
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1942–1955

June 6–11, 2021. ©2021 Association for Computational Linguistics

1942

Counterfactual Supporting Facts Extraction for Explainable Medical
Record Based Diagnosis with Graph Network
Haoran Wu1,2, Wei Chen1, Shuang Xu1 and Bo Xu1,2

1Institute of Automation, Chinese Academy of Sciences,
Beijing, 100190, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing, 100049, China

{wuhaoran2018, w.chen, shuang.xu, xubo}@ia.ac.cn

Abstract
Providing a reliable explanation for clinical
diagnosis based on the Electronic Medical
Record (EMR) is fundamental to the applica-
tion of Artificial Intelligence in the medical
field. Current methods mostly treat the EMR
as a text sequence and provide explanations
based on a precise medical knowledge base,
which is disease-specific and difficult to ob-
tain for experts in reality. Therefore, we pro-
pose a counterfactual multi-granularity graph
supporting facts extraction (CMGE) method
to extract supporting facts from the irregular
EMR itself without external knowledge bases
in this paper. Specifically, we first structure
the sequence of the EMR into a hierarchical
graph network and then obtain the causal re-
lationship between multi-granularity features
and diagnosis results through counterfactual
intervention on the graph. Features having
the strongest causal connection with the results
provide interpretive support for the diagnosis.
Experimental results on real Chinese EMRs of
the lymphedema demonstrate that our method
can diagnose four types of EMRs correctly,
and can provide accurate supporting facts for
the results. More importantly, the results on
different diseases demonstrate the robustness
of our approach, which represents the poten-
tial application in the medical field1.

1 Introduction

Electronic Medical Record (EMR) based diagnosis
has attracted extensive attention due to its compre-
hensive historical information and clinical descrip-
tions with the development of natural language
processing and medical informatics (Yang et al.,
2018; Choi et al., 2018; Liu et al., 2019; Dong
et al., 2020; Ma et al., 2020b). The application of
deep learning in medicine requires adequate med-
ical explanations for the result. Specific to the
diagnosis of EMR, the model needs to provide the
text description supporting the diagnosis results.

1The code is available at https://github.com/CKRE/CMGE

Figure 1: An example of EMR. We consolidated the
various parts of the EMR into a single document as in-
put and our goal is to extract supporting facts at the
granularity of the clause.

As shown in Figure 1, an irregular EMR is a
document of disease-related information, including
symptoms, history of the disease, preliminary ex-
amination results, and so on, which is disordered
and sparse with meaningless noisy text. Existing
methods provide explanation through medical en-
tities (Yuan et al., 2020), text spans (Mullenbach
et al., 2018) and the weights of external knowledge
(Ma et al., 2018). The entity is critical to the diag-
nosis (Sha and Wang, 2017; Girardi et al., 2018),
but for the medical explanation, it cannot provide
specific information of symptoms (such as posi-
tive or negative). And the form of the span is too
fragmented and lacks readability. Therefore, the
clause as a more informative and readable repre-
sentation is needed to be combined above the level
of entities.

Most of the previous methods provide reliable
explanations for diagnosis by calculating the sim-
ilarity with an external medical knowledge base
(ICD2 and CCS3) (Xu et al., 2019, 2020). KAME

2https://www.cdc.gov/nchs/icd/icd10cm.htm
3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

https://github.com/CKRE/CMGE
https://www.cdc.gov/nchs/icd/icd10cm.htm
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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(Ma et al., 2018) uses the weights of the nodes in
the introduced knowledge graph to provide expla-
nations. Depending on the hierarchical relations
in the database, GMAN (Yuan et al., 2020) builds
a disease hierarchy graph and a causal graph to
find critical entities. However, a trusted medical
knowledge base requires a mass of expertise in dif-
ferent fields to build, and it may be incomplete or
erroneous in practical clinical applications. So far,
how to extract supporting facts from the EMR itself
without an external medical knowledge base is still
a problem.

Counterfactual reasoning provides a link be-
tween what could have happened when inputs had
been changed (Verma et al., 2020). Doctors usually
make a judgment based on several related symp-
toms during diagnosing a disease. In this regard
we can consider a question: will a doctor make
a misdiagnosis without one of the critical symp-
toms? The result is clear. In a counterfactual way,
if we gradually weaken the features until the diag-
nosis changes dramatically, then this feature can be
considered as a supporting fact.

Based on this consensus, we propose a coun-
terfactual multi-granularity graph supporting facts
extraction (CMGE) method for the irregular EMR
in this paper. First, we model the EMR as a hier-
archical graph structure, which contains sentences,
clauses, and entities. Specifically, sentences are
used to model the temporal relationship, clauses
provide a complete descriptive explanation, and
entities provide symptom support as others. On
this basis, we use a graph attention network to ag-
gregate all information from different granularities.
Then, we can do a counterfactual intervention to
obtain the causal relation between feature and diag-
nosis. Specifically, we train a learnable soft-mask
matrix to mask the feature of nodes or edges in
the graph while keeping the diagnosis unchanged,
and the remaining features are the supporting facts
of the diagnosis. Counterfactual reasoning on the
graph requires enhancing the medical features con-
tained in the text of different granularity, so we
use clustering labels4 to cluster clauses and entities.
The experimental results demonstrate the effective-
ness of our method. The contributions of this paper
are summarized as follows:

• We propose a multi-granularity structured

4Notice that this label is disease-free and can be initially
labeled without expert knowledge by crowdsourcing annota-
tion.

