 85.2 1.00× 84.7 1.00× 70.5/88.7 1.00× 92.0 1.00× 93.3 1.00× 89.0/84.8 1.00× 72.0 1.00× 84.8

ALBERT-4L 80.1 3.00× 79.2 3.00× 68.9/88.1 3.00× 87.6 3.00× 89.5 3.00× 84.4/78.9 3.00× 61.2 3.00× 79.7
PABEE 79.6 2.95× 78.9 2.96× 70.8/88.8 2.61× 87.9 3.25× 91.9 2.64× 83.6/75.1 2.66× 64.6 2.69× 80.3
Ours 82.5 2.93× 82.0 2.95× 70.3/88.6 3.17× 91.0 2.92× 92.5 2.88× 87.6/82.8 2.72× 68.1 2.92× 83.0

Table 2: Model performance on the GLUE test set with different PLMs as backbone. The speed-up ratio (Spd-up)
is approximately 3.00× and our method significantly outperforms previous early exit methods.

method maintains a comparable result with the orig-
inal models on most datasets. We also notice that
directly reducing layers performs well and serves
as a strong baseline. Nevertheless, our proposal
significantly outperforms such a method as well as
the other two early exit methods.

We then adopt a more aggressive 3.00× speed-
up ratio to verify the effectiveness of our method.
According to Table 2, the performance of PABEE
and DeeBERT deteriorates badly. In contrast, our
model exhibits more robust and stable performance,
showing its superiority over previous early exit
methods. Particularly, ALBERT is already very
efficient in model size owing to its layer-sharing
mechanism. Results shown in the bottom of Table 2
suggest that our model can obtain a good result with
minimum performance loss on such a parameter-
efficient model.

The success of our proposal might be attributed
to the global perspective for prediction. DeeBERT
makes prediction with the help of the state of a sin-
gle branch classifier, leading to less reliable results.
Although PABEE employs cross-layer prediction
to prevent error from one single classifier, they ig-
nore much available information of past states as
well as the high-level semantic features captured
by future layers. Different from those methods, our
method jointly takes into consideration the hierar-
chical linguistic information embedded in all layers
and thus is able to produce more accurate results.

4.4 Performance-Efficiency Trade-Off

To further verify the robustness and efficiency
of our method, we visualize the performance-
efficiency trade-off curves in Figure 3 on a represen-
tative subset of the GLUE dev set. The backbone
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Figure 3: Performance and efficiency trade-off for early exit methods with BERT as backbone. Our method
outperforms previous early exit methods by a large margin especially under high speed-up ratios.

Method MNLI-m QNLI SST-2 MRPC Macro
Acc Acc Acc F1/Acc

Naive global strategies

Voting 71.33 87.19 89.56 87.71/82.35 83.28
Ensemble 70.92 87.85 90.37 87.44/81.13 83.41

Our global strategies

Avg-Pooling 81.11 90.43 92.43 88.48/83.09 87.44
Max-Pooling 82.86 90.18 92.32 87.85/82.11 87.59
SequentialNN 82.52 90.17 92.09 89.35/85.05 88.00
Attn-Pooling 83.02 90.37 93.00 87.83/81.86 87.81
Concatenation 83.30 90.46 92.89 88.44/83.08 88.10

Table 3: The performance of different strategies to in-
corporate multiple states on the GLUE dev set. The
speed-up ratio is approximately 2.00× (±4%).

model is BERT. Please refer to the Appendix A for
results of RoBERTa and ALBERT. As can be seen
from Figure 3, the performance of previous state-
of-the-art early exit methods drops dramatically
when the speed-up ratio increases, which limits
their practicality for higher acceleration require-
ments. By comparison, our method demonstrates
more tolerance of speed-up ratio. It significantly
improves performance compared to previous best-
performing early exit models under the same speed-
up ratio, especially in the case that the speed-up
ratio is high, indicating that it can be applied in a
wider range of acceleration scenarios.