Figure 2: This figure shows the hierarchical connec-
tion structure between multi-grained nodes. The black
edges in the graph represent the tree structure connec-
tion between the four types of nodes in the EMR. For
the red edges, the left part shows the connection be-
tween the clause nodes and the graph aggregate nodes,
and the right part shows the fully connected form be-
tween clause nodes.

modeling method based on the hierarchical
graph network that decomposes the EMR into
sentences, clauses, and entities, and use clus-
tering labels to enhance the expression of med-
ical features.

• We adapt counterfactual intervention to ex-
tract critical supporting facts from the EMR
during diagnosis. Importantly, our method is
disease-independent and does not require a
precise external medical knowledge base, so
that it is suitable for a wide range of applica-
tions.

• The evaluation conducted on the real EMR
dataset shows that our method can correctly
diagnose the types of lymphedema. Keyword
coverage and human evaluation show that the
counterfactual reasoning method has better
extraction accuracy and robustness compared
to two existing methods reimplemented by
ourselves.

2 Proposed Method

Given an irregular EMR in the form of free text
X = [x1, x2, · · · , xL] with L words, the task for
us is to extract supporting facts that can be used
to explain the diagnosis result without relying on
external knowledge while performing diagnosis.
The supporting facts can be entities or clauses of
text.

2.1 Multi-Granularity Graph Construction
The medical features in the EMR are sparse and
medical entities are insufficient to provide suffi-
cient explanation for diagnosis. Therefore, we do
multi-granularity segmentation for EMRs, which
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Figure 3: An overview of counterfactual multi-granularity graph supporting facts extraction network. To show the
soft-mask process clearly, we assume that the features of both nodes and edges in the graph are 1, and

⊙
denotes

element-wise multiplication between graph features and mask matrix. All the edges in the graph are bidirectional.
For clear reading, we only mark the monodirectional mask value for the bidirectional edges in the Edge-Mask.

enhances the symptom features of entities and ex-
planation of diagnosis, while maintaining the in-
tegrity of the text. An EMR can be divided by
periods into sentences, which can be further di-
vided into clauses by commas or semicolons as a
more granular segmentation. In order to keep the
symptom features of entities, we do Named En-
tity Recognition5 and number extraction for each
clause6. In addition, we add two general nodes
representing the gender and age of the patient re-
spectively.

After segmentation, as shown in Figure 2, we
can build a hierarchical tree structure. The nodes at
each level represent the text of sentences, clauses,
and entities respectively. Specifically, for each
EMR, we connect the two general nodes, sentence
nodes sequentially. Then, we connect the clause
node to the sentence node to which it belongs and
the entity nodes disassembled from it. In partic-
ular, a fully-connected relationship is established
between all the clause nodes, which overcomes the
defect that Graph Attention Network (GAT) can
only aggregate the information from adjacent nodes
when the network is shallow and expands the recep-
tive field of each sub-sentence node to the whole
EMR. Then, all clause nodes are connected to an
aggregate node which is used to do the diagnosis.
All the edges in the graph are bidirectional to make
the information between nodes flow better.

5https://github.com/daiyizheng123/Bert-BiLSTM-CRF-
pytorch

6We recommend Stanza (Qi et al., 2020; Zhang et al., 2020)
for English EMR. https://github.com/stanfordnlp/stanza

2.2 Clustering labels

In the original EMR, all tokens have the same
weight, so noisy text will degrade the performance
of diagnosis and explanation. To improve the accu-
racy of symptom presentation, clustering-labels are
used to cluster clauses and entities into correspond-
ing medical classifications. Specifically, the clause
is divided into 33 classes and the entity is divide
into 10 classes, which is a scientific classification
method in medicine derived from the textbook "Di-
agnostics" (Xuehong Wan, 2013). These labels
are disease-free and can be labeled without expert
knowledge by crowdsourcing annotation. We man-
ually annotated the corresponding labels for the
entire dataset on our own platform. And we have
trained a BERT (Devlin et al., 2019) based text
classifier on 30% of the data, which can achieve
the annotation accuracy of 80.76% on clauses and
97.13% on entities on the remaining data. This
shows that our method can easily annotate large-
scale data. With these labels, we can gather the
same types of features together in the feature space,
thereby enhancing the model’s overall attention to
important types of features. Please refer to Ap-
pendix B.2 for more details.

2.3 Input Encoder

After building the multi-granularity graph for a
medical record, each node in the graph contains a
sequence Xnode = [x1, x2, · · · , xn] with n words,
which is tokenized by the tokenizer of BERT (De-
vlin et al., 2019). In order to maintain the con-

https://github.com/daiyizheng123/Bert-BiLSTM-CRF-pytorch
https://github.com/daiyizheng123/Bert-BiLSTM-CRF-pytorch
https://github.com/stanfordnlp/stanza
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sistency of the results of different granularity en-
coding, we use one bi-directional RNN (Schuster
and Paliwal, 1997) with GRU (Cho et al., 2014) to
cover the sequence of sentences, clauses, entities
and general information into hidden state sequence
respectively Hm = (h1,h2, · · · ,hn):

ht = BiGRU(ht−1, e(xt)) (1)

where ht is the hidden state of the t-th token and
e(xt) is the embedding vectors with random initial-
ization of xi. Finally, we use the last hidden state
of i-th text sequence as the feature H i of nodei.

2.4 Graph Reasoning
Once we get the feature of the node, we use the
Graph Attention Network (GAT) (Velickovic et al.,
2018) to aggregate the information between dif-
ferent granularity. GAT can obtain the correlation
score between nodes based on the attention mech-
anism, which is the key to the interpretability of
our model. Specifically, GAT takes all the node
features as input and calculates the attention coeffi-
cients αij by

eij = LeakyReLU(aT ([WHi;WHj ])) (2)

αij =
exp(eij)∑

k∈Ni
exp(eik)

(3)

where Hi is the feature of node i, W ∈ Rd×d is
a learnable weight matrix for the linear projection,
a ∈ R2d is a learnable weight vector used to trans-
form the adjacent node feature representations to
the edge score eij between the i-th and j-th nodes.
Equation (4) means to do a softmax normalization
between all the edge attention scores on the edges
connected to node i. Then, we update the feature
of each node by

H ′
i = LeakyReLU(

∑
j∈Ni

αijWHj) (4)

After graph reasoning, the representation H of
each node has been updated with the granular in-
formation aggregated from adjacent nodes and can
be used for subsequent tasks.

2.5 Multi-task Prediction
After obtaining the updated node features, we use
them in three subtasks: (i) graph classification for
automatic diagnosis; (ii) sub-sentence classifica-
tion for clustering; and (iii) entity classification for
clustering.

Taking entity node classification as an example,
for each entity node, we use a two-layer MLP with
the ReLU activation function to calculate the prob-
ability. For an entity node i, we can get

Pentity,i =MLPentity(Ei) (5)

By the same way, we can obtain the probability
Pgraph, Pclause, Pentity. The same as the common
multi-task learning, we joint all the losses together
as:

Ljoint = λ1Lgraph + λ2Lclause + λ3Lentity (6)

where λ1, λ2 and λ3 are hyper-parameters, and all
the loss are calculated by cross-entropy loss.

2.6 Counterfactual Reasoning on Graph
Providing supporting information while making
the diagnosis is the key to applying Artificial Intel-
ligence into the medical field. Inspired by (Ying
et al., 2019), we add node-mask or edge-mask into
GAT to obtain the counterfactual result after the
training and eliminate the noise nodes while keep-
ing the diagnostic results unchanged.

For edge-mask, we introduce a learnable matrix
M with the same form as the adjacency matrix of
the medical record graph. Each element mij in the
matrix represents the degree of mask for message
aggregation from node i to node j in the graph.
With this method, the calculation of attention coef-
ficients in the GAT has been changed to

αij =
exp(eijmij)∑

k∈Ni
exp(eikmik)

(7)

And for node-mask, similarly, we introduce a
learnable parameter βi for each node i in the graph.
The parameter represents the degree of mask for
the feature in the node. After node-mask, the cal-
culation of eij and H ′

i has been changed to

eij = LeakyReLU(aT ([βiWHi;βjWHj ]))
(8)

H ′
i = LeakyReLU(

∑
j∈Ni

αijβjWHj) (9)

In the training of counterfactual reasoning, we
jointly optimize three loss functions to obtain ac-
curate counterfactual results. To ensure that the
model can make a correct diagnosis after the coun-
terfactual intervention, we use the original model
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type train test

Secondary Lymphedema 448 36
Primary Lymphedema 185 22
Chylous Reflux Lymphedema 19 21
Others 248 21

All 900 100

Table 1: The statistics of the datasets.

to obtain the fact resultDi and maximizes the prob-
ability of selecting the correct diagnosis in counter-
factual reasoning. Besides, we minimize the sum
of all elements in the mask matrix to ensure that all
noise nodes are filtered as much as possible. Since
there is an exponential level possibility of coun-
terfactual intervention on the model through the
node-mask or edge-mask, we minimize the infor-
mation entropy of the mask matrix regarding which
node to select to reduce the uncertainty of the result.
Finally, the loss of counterfactual reasoning is as
follows:

Lc = −λ4logP (D = Di) + λ5sum(M)

−λ6
1

N

∑
mi∈M

milog(mi)

−λ6
1

N

∑
mi∈M

(1−mi)log(1−mi)

(10)

where λ4, λ5 and λ6 are hyper-parameters, N is
the number of elements in the mask matrix M , and
all the elements in M are mapped to the [0, 1] by
sigmoid function. For node-mask, the training is
similar.

After counterfactual reasoning, we extract the
nodes or edges (each edge represents the two nodes
connected) represented by the top-k elements in
the mask matrix as supporting facts.

3 Experiment

3.1 Experimental Setting
Based on the cooperation with the hospitals, we
conducted experiments with real EMR data. We
selected the EMRs from the department of lym-
phedema and diagnose the disease of primary
lymphedema (原发性淋巴水肿), secondary lym-
phedema (继发性淋巴水肿), chylous reflux lym-
phedema (乳糜返流性淋巴水肿) and others (其
他). The reasons for us to choose this department
are as follows: (I) Lymphedema is a sub-discipline
in medicine, so the researches on it, whether in
Medicine or Artificial Intelligence, is still limited.

For example, ICD10 can not provide full medical
supporting. (II) The pathogenesis and treatment
methods of different types of lymphedema vary
greatly, but their outward manifestations are simi-
lar. Therefore, there is an urgent need for a simple
method of earlier diagnosis system of lymphedema.
(III) Specialist doctors pay more attention to the
diagnosis in sub-discipline disease and do not con-
cern with the large-scale rough diagnosis.