4.5 Analysis
4.5.1 Effect of Global Strategies
The results of different global strategies on a rep-
resentative subset of GLUE dev are shown in Ta-
ble 3. The naive global strategies including voting
and ensemble perform poorly, which demonstrates
that existing global strategies can only achieve sub-
optimal performance. In contrast, we design simple
yet effective global strategies to incorporate past
states which bring significant improvement com-
pared to baselines. In addition, we empirically find

that the concatenation strategy works best from
an overall point of view. We assume that such a
strategy allows interaction among different states,
yielding better performance. In addition, the effect
of the merging gate can be found in Appendix B.

4.5.2 Analysis of Future Information
To assess whether and how future information con-
tributes to the prediction, we first evaluate the
Global Future version of our early exit method
where all the approximations of futures states are
incorporated through the concatenation strategy.
Effect of future information is backed with the re-
sults shown in Table 4. We observe that the Global
Future mechanism brings improvement on most
datasets for both 2× speed-up ratio and 3× speed-
up ratio, which confirms that the approximations
of future states help enhance the model ability in
prediction. Beyond that, the future states can be es-
pecially advantageous for the models with a higher
speed-up ratio. Recall that approximations of fu-
ture states complement the high-level semantic in-
formation and the exit at shallow layers loses more
semantic information in comparison with the exit
at deep layers. Therefore, the benefit of future in-
formation is more significant compared to the exit
at shallow layers, which is validated by the larger
improvement gap with a 3× speed-up ratio.

We also investigate the effect of future informa-
tion on exit time. Figure 4 demonstrates the distri-
bution of exit layers with and without future infor-
mation. When future information is engaged, we
observe that the proportion of exit at shallow lay-
ers increases. The observation conforms with our
intuition: with the approximations of future states
supplemented for prediction, the merged state at
a shallow layer is able to make a confident and
correct prediction. Thus the exit time is earlier
compared to situations without future states, result-
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Model MNLI-m MNLI-mm QQP QNLI SST-2 MRPC RTE Macro
Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up Acc Spd-up F1/Acc Spd-up Acc Spd-up

≈ 2.00× speed-up

BERT-local 81.97 1.96× 82.47 1.96× 88.18/91.21 1.85× 89.90 2.00× 92.09 2.00× 86.84/80.39 2.08× 66.43 1.96× 83.73
+Global Future 82.14 2.04× 82.93 1.96× 88.01/91.12 1.89× 90.04 2.04× 92.32 2.08× 87.19/80.64 2.08× 66.78 1.92× 83.96

≈ 3.00× speed-up

BERT-local 76.72 2.78× 77.64 2.78× 85.80/89.53 3.03× 86.62 2.86× 90.25 2.94× 85.35/77.45 2.94× 62.82 2.86× 80.45
+Global Future 79.06 2.70× 78.86 2.70× 85.65/89.61 3.03× 86.93 2.86× 91.40 2.94× 86.12/78.43 2.86× 62.45 2.86× 81.23

Table 4: Effect of the approximated future states. BERT-local denotes the early exit method using only current
state and Global Future represents the incorporation of future states. Results are on the GLUE dev set.

(a) MNLI (b) MRPC

Figure 4: The distribution of exit layers with and with-
out future states on the MNLI and MRPC tasks. The
exit threshold for the same task is fixed. When fu-
ture states are engaged for prediction, we observe an
increase of exit at shallow (1-4) layers as well as a per-
formance boost.

ing in a higher speed-up ratio. To be more specific,
for MRPC, the speed-up ratios with and without fu-
ture states are 1.69 and 1.99, and are 1.92 and 2.04
for MNLI, respectively. Meanwhile, we observe a
performance boost with future states involved. It
confirms our assumption that the high-level seman-
tic features embedded in future states help improve
performance in early exit framework.