Formally, there are 1000 EMRs used in our ex-
periment, of which 900 are used for training and
100 are used for testing. The statistics of four
types of diseases are shown in Table 1. The av-
erage length of all EMRs is 345 words in Chinese.
And our model is implemented based on PyTorch
(Paszke et al., 2019), and use Adam (Kingma and
Ba, 2015) optimizer for training. Please refer to
Appendix B.1 for datasets details and Appendix
A.1 for implementation details.

3.2 Baseline
We designed two representative models to compare
the ability to extract medical support facts under
similar task conditions based on attention and vari-
ational inference:

Self-Attention This method represents most of
the existing approaches and provides explanations
through attention similarity. We use BiGRU to
encode the EMR. With the sequence embedding,
following (Choi et al., 2016), we use average pool-
ing to obtain the overall representation for auto-
matic diagnosis. For supporting fact extraction,
following (Mullenbach et al., 2018), we calculate
the self-attention weight of each token, and design
a sliding window method to obtain the average at-
tention scores of fixed length spans, among which
having high scores are taken as the supporting facts.

PostKS This is another method based on varia-
tional inference we’ve designed in addition to atten-
tion. Inspired by the dialogue knowledge selection
model PostKS (Lian et al., 2019), we convert the
pivotal information extraction into a clause selec-
tion problem. This method uses the text result of
the diagnosis(as shown in Figure 1) to calculate the
correlation with the clause as posterior distribution
through the attention mechanism, and then uses
self-attention and average pooling between clauses
to obtain correlation score as the prior distribution.
During training, based on variational inference, the
model uses posterior information to guide prior se-
lection, so that makes the prior distribution and the
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Model
Diagnosis Clause Entity

P/% R/% F1/% P/% R/% F1/% P/% R/% F1/%

Self-Attention 94.95 95.00 94.97 - - - - - -
PostKS 95.13 97.00 96.06 - - - - - -

CMGE−c−e 96.17 96.00 96.08 1.91 3.72 2.52 14.36 9.05 11.10
CMGE−e 97.40 96.00 96.69 81.26 81.80 81.53 15.22 32.18 20.67
CMGE−c 97.19 97.11 97.15 25.75 1.55 2.92 95.33 95.12 95.22

CMGE 99.04 99.00 99.02 82.49 82.53 82.51 96.43 96.38 96.40

Table 2: The first two lines are the diagnostic performance of the compared model and the last line is ours. The
middle three rows are ablation experiments. CMGE−c−e represents the model only use diagnosis label, CMGE−e

represents the model without entity labels, and CMGE−c represents the model without clause labels.

posterior distribution consistent. Finally, during
inference, we select the clauses with high prior at-
tention scores among clauses as supporting facts.
Please refer to Appendix A.2 for more details.

3.3 Evaluation Metrics
To measure the performance of our pivotal infor-
mation extraction module, we built a simple diag-
nostic criterion from (Levine, 2017), which is a
complete diagnosis and treatment guide for lym-
phedema written by medical experts. Based on
this diagnosis criteria, we used a combination of
automatic evaluation and human evaluation.

Automatic Evaluation The precision, recall,
and F1 are used as the metrics to measure the di-
agnostic accuracy of the model, which is the basis
for the practical application. Specifically, several
key-phrases for the three types of lymphedema are
manually identified respectively to represent diag-
nostic features, and they are the re-descriptions of
diagnostic criteria in the guide using phrases from
EMRs. We use hit@1/3/5 (Bordes et al., 2013) to
measure the coverage rate of the extracted results to
the key-phrases. These metrics represent whether
one of the diagnostic features is included in the top-
1/3/5 extracted results. Please refer to Appendix
B.3 for more details.

Human Evaluation Since some of the implicit
medical features cannot be covered by key-phrases,
human evaluation is necessary. We used each
model to extract the top 3 supporting facts respec-
tively for all 100 EMR samples in the testset, and
randomly shuffled the order of the results. Then
we invited 3 evaluators with medical backgrounds
and having read the guide to determine whether the
results conform to medical knowledge. We focus
on the comprehensiveness and trustworthiness of
each model. Comprehensiveness is used to mea-

sure whether the model can provide more medical
features, and trustworthiness is used to measure
whether the extraction results are helpful for diag-
nosis. For each item, the evaluator is asked to score
in 0 ∼ 2. The final indicator is the average of the
three evaluators.

4 Results and Analysis

4.1 Diagnostic Result

The diagnostic results are shown in Table 2. From
the results, we can see our model performs better
than all the compared models and can achieve about
99% accuracy in the diagnosis of lymphedema,
which exceeds the comparison models by 3%-5%
in precision, recall, and F1. Based on our model,
the categories of clauses and entities can be dis-
tinguished correctly, which demonstrates that the
clustering information contained in the pseudo-
labels is correctly learned by our multi-granularity
model. This result indicates that the accuracy of
our method in the diagnosis of lymphedema is in
line with clinical requirements. Since our goal
is to make the model really help doctors in clini-
cal practice with reliable medical explanations, we
will focus on the performance of the counterfactual
extraction of the supporting facts for the diagno-
sis that follows. Please refer to Appendix A.4 for
the effectiveness of our model in diagnosis on the
benchmark data.

4.2 Counterfactual Extraction Result

Automatic Result Table 3 shows the automatic
evaluation results of the supporting facts extraction.
Since the identified keywords are difficult to accu-
rately cover the features for diagnosis and models
have different adaptability to various diseases, the
performance is distinguishing on different diseases.
Compared with other models, the counterfactual-
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Model
Secondary Lymphedema Primary Lymphedema Chylous Reflux Lymphedema

hit@1 hit@3 hit@5 hit@1 hit@3 hit@5 hit@1 hit@3 hit@5

Self-Attention 5.45% 36.36% 50.91% 13.64% 45.45% 54.55% 4.76% 9.52% 33.33%
PostKS 9.09% 43.64% 60.00% 9.09% 40.91% 54.55% 0.00% 14.29% 19.05%

Node-Mask 25.45% 52.73% 69.09% 22.73% 31.82% 54.55% 9.52% 19.05% 23.81%
Edge-Mask 36.36% 61.82% 70.91% 22.73% 40.91% 50.00% 61.90% 66.67% 76.19%

Table 3: The automatic evaluation for the extraction of diagnostic supporting facts for three types of lymphedema.

Model
Secondary Lymphedema Primary Lymphedema Chylous Reflux Lymphedema Others

C T C T C T C T

Self-Attention 0.85 0.83 0.75 0.95 0.62 0.33 1.09 0.76
PostKS 0.64 0.96 0.66 0.82 0.67 0.48 0.57 0.42

Node-Mask 1.44 0.91 1.11 1.02 1 0.71 1.67 1.24
Edge-Mask 1.67 1.22 1.36 1.11 1.33 1.38 1.67 1.52

Table 4: The human evaluation for the extraction of diagnostic supporting facts for each type. In the table, C stands
for comprehensiveness and T stands for trustworthiness.

based methods, especially the Edge-Mask method,
has an advantage in accuracy and robustness on
the whole. Hit@1 shows that the Edge-Mask can
locate key facts more quickly than the comparison
methods and hit@5 shows that it achieves over 70%
accuracy on secondary lymphedema and chylous
reflux lymphedema. In the comparison of different
lymphedema, other methods have a greater per-
formance degradation, and only the Edge-Mask
maintains high accuracy in various diseases, indi-
cating that the Edge-Mask method is highly robust
to different diseases.

Human Result Table 4 shows the results of
the human evaluation of the four categories of
diagnosis. Compared with other methods, the
counterfactual-based methods have great advan-
tages in comprehensiveness, which indicates that
our method can focus more on useful medical in-
formation and eliminate invalid noise in the EMR.
The fourth category requires focus. This category
includes all non-lymphedema medical records, and
its diseases are diverse and complex. It can be seen
that the method of counterfactual reasoning has
strong performance in this type in terms of com-
prehensiveness and credibility, indicating that our
method is truly independent of the type of disease
and suitable for large-scale promotion.

4.3 Effectiveness of Clustering Labels

Table 2 shows the ablation experiment results for
the clustering labels. For the experiment with-
out corresponding labels, we used a classifier with
random initialization parameters for classification,

which can reflect the expectation of the ability to
encode medical features of the model. The results
show that both the clause label and entity label can
improve the accuracy of diagnosis by about 1% on
the basis of over 96% accuracy. Since we use the
same encoder to encode the three granular texts
of the sentence, clause and entity, the addition of
clause labels also improves the accuracy of entity
classification and vice versa. The result indicates
that the introduction of cluster tags enhances the
expression of medical information in the model
and enables the model to better extract and utilize
relevant medical knowledge from irregular text.

4.4 Advanced Analysis

Results in Primary Lymphedema Since the di-
agnosis of primary lymphedema is mainly diag-
nosed by excluding other types of lymphedema,
the keywords we established are not standardized
in the EMR, the performance of all models in Ta-
ble 3 has a significant decline and only be used
for comparison. And the performance in human
evaluation is consistent with other diseases in Table
4.

Results in Chylous Reflux Lymphedema Ex-
cept for Edge-Mask, the performance of the
other methods on chylous reflux lymphedema has
dropped significantly. Since this type of EMR only
accounts for 4% of the dataset, the models based
on frequency statistics are difficult to capture key
features. And Edge-Mask, using counterfactual
intervention to obtain causal relation, is disease-
independent and can adapt to few data.



1949

Figure 4: An example of a trustworthy supporting facts
graph extracted by Edge-Mask. The keywords "can-
cer", "surgery" and "chemotherapy" in this result meet
the diagnostic criteria for secondary lymphedema in
Appendix B.3.

Node-Mask and Edge-Mask Edge-Mask is in-
cluded in Node-Mask. Masking the feature of a
node will inevitably reduce the flow of information
on all connected edges. So compared to Node-
Mask, Edge-Mask is a fine-grained counterfactual
intervention. For Node-Mask, the flow of multi-
granularity information between nodes will be trun-
cated. For example, when a clause node is masked,
the entity features belonging to it are truncated
together. Therefore, Node-Mask has a weaker per-
formance than Edge-Mask.

4.5 Visual Presentation of Results

Figure 4 is an example randomly obtained from the
test set. In this graph, each node represents a clause
that contains the entities used to describe the symp-
toms of the disease and the edges represent the
connection between them. All the aforementioned
features constitute a hierarchical supporting graph
to provide effective help for doctors’ diagnosis. As
we can see, our model successfully extracted the
patient’s history of cancer, surgery and chemother-
apy, which can clearly indicate that the patient is
suffering from secondary lymphedema. This shows
that the supporting facts we extracted are effective.
We provide a comparison of the extraction results
of different models in Appendix A.3.

Figure 5 shows an example of the visualization
of the Edge-Mask matrix. It can be seen that most
of the edges have been masked, and only the edges
from two key feature nodes have been preserved.
This proves that our method can effectively filter
noisy features and extract supporting facts.