4.5.3 Comparison with Distillation Methods

As an alternative method to accelerate inference,
knowledge distillation also exhibits promising per-
formance for NLP tasks. We provide comparison
with typical knowledge distillation methods in Ta-
ble 5. Existing model TinyBERT (Jiao et al., 2019)
exerts multiple elaborate strategies to achieve the
state-of-the-art results, including the expensive gen-
eral distillation process and a vast amount of aug-
mented data for fine-tuning. We remove these two
techniques to exclude the effect of extra training
data. Under the same settings, we observe that our
method outperforms the distillation methods with
the same speed-up ratio.

In general, early exit and distillation methods im-
prove inference efficiency from different perspec-

Method MNLI-m QQP QNLI SST-2 Macro
Acc F1/Acc Acc Acc

DistilBERT 81.9 70.0/88.4 88.2 92.1 85.4
BERT-PKD (Sun et al., 2019) 81.5 70.7/88.9 89.0 92.0 85.6
PD-BERT (Turc et al., 2019) 82.8 70.4/88.9 88.9 91.8 85.8
BERT-of-Theseus (Xu et al., 2020) 82.4 71.6/89.3 89.6 92.2 86.2
TinyBERT‡ 81.9 70.0/88.6 88.6 92.0 85.5

Ours 83.3 71.2/89.4 89.8 92.8 86.6

Table 5: Comparison with distillation methods on the
GLUE test set. TinyBERT‡ is our implementation that
removes general distillation and additional fine-tuning
resources to match the settings of other methods. The
speed-up ratio is approximately 2.00× (±4%).

tives. The distillation methods are more efficient in
saving memory usage, but the downside is that such
static methods suffer from high computation cost
to adapt to different speed-up ratios. A new student
model has to be trained from scratch if the speed-
up requirement changes. By contrast, dynamic
methods are more flexible to meet different accel-
eration requirements. Concretely, simple instances
will be processed by passing through fewer layers
and complex instances may require more layers.
Moreover, the speed-up ratio can be easily adjusted
depending on the acceleration requests. Neverthe-
less, early exit and distillation accelerate inference
from different perspectives and these two kinds of
techniques can be integrated to further compress
the model size and accelerate the inference time.

5 Conclusions

We propose a novel Past-Future early exit method
from a global perspective. Unlike previous work
using only local states for prediction, our model em-
ploys all available past states for prediction and pro-
pose a novel approach to engage the future states
which are originally inaccessible for prediction. Ex-
periments illustrate that our method achieves sig-
nificant improvement over baseline methods with
different models as backbones, suggesting the su-
periority of our early exit method.
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A More Performance-Efficiency
Trade-Off Curves

Performance-efficiency curves with RoBERTa and
ALBERT as backbones are shown in Figure 5 and
Figure 6 respectively. Similar to the observation
with BERT as backbone, the performance of Dee-
BERT and PABEE becomes progressively worse
as the speed-up ratio increases. In contrast, our
past-future early exit method shows more robust
results.
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Figure 5: Performance-efficiency trade-off for early
exit method DeeBERT with RoBERTa as backbone.

(a) MNLI (b) QQP

(c) QNLI (d) SST-2

Figure 6: Performance-efficiency trade-off for early
exit method PABEE with ALBERT as backbone.

B Effect of Merging Gate

Method MNLI-m QNLI SST-2 MRPC Macro
Acc Acc Acc F1/Acc

Ours 83.30 90.46 92.89 88.44/83.08 88.10
-merging gate 83.15 90.61 92.43 86.86/80.64 87.49

Table 6: Ablation study of the merging gate. The speed-
up ration is approximately 2.00× and the model imple-
mentation is based on BERT.
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We conduct ablation study to show the effect of
the merging gate and report the result in Table 6.
We can see that the performance drops when we
remove the merging gate from our model, suggest-
ing that the merging gate plays an important role in
keeping the balance between past information and
future information.