Figure 5: An example of visualization of Edge-Mask
matrix. The same as the adjacency matrix, the rows
and columns in the figure correspond to the nodes in
the graph, and each grid in the figure represents a value
in the Edge-Mask matrix.

5 Related Works

Explainable Diagnosis with EMR It is neces-
sary to provide explainability for automatic diagno-
sis systems. CAML (Mullenbach et al., 2018) pro-
vides explanations with the spans having the high
attention weights in the text sequence and (Feng
et al., 2020) calculates a threshold for attention se-
lection. AdaCare (Ma et al., 2020a) calculate the
average importance weights in the overall dataset
to obtain symptoms strongly associated with the
diseases. These works focus on correlations based
on attention and ignore causality between features
and diagnosis.

Document Modeling with Graph Network
Document modeling with graph network has been
widely used in text classification (Yao et al., 2019),
multi-hop reading comprehension (Cao et al., 2019)
and abstract extraction (Wang et al., 2020). An
EMR can also be considered as a document. There
are two main ways to structure a document into
a graph, based on the entity (Qiu et al., 2019) or
based on the structure of the document (Zheng
et al., 2020). (Tu et al., 2019) considers the in-
tegration of documents and entities as heteroge-
neous nodes in the graph network, and (Fang et al.,
2019) propose a hierarchical model that combines
document structure and entity structure. We used
a multi-granularity hierarchical graph network to
model the EMR documents.

Counterfactual Reasoning Providing explana-
tions based on counterfactual reasoning has a long
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history (Lewis, 1973; Woodward, 2005). In recent
years, (Oberst and Sontag, 2019) introduces a kind
of structural causal model to genera counterfactual
trajectories in a synthetic environment of sepsis
management. (Lin et al., 2020) presents a patient
simulator to generate informative counterfactual re-
sponse in the disease diagnosis. (Lenis et al., 2020)
identifies salient regions of a medical image by
measuring the effect of local counterfactual image-
perturbations. We use counterfactual reasoning in
EMRs to provide explanations for diagnosis.

6 Conclusion

In this paper, we propose a counterfactual multi-
granularity graph supporting facts extraction
(CMGE) method for the irregular EMR without
an external medical knowledge base. Based on this
model, we can correctly diagnose lymphedema.
The proposed counterfactual-based approach can
discover the causal relationship between symptoms
and diagnosis. The results of supporting fact ex-
traction show that our method has strong robust-
ness and can maintain accuracy in various diseases
and even in categories with few data resources. In
the future, we will introduce multi-modal into the
model such as radiology images to discover more
medical knowledge from EMRs.
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A Experimental Setting

A.1 Implementation Details
To implement our model, we use the tokenizer of
BERT (Devlin et al., 2019) to obtain the tokens of
the EMR text sequence. For BiGRU (Cho et al.,
2014) encoder, the embedding dimension is 300
and the hidden dimension is 256 with two layers.
In graph reasoning, we use 2 multi-heads GAT lay-
ers with 8 heads. The input dimension of GAT is
1024 and the output dimension is 128. For counter-
factual reasoning, we fix the parameters of all the
diagnostic models and only optimized the matrix of
Edge-Mask or Node-Mask. The hyper-parameters
can be set to any possible value based on the tuning.
With the manual tuning for diagnostic accuracy, ex-
cept for λ5, all the hyper-parameters of the loss
function are set to 1 in the experiment, and λ5 is
set to 0.1 for Node-Mask and 0.005 for Edge-Mask.
We trained on the diagnostic model for 20 epochs
and do counterfactual training on each sample for
200 epochs. Our model has a total of 16.7M pa-
rameters and can easily train and infer in Titan XP.
Since we are not doing parallel processing, coun-
terfactual reasoning is the most consuming, and it
takes 7 seconds for each instance.

A.2 PostKS
We modified the PostKS (Lian et al., 2019) model
to this task. In order to enhance the accuracy of
supporting facts extraction, except the diagnosis

Figure 6: An overview of modified PostKS.

label, we use some additional diagnostic descrip-
tions related to the disease, which are shown in
"Diagnosis" in Figure 1.

Figure 6 shows the overview of variational in-
ference model. All the clauses and the diagno-
sis are encoded by BiGRU and we take the last
hidden state hn as the feature sequence C =
[c1, c2, · · · , cn] for the clauses and the feature d
for diagnosis. Based on these, we can calculate the
posterior distribution as:

p(c = ci|C,d) =
exp(ci · d)∑N
j=1 exp(cj · d)

(11)

where N is the number of clauses, ci is the feature
of the i-th clause, and for prior distribution, we
calculate as:

p(c = ci|ci, ck) =
exp(ci · ck)∑N
j=1 exp(cj · ck)

(12)

Then use the average pooling to obtain the self-
attention weight p(c = ci|C) of each clause and
optimize:

Lc = λdLdiagnosis

+ λk

i=1∑
N

p(c = ci|C,d)log
p(c = ci|C,d)
p(c = ci|C)

(13)

where λd, λk are hyper-parameters and Ldiagnosis
is the cross-entropy loss for diagnosis result.

A.3 Result Comparison

Table 7 shows two examples of supporting facts ex-
traction results. For Secondary Lymphoma, it can
be seen that except for PostKS, all other methods
can find critical features. PostKS discovered the
word "lymphedema" since it is highly correlated
with the diagnosis text. The result indicates that
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Model
AUC F1

P@5Macro Micro Macro Micro

BiGRU (Mullenbach et al., 2018) 82.8 86.8 48.4 54.9 59.1
CNN (Mullenbach et al., 2018) 87.6 90.7 57.6 62.5 62.0

CAML (Mullenbach et al., 2018) 87.5 90.9 53.2 61.4 60.9
DR-CAML (Mullenbach et al., 2018) 88.4 91.6 57.6 63.3 61.8

MultiResCNN (Li and Yu, 2020) 89.9 92.8 60.6 67.0 64.1
HyperCore (Cao et al., 2020) 89.5 92.9 60.9 66.3 63.2

MultiResCNN* 89.3 92.2 59.3 66.2 62.8
BiGRU + MHG 88.9 92.5 57.8 66.6 64.1

MultiResCNN + MHG 90.2 93.1 60.9 67.5 64.7

Table 5: The experimental result on benchmark data. MultiResCNN* represents the result of MultiResCNN on
our pre-processed hierarchical structured data. BiGRU, CNN, CAML and DR-CAML are the most frequently
compared baselines for this task. MultiResCNN and HyperCore are currently strong and effective baselines.

the posterior information has worked, but it can-
not provide an explanation for the diagnosis. The
Edge-Mask discovered the "swelling after surgery
immediately", which is the best support for the
diagnosis of secondary lymphedema, indicating
the effectiveness of it. For Chylous Reflux Lym-
phedema, only Self-Attention and Edge-Mask find
critical information like "milky white liquid". Com-
pared with Self-Attention, Edge-Mask has a more
complete description of the supporting facts.

A.4 Evaluation on benchmark data

We didn’t find any benchmarks on the task of di-
rectly extracting supporting facts from EMRs with-
out other knowledge. To better prove the perfor-
mance of our model, we have done experiments
on the English EMR benchmark "MIMIC-III-50"
(Mullenbach et al., 2018) for the task of assigning
ICD codes to EMRs. This task assigns multiple
codes to EMRs from 50 labels. Compared to our
diagnosis of four types of EMRs, the difficulty is
obvious.

The key module of our model in diagnosis is the
multi-granularity hierarchical graph (MHG) docu-
ment modeling method based on clauses and enti-
ties. In the experiments, we subsequently connect
our multi-granularity hierarchical graph network
module after BiGRU (Mullenbach et al., 2018) and
MultiResCNN (Li and Yu, 2020) to further encode
the EMRs. Since the clause categories are not la-
beled on this dataset, we only used the entity labels
obtained by NER and do not constrain the clause
node.

The result shown in Table 5 show that our mod-
ule achieves effective performance improvements
on all metrics based on MultiResCNN and Bi-
GRU. With our module, BiGRU even surpasses

MultiResCNN in some metrics, while they origi-
nally have a huge gap in performance. This experi-
mental result proves the effectiveness of our model
in diagnosis on the benchmark data.

B Data and Metrics Description

B.1 Data Collection

We collected data from the real historical electronic
medical records (EMRs) of the department of lym-
phedema. It contains the patient’s self-complaint,
history of present illness, past illness, personal his-
tory, family history, physical examination, and spe-
cialist examination. In order to protect the pri-
vacy of patients, we have deleted all content related
to personal information. For the experiment, we
extracted three types of EMRs of primary lym-
phedema, secondary lymphedema, and chyle reflux
lymphedema from all EMRs. In addition, we added
25% of the confounded EMRs which includes pa-
tients who were hospitalized in the department of
lymphedema, but the final diagnosis was other dis-
eases. The statistics of four diseases in the final
dataset are shown in Table 1.

Although the EMR distinguishes information
such as the history of present illness and past ill-
ness, since the content of each part is still irreg-
ular text, and most of the existing EMRs are not
standardized, we treat the EMR as an unstructured
text and connect all the pieces together. Since our
EMRs contain a complete physical examination
and life history, most of the symptomatic entities
present are negative and unrelated to diagnosis,
which introduces a lot of noise into diagnosis and
explanation. This is also an important reason that
we cannot use entities as supporting facts. We do
not have permission from hospitals to publish the
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Type Label

Clause

null(无标签), nature of symptom(症状的性
质),relation of symptom(症状之间的联系),
cause of change in symptom(引起症状变
化的因素), position of symptom(症状的部
位), duration of symptom(症状持续时间),
time of onset of symptom(症状出现的时
间), degree of symptom(症状的程度), new
symptoms(新出现的症状), change of symp-
tom(症状的变化), cause of disease(起病原
因), time of disease(患病时间), severity of
disease(疾病的严重程度), method of exam-
ination(检查方法), result of examination(检
查结果), method of treatment(治疗方法), lo-
cation of treatment(治疗地点), cause of treat-
ment(治疗原因), purpose of treatment(治疗
目的), effect of treatment(治疗效果), doses
of drug(药物剂量), sleep condition(睡眠情
况), mental condition(精神情况), defecation
and urination condition(大小便情况), weight
condition(体重情况), appetite condition(食
欲情况), negative information(阴性资料),
description of number(数量描述), name of
drug(药物名称), physical description(体力
描述), time description(时间描述), general
description(通用描述), others(其它),

Entity

position(部位), drug(药品), duration(时长),
disease(疾病), hospital(医院), surgery(手术),
number(数字), examination(检查), time(时
间), others(其他)

Table 6: The detailed description of the cluster label.

Chinese EMR data since they are legally protected
by the laws. So we can only provide two examples
in Table 7 with extraction results of each model.

B.2 Clustering Label

The detailed description of the cluster label is
shown in Table 6. They are derived from the text-
book "Diagnostics" (Xuehong Wan, 2013). It’s a
scientific classification method in medicine. In our
experimental data, we manually annotated the cor-
responding labels on our own platform. These la-
bels are crude, disease-independent and there may
be intersections between categories, because they
are only used to cluster clauses or entities and do
not require a high degree of accuracy. Therefore,
we can easily annotate a small part of the dataset
manually and train a text classifier to classify the re-
maining data based on BERT (Devlin et al., 2019).
The experimental results show that the classifier we
trained on 30% of the data can achieve the annota-
tion accuracy of 80.76% on clauses and 97.13% on
entities in the remaining data.

B.3 Diagnostic Criterion
In this section, we will briefly introduce the di-
agnostic criteria for three types of lymphedema.
Different hospital or even departments have their
own ways to describe the recognized diagnostic cri-
teria, which will be reflected in the EMRs. So our
diagnostic criteria are manually annotated by ana-
lyzing the EMRs and the diagnosis guide (Levine,
2017). They are the re-descriptions of diagnostic
criteria in the guide using phrases from EMRs.

Secondary Lymphedema For secondary lym-
phedema, the most important diagnostic criterion is
whether the patient’s lymphatic vessels have been
damaged. Therefore, if there are descriptions re-
lated to tumors, surgery, radiotherapy, etc. in the
medical records, it is likely to be secondary lym-
phedema.

Primary Lymphedema For primary lym-
phedema, the main basis for diagnosis is whether
the patient’s lymphatic vessels have congenital
dysplasia or edema. Since there are few descrip-
tions of this basis in the medical records, we will
also take "edema without an inducement many
years ago(多年前无诱因出现水肿)" as the basis
for correct extraction in the evaluation.

Chylous Reflux Lymphedema For chylous re-
flux lymphedema, the key to the diagnosis is
whether the patient has chylous reflux. There-
fore, if there are descriptions related to milky white
fluid, effusion reflux, etc. in the medical record,
it is roughly considered to be chylous reflux lym-
phedema.
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EMR Sample Extraction Result

Age:46. Gender:woman. Document: The patient un-
derwent radical mastectomy for right breast cancer at
a local hospital 3 years ago. The regular postoperative
review showed no signs of tumor recurrence. After
the surgery, the right upper limb was swollen immedi-
ately, which is concave without pain, fever, paresthesia,
and other symptoms, so the patient did not pay atten-
tion to it. The swelling gradually developed from the
upper arm to the whole right upper arm, aggravated
after activity, and decreased after rest. No symptoms
of infection such as redness, swelling, heat, and pain
of the affected limb, or fever of the whole body were
observed. The patient was admitted to our hospital
for further diagnosis and treatment. ETC in the out-
patient department shows: no obvious abnormalities
were found in the ultrasound of the upper limb vein;
Right upper extremity magnetic resonance is consis-
tent with lymphedema. The outpatient department is
admitted with "lymphedema". The patient had good
mental, appetite, sleep, urine, and feces since the onset
of the disease, and had not lost weight recently.

patient had right breast cancer three years
ago

Self-Attention
no significant weight loss

lymphatic swollen; upper limb vein

can concavity

PostKSregular postoperative review

the outpatient department was admitted
with "lymphedema"

the patient underwent radical mastectomy
for right breast cancer at a local hospital 3
year ago Node-Mask

the swelling decreased after rest

there were no signs og tumor recurrence

swelling begins in the upper arm and pro-
gresses gradually throughout the right up-
per arm Edge-Mask

swelling of the right upper limb was
present immediately after surgery

Diagnosis: Secondary Lymphoma of Right Upper
Limb

there were no signs of tumor recurrence

Age: 15. Gender: man. Document: The patient devel-
oped multiple cystic vesicle-like structures in the right
thigh 6 years ago without obvious inducement. After
standing and walking for a long time, the lesions could
be ruptured, leaving a milky white fluid. Since then,
the patient appeared edema in the right thigh, hip, right
waist, scrotal. The swelling gradually aggravated, and
gradually developed from thigh to calf. The swelling
was concave, first appearing in the thigh and then grad-
ually descended to the lower leg. The swelling of the
affected limb was significantly increased after standing
and walking for a long time, and the swelling could be
significantly alleviated after lying down and raising the
affected limb. No change in skin color of the affected
limb, no sensory and motor disturbance of affected
limb, milky white or clear fluid may flow out after skin
rupture. Self-report shows that there was no obvious
relation between swelling and diet. The lower extrem-
ity vascular ultrasound examination showed no definite
abnormality in a local hospital. For further diagnosis
and treatment, he was admitted to our hospital.

milky white or clear liquid to flow out

Self-Attentionno sensory and motor impairments were
observed in affected limbs

sand and walk for long periods

came to our outpatient clinic for futher
diagnosis and treatment

PostKS
it can break down after standing and walk-
ing for a long time

the patient presented edema in right thigh,
hip, right waist and scrotal

the swelling is getting worse

Node-Maskno skin color change of affected limb

treatment in a local hospital

and leave a milky white liquid

Edge-Maskafter the skin ruptures may have the milky
white or the clear liquid outflow

Diagnosis: Chylous Reflux Lymphedema of Right
Waist and Hip, Right Lower Limb, Scrotum

the swelling is concavity

Table 7: The form of the EMR and the result of the extraction.


